X Toolkit Intrinsics — C Language Interface
X Window System

X Version 11, Release 6.4

First Revision - April, 1994

Joel McCormack

Digital Equipment Corporation
Western Software Laboratory

Paul Asente

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group
MIT X Consortium

version 6 edited by Donna Converse

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-

ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-

mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. It is provided “as is’” without express or implied

warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Haynes, Mike Chow,
and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)
Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)
Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the X11 Intrinsics present an
entirely different programming style, they borrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the above, as well as
by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)

Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11 Intrinsics.

Thanks go to Al Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of Berkeley for extensively reviewing early
drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March 1988

xi

The current design of the Intrinsics has benefited greatly from the input of several dedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals have dedicated significant time to suggesting improvements to the Intrin-
sics:

Steve Pitschke (Stellar) C. Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (AT&T) Jim Fulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Texas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dov (HP) Glenn Widener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988
From Release 3 to Release 4, several new members joined the design team. We greatly appreciate

the thoughtful comments, suggestions, lengthy discussions, and in some cases implementation
code contributed by each of the following:

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Converse (MIT) Clive Feather (IXT)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. This has been an educational process for many of
us, and Bill and Frank’s tutelage has carried us through. Vania Joloboff of the OSF also contrib-
uted to the internationalization additions. The implementation efforts of Bill, Gabe Beged-Dov,
and especially Donna Converse for this release are also gratefully acknowledged.

Ralph R. Swick
December 1989

and
July 1991

xii

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the X Consor-
tium’s intrinsics working group. A few individuals contributed substantial design proposals, par-
ticipated in lengthy discussions, reviewed final specifications, and in most cases, were also
responsible for sections of the implementation. They deserve recognition and thanks for their
major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)

Vania Joloboff (OSF) Kaleb Keithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people deserve thanks for their contributions:
Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Grotsky, Keith Edwards, Clive
Feather, Stephen Gildea, Dan Heller, Steve Humphrey, David Kaelbling, Jaime Lau, Rob Lem-
bree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGilder, Will Walker, and Mike Wexler.

I am especially grateful to two of my colleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithley for leadership in the implementation and the specification work.

Donna Converse
X Consortium
April 1994

xiii

About This Manual

X Toolkit Intrinsics — C Language Interface is intended to be read by both application program-
mers who will use one or more of the many widget sets built with the Intrinsics and by widget
programmers who will use the Intrinsics to build widgets for one of the widget sets. Not all the
information in this manual, however, applies to both audiences. That is, because the application
programmer is likely to use only a number of the Intrinsics functions in writing an application and
because the widget programmer is likely to use many more, if not all, of the Intrinsics functions
in building a widget, an attempt has been made to highlight those areas of information that are
deemed to be of special interest for the application programmer. (It is assumed the widget pro-
grammer will have to be familiar with all the information.) Therefore, all entries in the table of
contents that are printed in bold indicate the information that should be of special interest to an
application programmer.

It is also assumed that, as application programmers become more familiar with the concepts dis-
cussed in this manual, they will find it more convenient to implement portions of their applica-
tions as special-purpose or custom widgets. It is possible, nonetheless, to use widgets without
knowing how to build them.

Conventions Used in this Manual
This document uses the following conventions:

. Global symbols are printed in this special font. These can be either function names, sym-
bols defined in include files, data types, or structure names. Arguments to functions, proce-
dures, or macros are printed in italics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
General discussion of the function, if any is required, follows the arguments.

. To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifies or, in the case of multiple arguments, the word specify. The explanations for all
arguments that are returned to you start with the word returns or, in the case of multiple
arguments, the word return.

xiv

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network window system, specifically the X Window System. The Intrinsics
and a widget set make up an X Toolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and application environments. The Intrinsics are a layer on top of Xlib, the C Library
X Interface. They extend the fundamental abstractions provided by the X Window System while
still remaining independent of any particular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and composing user interface components, known as widgets. This allows program-
mers to extend a widget set in new ways, either by deriving new widgets from existing ones (sub-
classing) or by writing entirely new widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a widget class
named Core. In Release 4 of the Intrinsics, three nonwidget superclasses were added above Core.
These superclasses are described in Chapter 12. The name of the class now at the root of the
Intrinsics class hierarchy is Object. The remainder of this specification refers uniformly to wid-
gets and Core as if they were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12 describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific refer-
ence to widget actually means “widget” or “object.”

