# Simulator main loop for m32r2. -*- C -*-
#
# Copyright 1996-2019 Free Software Foundation, Inc.
#
# This file is part of GDB, the GNU debugger.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see .
# Syntax:
# /bin/sh mainloop.in command
#
# Command is one of:
#
# init
# support
# extract-{simple,scache,pbb}
# {full,fast}-exec-{simple,scache,pbb}
#
# A target need only provide a "full" version of one of simple,scache,pbb.
# If the target wants it can also provide a fast version of same, or if
# the slow (full featured) version is `simple', then the fast version can be
# one of scache/pbb.
# A target can't provide more than this.
# ??? After a few more ports are done, revisit.
# Will eventually need to machine generate a lot of this.
case "x$1" in
xsupport)
cat <argbuf;
  id1 = id1->par_idesc;
  abuf->fields.write.abuf = &sc1->argbuf;
  @cpu@_fill_argbuf (current_cpu, abuf, id1, pc, 0);
  /* no need to set trace_p,profile_p */
#if 0 /* not currently needed for id2 since results written directly */
  abuf = &sc[1].argbuf;
  id2 = id2->par_idesc;
  abuf->fields.write.abuf = &sc2->argbuf;
  @cpu@_fill_argbuf (current_cpu, abuf, id2, pc + 2, 0);
  /* no need to set trace_p,profile_p */
#endif
}
static INLINE const IDESC *
emit_16 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn,
	 SCACHE *sc, int fast_p, int parallel_p)
{
  ARGBUF *abuf = &sc->argbuf;
  const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf);
  if (parallel_p)
    id = id->par_idesc;
  @cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
  return id;
}
static INLINE const IDESC *
emit_full16 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, SCACHE *sc,
	     int trace_p, int profile_p)
{
  const IDESC *id;
  @cpu@_emit_before (current_cpu, sc, pc, 1);
  id = emit_16 (current_cpu, pc, insn, sc + 1, 0, 0);
  @cpu@_emit_after (current_cpu, sc + 2, pc);
  sc[1].argbuf.trace_p = trace_p;
  sc[1].argbuf.profile_p = profile_p;
  return id;
}
static INLINE const IDESC *
emit_parallel (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn,
	       SCACHE *sc, int fast_p)
{
  const IDESC *id,*id2;
  /* Emit both insns, then emit a finisher-upper.
     We speed things up by handling the second insn serially
     [not parallelly].  Then the writeback only has to deal
     with the first insn.  */
  /* ??? Revisit to handle exceptions right.  */
  /* FIXME: No need to handle this parallely if second is nop.  */
  id = emit_16 (current_cpu, pc, insn >> 16, sc, fast_p, 1);
  /* Note that this can never be a cti.  No cti's go in the S pipeline.  */
  id2 = emit_16 (current_cpu, pc + 2, insn & 0x7fff, sc + 1, fast_p, 0);
  /* Set sc/snc insns notion of where to skip to.  */
  if (IDESC_SKIP_P (id))
    SEM_SKIP_COMPILE (current_cpu, sc, 1);
  /* Emit code to finish executing the semantics
     (write back the results).  */
  emit_par_finish (current_cpu, pc, sc + 2, sc, id, sc + 1, id2);
  return id;
}
static INLINE const IDESC *
emit_full_parallel (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn,
		    SCACHE *sc, int trace_p, int profile_p)
{
  const IDESC *id,*id2;
  /* Emit both insns, then emit a finisher-upper.