1.2. Languages

The Intrinsics are intended to be used for two programming purposes. Programmers writing wid-
gets will be using most of the facilities provided by the Intrinsics to construct user interface com-
ponents from the simple, such as buttons and scrollbars, to the complex, such as control panels
and property sheets. Application programmers will use a much smaller subset of the Intrinsics
procedures in combination with one or more sets of widgets to construct and present complete
user interfaces on an X display. The Intrinsics programming interfaces primarily intended for
application use are designed to be callable from most procedural programming languages. There-
fore, most arguments are passed by reference rather than by value. The interfaces primarily
intended for widget programmers are expected to be used principally from the C language. In
these cases, the usual C programming conventions apply. In this specification, the term client
refers to any module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/Intrinsic.h>
and <X11/StringDefs.h>, or their equivalent, and they may also include <X11/Xatoms.h> and
<X11/Shell.h>. In addition, widget implementations should include <X11/IntrinsicP.h> instead
of <X11/Intrinsic.h>.

X Toolkit Intrinsics X11 Release 6.4

The applications must also include the additional header files for each widget class that they are
to use (for example, <X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). On a POSIX-based sys-
tem, the Intrinsics object library file is named libXt.a and is usually referenced as —1Xt when
linking the application.

1.3. Procedures and Macros

All functions defined in this specification except those specified below may be implemented as C
macros with arguments. C applications may use “#undef” to remove a macro definition and
ensure that the actual function is referenced. Any such macro will expand to a single expression
that has the same precedence as a function call and that evaluates each of its arguments exactly
once, fully protected by parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivalents and that may expand
their arguments in a manner other than that described above: XtCheckSubclass, XtNew,
XtNumber, XtOffsetOf, XtOffset, and XtSetArg.

1.4. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X window and its associated input and display semantics and which is dynamically allo-
cated and contains state information. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointer or keyboard input, and others change their dis-
play in response to input and can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and
which contains the operations allowable on widgets of that class. Logically, a widget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physically, a widget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, “constant” means the class structure is initialized at compile time and never
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is created.) For further informa-
tion, see Section 2.5.

The distribution of the declarations and code for a new widget class among a public .h file for
application programmer use, a private .h file for widget programmer use, and the implementation
.c file is described in Section 1.6. The predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:
. A data structure which contains instance-specific values.
. A class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border widths) is cus-
tomizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

X Toolkit Intrinsics

1.4.1. Core Widgets

X11 Release 6.4

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined by the CoreClassPart and CorePart

structures.

1.4.1.1. CoreClassPart Structure

All widget classes contain the fields defined in the CoreClassPart structure.

typedef struct {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;

XtWidgetClassProc class_part_initialize;

XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;
Cardinal num_actions;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean compress_motion;
XtEnum compress_exposure;
Boolean compress_enterleave;
Boolean visible_interest;
XtWidgetProc destroys;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtAcceptFocusProc accept_focus;
XtVersionType version;
XtPointer callback_private;
String tm_table;

XtGeometryHandler query_geometry;

XtStringProc display_accelerator;
XtPointer extension;
} CoreClassPart;

See Section 1.6
See Chapter 9
See Section 1.6
See Section 1.6
See Section 1.6
See Section 1.6
See Section 2.5
See Section 2.5
See Section 2.6
See Chapter 10
See Chapter 10
See Chapter 9
See Chapter 9
Private to resource manager
See Section 7.9
See Section 7.9
See Section 7.9
See Section 7.10
See Section 2.8
See Chapter 6
See Section 7.10
See Section 9.7
See Section 9.7
See Section 9.7
See Section 9.7
See Section 7.3
See Section 1.6
Private to callbacks
See Chapter 10
See Chapter 6
See Chapter 10
See Section 1.6

All widget classes have the Core class fields as their first component. The prototypical Widget-
Class and CoreWidgetClass are defined with only this set of fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CoreClassPart core_class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class types.
The single occurrences of the class record and pointer for creating instances of Core are

In IntrinsicP.h:

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

In Intrinsic.h:

extern WidgetClass widgetClass, coreWidgetClass;

The opaque types Widget and WidgetClass and the opaque variable widgetClass are defined
for generic actions on widgets. In order to make these types opaque and ensure that the compiler
does not allow applications to access private data, the Intrinsics use incomplete structure defini-
tions in Intrinsic.h:

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CorePart Structure

All widget instances contain the fields defined in the CorePart structure.

X Toolkit Intrinsics

typedef struct _CorePart {

Widget self;

WidgetClass widget_class;
Widget parent;

Boolean being_destroyed;
XtCallbackList destroy_callbacks;
XtPointer constraints;
Position x;

Position y;

Dimension width;
Dimension height;
Dimension border_width;
Boolean managed;

Boolean sensitive;

Boolean ancestor_sensitive;
XtTranslations accelerators;
Pixel border_pixel;

Pixmap border_pixmap;
WidgetList popup_list;
Cardinal num_popups;
String name;

Screen *screen;

Colormap colormap;
Window window;

Cardinal depth;

Pixel background_pixel;
Pixmap background_pixmap;
Boolean visible;

Boolean mapped_when_managed;

Described below
See Section 1.6
See Section 2.5
See Section 2.8
See Section 2.8
See Section 3.6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 3
See Section 7.7
See Section 7.7
See Chapter 10
See Section 2.6
See Section 2.6
See Chapter 5
See Chapter 5
See Chapter 9
See Section 2.6
See Section 2.6
See Section 2.6
See Section 2.6
See Section 2.6
See Section 2.6
See Section 7.10
See Chapter 3

X11 Release 6.4

} CorePart;

All widget instances have the Core fields as their first component. The prototypical type Widget
is defined with only this set of fields.

typedef struct {
CorePart core;
} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to make these types opaque and ensure that the compiler does not allow applications to
access private data, the Intrinsics use incomplete structure definitions in Intrinsic.h.

typedef struct _WidgetRec *Widget, *CoreWidget;

X Toolkit Intrinsics

1.4.1.3. Core Resources

X11 Release 6.4

The resource names, classes, and representation types specified in the coreClassRec resource list

are
Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRTranslationTable

Additional resources are defined for all widgets via the objectClassRec and rectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

1.4.1.4. CorePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists,
and by the initialize procedures, are

Field Default Value

self Address of the widget structure (may not be changed).
widget_class widget_class argument to XtCreateWidget (may not be changed).
parent parent argument to XtCreateWidget (may not be changed).

being_destroyed
destroy_callbacks
constraints

X

y

width

height
border_width
managed
sensitive
ancestor_sensitive
accelerators
border_pixel
border_pixmap
popup_list
num_popups
name

Parent’s being_destroyed value.

NULL
NULL

0
0
0
0
1

False
True

logical AND of parent’s sensitive and ancestor_sensitive values.

NULL
XtDefaultForeground
XtUnspecifiedPixmap
NULL

0

name argument to XtCreateWidget (may not be changed).

X Toolkit Intrinsics X11 Release 6.4

screen Parent’s screen; top-level widget gets screen from display specifier
(may not be changed).

colormap Parent’s colormap value.

window NULL

depth Parent’s depth; top-level widget gets root window depth.

background_pixel XtDefaultBackground

background_pixmap XtUnspecifiedPixmap

visible True

mapped_when_man- True

aged

XtUnspecifiedPixmap is a symbolic constant guaranteed to be unequal to any valid Pixmap id,
None, and ParentRelative.

1.4.2. Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by the CompositeClassPart and CompositePart structures.

1.4.2.1. CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following class fields.

typedef struct {

XtGeometryHandler geometry_manager; See Chapter 6
XtWidgetProc change_managed; See Chapter 3
XtWidgetProc insert_child; See Chapter 3
XtWidgetProc delete_child,; See Chapter 3
XtPointer extension; See Section 1.6

} CompositeClassPart;

The extension record defined for CompositeClassPart with record_type equal to NULLQUARK
is CompositeClassExtensionRec.

typedef struct {

XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
Boolean accepts_objects; See Section 2.5.2
Boolean allows_change_managed_set; See Section 3.4.3

} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes have the Composite class fields immediately following the Core class fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are

In IntrinsicP.h:

extern CompositeClassRec compositeClassRec;

In Intrinsic.h:

extern WidgetClass compositeWidgetClass;