     We speed things up by handling the second insn serially
     [not parallelly].  Then the writeback only has to deal
     with the first insn.  */
  /* ??? Revisit to handle exceptions right.  */
  @cpu@_emit_before (current_cpu, sc, pc, 1);
  /* FIXME: No need to handle this parallelly if second is nop.  */
  id = emit_16 (current_cpu, pc, insn >> 16, sc + 1, 0, 1);
  sc[1].argbuf.trace_p = trace_p;
  sc[1].argbuf.profile_p = profile_p;
  @cpu@_emit_before (current_cpu, sc + 2, pc, 0);
  /* Note that this can never be a cti.  No cti's go in the S pipeline.  */
  id2 = emit_16 (current_cpu, pc + 2, insn & 0x7fff, sc + 3, 0, 0);
  sc[3].argbuf.trace_p = trace_p;
  sc[3].argbuf.profile_p = profile_p;
  /* Set sc/snc insns notion of where to skip to.  */
  if (IDESC_SKIP_P (id))
    SEM_SKIP_COMPILE (current_cpu, sc, 4);
  /* Emit code to finish executing the semantics
     (write back the results).  */
  emit_par_finish (current_cpu, pc, sc + 4, sc + 1, id, sc + 3, id2);
  @cpu@_emit_after (current_cpu, sc + 5, pc);
  return id;
}
static INLINE const IDESC *
emit_32 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn,
	 SCACHE *sc, int fast_p)
{
  ARGBUF *abuf = &sc->argbuf;
  const IDESC *id = @cpu@_decode (current_cpu, pc,
				  (USI) insn >> 16, insn, abuf);
  @cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
  return id;
}
static INLINE const IDESC *
emit_full32 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, SCACHE *sc,
	     int trace_p, int profile_p)
{
  const IDESC *id;
  @cpu@_emit_before (current_cpu, sc, pc, 1);
  id = emit_32 (current_cpu, pc, insn, sc + 1, 0);
  @cpu@_emit_after (current_cpu, sc + 2, pc);
  sc[1].argbuf.trace_p = trace_p;
  sc[1].argbuf.profile_p = profile_p;
  return id;
}
EOF
;;
xinit)
# Nothing needed.
;;
xextract-pbb)
# Inputs:  current_cpu, pc, sc, max_insns, FAST_P
# Outputs: sc, pc
# sc must be left pointing past the last created entry.
# pc must be left pointing past the last created entry.
# If the pbb is terminated by a cti insn, SET_CTI_VPC(sc) must be called
# to record the vpc of the cti insn.
# SET_INSN_COUNT(n) must be called to record number of real insns.
cat < 0)
	{
	  USI insn = GETIMEMUSI (current_cpu, pc);
	  if ((SI) insn < 0)
	    {
	      /* 32 bit insn */
	      idesc = emit_32 (current_cpu, pc, insn, sc, 1);
	      ++sc;
	      --max_insns;
	      ++icount;
	      pc += 4;
	      if (IDESC_CTI_P (idesc))
		{
		  SET_CTI_VPC (sc - 1);
		  break;
		}
	    }
	  else
	    {
	      if ((insn & 0x8000) != 0) /* parallel? */
		{
                  int up_count;
		  if (((insn >> 16) & 0xfff0) == 0x10f0)
		    {
		      /* FIXME: No need to handle this sequentially if system
		         calls will be able to execute after second insn in
		         parallel. ( trap #num || insn ) */
		      /* insn */
		      idesc = emit_16 (current_cpu, pc + 2, insn & 0x7fff,
				       sc, 1, 0);
		      /* trap */
		      emit_16 (current_cpu, pc, insn >> 16, sc + 1, 1, 0);
                      up_count = 2;
		    }
		  else
		    {
		      /* Yep.  Here's the "interesting" [sic] part.  */
		      idesc = emit_parallel (current_cpu, pc, insn, sc, 1);
                      up_count = 3;
		    }
		  sc += up_count;
		  max_insns -= up_count;
		  icount += 2;
		  pc += 4;
		  if (IDESC_CTI_P (idesc))
		    {
		      SET_CTI_VPC (sc - up_count);
		      break;
		    }
		}
	      else /* 2 serial 16 bit insns */
		{
		  idesc = emit_16 (current_cpu, pc, insn >> 16, sc, 1, 0);
		  ++sc;
		  --max_insns;
		  ++icount;
		  pc += 2;
		  if (IDESC_CTI_P (idesc))
		    {
		      SET_CTI_VPC (sc - 1);
		      break;
		    }
		  /* While we're guaranteed that there's room to extract the
		     insn, when single stepping we can't; the pbb must stop
		     after the first insn.  */
		  if (max_insns == 0)
		    break;
		  idesc = emit_16 (current_cpu, pc, insn & 0x7fff, sc, 1, 0);
		  ++sc;
		  --max_insns;
		  ++icount;
		  pc += 2;
		  if (IDESC_CTI_P (idesc))
		    {
		      SET_CTI_VPC (sc - 1);
		      break;
		    }
		}
	    }
	}
    }
  else /* ! FAST_P */
    {
      while (max_insns > 0)
	{
	  USI insn = GETIMEMUSI (current_cpu, pc);
	  int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
	  int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
	  SCACHE *cti_sc; /* ??? tmp hack */
	  if ((SI) insn < 0)
	    {
	      /* 32 bit insn
		 Only emit before/after handlers if necessary.  */
	      if (trace_p || profile_p)
		{
		  idesc = emit_full32 (current_cpu, pc, insn, sc,
				       trace_p, profile_p);
		  cti_sc = sc + 1;
		  sc += 3;
		  max_insns -= 3;
		}
	      else
		{
		  idesc = emit_32 (current_cpu, pc, insn, sc, 0);
		  cti_sc = sc;
		  ++sc;
		  --max_insns;
		}
	      ++icount;
	      pc += 4;
	      if (IDESC_CTI_P (idesc))
		{
		  SET_CTI_VPC (cti_sc);
		  break;
		}
	    }
	  else
	    {
	      if ((insn & 0x8000) != 0) /* parallel? */
		{
		  /* Yep.  Here's the "interesting" [sic] part.