The opaque types CompositeWidget and CompositeWidgetClass and the opaque variable
compositeWidgetClass are defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant for the CompositeClassExtension version
identifier is XtCompositeExtensionVersion (see Section 1.6.12). Intrinsic.h uses an incom-
plete structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.2.2. CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the following instance
fields defined in the CompositePart structure.

typedef struct {

WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets have the Composite instance fields immediately following the Core instance
fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2.3. Composite Resources

The resource names, classes, and representation types that are specified in the compositeClass-
Rec resource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtClnsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

1.4.2.4. CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are

Field Default Value
children NULL
num_children 0

num_slots 0

insert_position Internal function to insert at end

The children, num_children, and insert_position fields are declared as resources; XtNinsertPosi-
tion is a settable resource, XtNchildren and XtNnumChildren may be read by any client but
should only be modified by the composite widget class procedures.

1.4.3. Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6). Con-
straint widgets maintain additional state data for each child; for example, client-defined con-
straints on the child’s geometry. The additional data used by constraint widgets are defined by the
ConstraintClassPart and ConstraintPart structures.

X Toolkit Intrinsics X11 Release 6.4

1.4.3.1. ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class have the fol-
lowing class fields.

typedef struct {

XtResourceList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
Cardinal constraint_size; See Section 3.6
XtInitProc initialize; See Section 3.6
XtWidgetProc destroy; See Section 3.6
XtSetValuesFunc set_values; See Section 9.7.2
XtPointer extension; See Section 1.6

} ConstraintClassPart;

The extension record defined for ConstraintClassPart with record_type equal to NULLQUARK
is ConstraintClassExtensionRec.

typedef struct {

XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
XtArgsProc get_values_hook; See Section 9.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes have the Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are

In IntrinsicP.h:

extern ConstraintClassRec constraintClassRec;

In Intrinsic.h:

10

X Toolkit Intrinsics X11 Release 6.4

extern WidgetClass constraintWidgetClass;

The opaque types ConstraintWidget and ConstraintWidgetClass and the opaque variable con-
straintWidgetClass are defined for generic operations on widgets whose class is Constraint or a
subclass of Constraint. The symbolic constant for the ConstraintClassExtension version identi-
fier is XtConstraintExtensionVersion (see Section 1.6.12). Intrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

1.4.3.2. ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint class have the
following unused instance fields defined in the ConstraintPart structure

typedef struct {
int empty;
} ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3.3. Constraint Resources

The constraintClassRec core_class and constraint_class resources fields are NULL, and the
num_resources fields are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

11

X Toolkit Intrinsics X11 Release 6.4

1.5. Implementation-Specific Types

To increase the portability of widget and application source code between different system envi-
ronments, the Intrinsics define several types whose precise representation is explicitly dependent
upon, and chosen by, each individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzero value. Unless explicitly stated, clients
should not assume that the nonzero value is equal to the symbolic value True.

Cardinal An unsigned integer datum with a minimum range of [0..2716-1].
Dimension An unsigned integer datum with a minimum range of [0..2°16-1].
Position A signed integer datum with a minimum range of [-2715..2"15-1].

XtPointer A datum large enough to contain the largest of a char*, int*, function pointer, struc-
ture pointer, or long value. A pointer to any type or function, or a long value may
be converted to an XtPointer and back again and the result will compare equal to
the original value. In ANSI C environments it is expected that XtPointer will be
defined as void*.

XtArgVal A datum large enough to contain an XtPointer, Cardinal, Dimension, or Posi-
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct values, two of which
are the symbolic values True and False. The symbolic values TRUE and FALSE
are also defined to be equal to True and False, respectively.

In addition to these specific types, the precise order of the fields within the structure declarations
for any of the instance part records ObjectPart, RectObjPart, CorePart, CompositePart,
ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShellPart is implementation-
defined. These structures may also have additional private fields internal to the implementation.
The ObjectPart, RectObjPart, and CorePart structures must be defined so that any member
with the same name appears at the same offset in ObjectRec, RectObjRec, and CoreRec (Wid-
getRec). No other relations between the offsets of any two fields may be assumed.