		     Only emit before/after handlers if necessary.  */
		  if (trace_p || profile_p)
		    {
		      if (((insn >> 16) & 0xfff0) == 0x10f0)
		        {
		          /* FIXME: No need to handle this sequentially if
			     system calls will be able to execute after second
			     insn in parallel. ( trap #num || insn ) */
		          /* insn */
			  idesc = emit_full16 (current_cpu, pc + 2,
					       insn & 0x7fff, sc, 0, 0);
		          /* trap */
			  emit_full16 (current_cpu, pc, insn >> 16, sc + 3,
				       0, 0);
		        }
		      else
		        {
		          idesc = emit_full_parallel (current_cpu, pc, insn,
						      sc, trace_p, profile_p);
		        }
		      cti_sc = sc + 1;
		      sc += 6;
		      max_insns -= 6;
		    }
		  else
		    {
                      int up_count;
		      if (((insn >> 16) & 0xfff0) == 0x10f0)
		        {
		          /* FIXME: No need to handle this sequentially if
			     system calls will be able to execute after second
			     insn in parallel. ( trap #num || insn ) */
		          /* insn */
		          idesc = emit_16 (current_cpu, pc + 2, insn & 0x7fff,
				           sc, 0, 0);
		          /* trap */
		          emit_16 (current_cpu, pc, insn >> 16, sc + 1, 0, 0);
                          up_count = 2;
		        }
		      else
		        {
		          idesc = emit_parallel (current_cpu, pc, insn, sc, 0);
                          up_count = 3;
		        }
		      cti_sc = sc;
		      sc += up_count;
		      max_insns -= up_count;
		    }
		  icount += 2;
		  pc += 4;
		  if (IDESC_CTI_P (idesc))
		    {
		      SET_CTI_VPC (cti_sc);
		      break;
		    }
		}
	      else /* 2 serial 16 bit insns */
		{
		  /* Only emit before/after handlers if necessary.  */
		  if (trace_p || profile_p)
		    {
		      idesc = emit_full16 (current_cpu, pc, insn >> 16, sc,
					   trace_p, profile_p);
		      cti_sc = sc + 1;
		      sc += 3;
		      max_insns -= 3;
		    }
		  else
		    {
		      idesc = emit_16 (current_cpu, pc, insn >> 16, sc, 0, 0);
		      cti_sc = sc;
		      ++sc;
		      --max_insns;
		    }
		  ++icount;
		  pc += 2;
		  if (IDESC_CTI_P (idesc))
		    {
		      SET_CTI_VPC (cti_sc);
		      break;
		    }
		  /* While we're guaranteed that there's room to extract the
		     insn, when single stepping we can't; the pbb must stop
		     after the first insn.  */
		  if (max_insns <= 0)
		    break;
		  /* Use the same trace/profile address for the 2nd insn.
		     Saves us having to compute it and they come in pairs
		     anyway (e.g. can never branch to the 2nd insn).  */
		  if (trace_p || profile_p)
		    {
		      idesc = emit_full16 (current_cpu, pc, insn & 0x7fff, sc,
					   trace_p, profile_p);
		      cti_sc = sc + 1;
		      sc += 3;
		      max_insns -= 3;
		    }
		  else
		    {
		      idesc = emit_16 (current_cpu, pc, insn & 0x7fff, sc, 0, 0);
		      cti_sc = sc;
		      ++sc;
		      --max_insns;
		    }
		  ++icount;
		  pc += 2;
		  if (IDESC_CTI_P (idesc))
		    {
		      SET_CTI_VPC (cti_sc);
		      break;
		    }
		}
	    }
	}
    }
 Finish:
  SET_INSN_COUNT (icount);
}
EOF
;;
xfull-exec-pbb)
# Inputs: current_cpu, vpc, FAST_P
# Outputs: vpc
# vpc is the virtual program counter.
cat <&2
  exit 1
  ;;
esac