1.6. Widget Classing

The widget_class field of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not imple-
ment directly callable procedures; rather, they implement procedures, called methods, that are
available through their widget class structure. These methods are invoked by generic procedures
that envelop common actions around the methods implemented by the widget class. Such proce-
dures are applicable to all widgets of that class and also to widgets whose classes are subclasses
of that class.

All widget classes are a subclass of Core and can be subclassed further. Subclassing reduces the
amount of code and declarations necessary to make a new widget class that is similar to an exist-
ing class. For example, you do not have to describe every resource your widget uses in an XtRe-
sourceList. Instead, you describe only the resources your widget has that its superclass does not.
Subclasses usually inherit many of their superclasses’ procedures (for example, the expose proce-
dure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of the pro-
cedures of its superclass, you should consider whether you have chosen the most appropriate
superclass.

12

X Toolkit Intrinsics X11 Release 6.4

To make good use of subclassing, widget declarations and naming conventions are highly styl-
ized. A widget consists of three files:

A public .h file, used by client widgets or applications.
A private .h file, used by widgets whose classes are subclasses of the widget class.

A .c file, which implements the widget.

1.6.1. Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets and organize a
collection of widgets into an application. To ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide-
lines should be followed when writing new widgets:

Use the X library naming conventions that are applicable. For example, a record compo-
nent name is all lowercase and uses underscores (_) for compound words (for example,
background_pixmap). Type and procedure names start with uppercase and use capitaliza-
tion for compound words (for example, ArgList or XtSetValues).

A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscore. To let the compiler catch spelling errors, each
resource name should have a symbolic identifier prefixed with “XtN”’. For example, the
background_pixmap field has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string ‘“‘backgroundPixmap’’. Many predefined names are listed in
<X11/StringDefs.h>. Before you invent a new name, you should make sure there is not
already a name that you can use.

A resource class string starts with a capital letter and uses capitalization for compound
names (for example, ‘“BorderWidth’”). Each resource class string should have a symbolic
identifier prefixed with “XtC” (for example, XtCBorderWidth). Many predefined classes
are listed in <X11/StringDefs.h>.

A resource representation string is spelled identically to the type name (for example,
“TranslationTable’”). Each representation string should have a symbolic identifier prefixed
with “XtR” (for example, XtRTranslationTable). Many predefined representation types are
listed in <X11/StringDefs.h>.

New widget classes start with a capital and use uppercase for compound words. Given a
new class name AbcXyz, you should derive several names:

- Additional widget instance structure part name AbcXyzPart.

- Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
- Widget instance structure pointer type name AbcXyzWidget.

- Additional class structure part name AbcXyzClassPart.

- Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
- Class structure pointer type name AbcXyzWidgetClass.

- Class structure variable abcXyzClassRec.

- Class structure pointer variable abcXyzWidgetClass.

Action procedures available to translation specifications should follow the same naming
conventions as procedures. That is, they start with a capital letter, and compound names
use uppercase (for example, “Highlight” and “NotifyClient”).

13

X Toolkit Intrinsics X11 Release 6.4

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros, as global
symbols, or as a mixture of the two. The (implicit) type of the identifier is String. The pointer
value itself is not significant; clients must not assume that inequality of two identifiers implies
inequality of the resource name, class, or representation string. Clients should also note that
although global symbols permit savings in literal storage in some environments, they also intro-
duce the possibility of multiple definition conflicts when applications attempt to use indepen-
dently developed widgets simultaneously.

1.6.2. Widget Subclassing in Public .h Files
The public .h file for a widget class is imported by clients and contains
. A reference to the public .h file for the superclass.

. Symbolic identifiers for the names and classes of the new resources that this widget adds to
its superclass. The definitions should have a single space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes.

. Type declarations for any new resource data types defined by the class.
. The class record pointer variable used to create widget instances.

. The C type that corresponds to widget instances of this class.

. Entry points for new class methods.

For example, the following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */

#define XtNjustify "justify"

#define XtNforeground "foreground"
#define XtNlabel "label"

#define XtNfont "font"

#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

/* C Widget type definition */
typedef struct _LabelRec *LabelWidget;
/* New class method entry points */
extern void LabelSetText();
/* Widget w */
/* String text */

extern String LabelGetText();
/* Widget w */

#endif LABEL_H

14

X Toolkit Intrinsics X11 Release 6.4

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned that they already may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget class. For example, the public .h file for the Constraint
widget class is Constraint.h.

1.6.3. Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and
contains

. A reference to the public .h file for the class.
. A reference to the private .h file for the superclass.

. Symbolic identifiers for any new resource representation types defined by the class. The
definitions should have a single space between the definition name and the value and no
trailing space or comment.

. A structure part definition for the new fields that the widget instance adds to its superclass’s
widget structure.

. The complete widget instance structure definition for this widget.

. A structure part definition for the new fields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

. The complete constraint structure definition if the widget class is a subclass of Constraint.

. Type definitions for any new procedure types used by class methods declared in the widget
class part.

. A structure part definition for the new fields that this widget class adds to its superclass’s
widget class structure.

. The complete widget class structure definition for this widget.

. The complete widget class extension structure definition for this widget, if any.

. The symbolic constant identifying the class extension version, if any.

. The name of the global class structure variable containing the generic class structure for
this class.

. An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */

typedef struct {
/* Settable resources */

15

X Toolkit Intrinsics X11 Release 6.4

Pixel foreground;
XFontStruct *font;

String label; /* text to display */

XtJustify justify;

Dimension internal_width; /* # pixels horizontal border */
Dimension internal_height; /* # pixels vertical border */

/* Data derived from resources */
GC normal_GC;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension label_height;
Cardinal label_len;
Boolean display_sensitive;
} LabelPart;

/* Full instance record declaration */
typedef struct _LabelRec {

CorePart core;

LabelPart label;
} LabelRec;

/* Types for Label class methods */
typedef void (*LabelSetTextProc)();
/* Widget w */
/* String text */

typedef String (*LabelGetTextProc)();
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {
LabelSetTextProc set_text;
LabelGetTextProc get_text;
XtPointer extension;
} LabelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {
CoreClassPart core_class;
LabelClassPart label_class;
} LabelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

16

X Toolkit Intrinsics X11 Release 6.4

#define LabellnheritSetText((LabelSetTextProc)_XtInherit)
#define LabellnheritGetText((LabelGetTextProc)_XtInherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name of the private .h
file is the first nine characters of the widget class followed by a capital P. For example, the private
.h file for the Constraint widget class is ConstrainP.h.

1.6.4. Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con-
tains the following parts:

. Class information (for example, superclass, class_name, widget_size, class_initialize, and
class_inited).

. Data constants (for example, resources and num_resources, actions and num_actions, visi-
ble_interest, compress_motion, compress_exposure, and version).

. Widget operations (for example, initialize, realize, destroy, resize, expose, set_values,
accept_focus, and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the superclass private
.h file. For direct subclasses of the generic core widget, superclass should be initialized to the
address of the widgetClassRec structure. The superclass is used for class chaining operations
and for inheriting or enveloping a superclass’s operations (see Sections 1.6.7, 1.6.9, and 1.6.10).

The class_name field contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string ‘““Label””. More than one widget class can share the
same text class name. This string must be permanently allocated prior to or during the execution
of the class initialization procedure and must not be subsequently deallocated.

The widget_size field is the size of the corresponding widget instance structure (not the size of the
class structure).

The version field indicates the toolkit implementation version number and is used for runtime
consistency checking of the X Toolkit and widgets in an application. Widget writers must set it to
the implementation-defined symbolic value XtVersion in the widget class structure initialization.
Those widget writers who believe that their widget binaries are compatible with other implemen-
tations of the Intrinsics can put the special value XtVersionDontCheck in the version field to
disable version checking for those widgets. If a widget needs to compile alternative code for dif-
ferent revisions of the Intrinsics interface definition, it may use the symbol XtSpecificationRe-
lease, as described in Chapter 13. Use of XtVersion allows the Intrinsics implementation to rec-
ognize widget binaries that were compiled with older implementations.

The extension field is for future upward compatibility. If the widget programmer adds fields to
class parts, all subclass structure layouts change, requiring complete recompilation. To allow
clients to avoid recompilation, an extension field at the end of each class part can point to a record
that contains any additional class information required.

All other fields are described in their respective sections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget.
The resources table is described in Chapter 9.

17

X Toolkit Intrinsics

/* Resources specific to Label */

static XtResource resources|[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,

}

XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

/* Forward declarations of procedures */
static void ClasslInitialize();
static void Initialize();
static void Realize();

static void SetText();

static void GetText();

/* Class record constant */
LabelClassRec labelClassRec = {

{

/* core_class fields */

/* superclass

/* class_name

/* widget_size

/* class_initialize

/* class_part_initialize
/* class_inited

/* initialize

/* initialize_hook

/* realize

/* actions

/* num_actions

/* resources

/* num_resources

/* xrm_class

/* compress_motion
/* compress_exposure
/* compress_enterleave
/* visible_interest

/* destroy

/* resize

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

18

X11 Release 6.4

(WidgetClass)&coreClassRec,

"Label",
sizeof(LabelRec),
Classlnitialize,
NULL,

False,

Initialize,

NULL,

Realize,

NULL,

0,

resources,
XtNumber(resources),
NULLQUARK,
True,

True,

True,

False,

NULL,

Resize,

X Toolkit Intrinsics X11 Release 6.4

/* expose */ Redisplay,
/* set_values */ SetValues,
/* set_values_hook */ NULL,
/* set_values_almost */ XtInheritSetValuesAlmost,
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
/* version */ XtVersion,
/* callback_offsets */ NULL,
/* tm_table */ NULL,
/* query_geometry */ XtInheritQueryGeometry,
/* display_accelerator */ NULL,
/* extension */ NULL

1,

{

/* Label_class fields */

/* get_text */ GetText,
[* set_text */ SetText,
/* extension */ NULL

}

};

/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void LabelSetText(w, text)
Widget w;
String text;

{
Label WidgetClass Iwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label_class.set_text)(w, text)

}

/* Private procedures */

1.6.5. Widget Class and Superclass Look Up
To obtain the class of a widget, use XtClass.

WidgetClass XtClass(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtClass function returns a pointer to the widget’s class structure.

19

X Toolkit Intrinsics X11 Release 6.4

To obtain the superclass of a widget, use XtSuperclass.

WidgetClass XtSuperclass(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtSuperclass function returns a pointer to the widget’s superclass class structure.

1.6.6. Widget Subclass Verification

To check the subclass to which a widget belongs, use XtIsSubclass.

Boolean XtIsSubclass(w, widget_class)
Widget w;
WidgetClass widget_class;

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass or any subclass
thereof.

The XtIsSubclass function returns True if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. Composite widgets that need
to restrict the class of the items they contain can use XtIsSubclass to find out if a widget belongs
to the desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equivalent to XtIsSubclass for each of the built-in classes. These proce-
dures are XtIsObject, XtIsRectObj, XtIsWidget, XtIsComposite, XtIsConstraint, XtIs-
Shell, XtIsOverrideShell, XtIsWMShell, XtIsVendorShell, XtIsTransientShell, XtIsTo-
pLevelShell, XtIsApplicationShell, and XtIsSessionShell.

All these macros and functions have the same argument description.

Boolean Xtls<class> (w)
Widget w;

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

These procedures may be faster than calling XtIsSubclass directly for the built-in classes.

To check a widget’s class and to generate a debugging error message, use XtCheckSubclass,
defined in <X11/IntrinsicP.h>:

20

X Toolkit Intrinsics X11 Release 6.4

void XtCheckSubclass(w, widget_class, message)
Widget w;
WidgetClass widget_class;
String message;

w Specifies the widget or object whose class is to be checked. Must be of class
Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass or any subclass
thereof.

message Specifies the message to be used.

The XtCheckSubclass macro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. If the specified widget’s class
is not a subclass, XtCheckSubclass constructs an error message from the supplied message, the
widget’s actual class, and the expected class and calls XtErrorMsg. XtCheckSubclass should
be used at the entry point of exported routines to ensure that the client has passed in a valid wid-
get class for the exported operation.

XtCheckSubclass is only executed when the module has been compiled with the compiler sym-
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their cor-
responding fields in their superclass structures. With a linked field, the Intrinsics access the
field’s value only after accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called upward superclass chain-
ing). The self-contained fields are

In all widget classes: class_name
class_initialize
widget_size
realize
visible_interest
resize
expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set_values_almost
tm_table
version
allocate
deallocate

In Composite widget classes: geometry_manager

change_managed
insert_child

21

X Toolkit Intrinsics X11 Release 6.4

delete_child
accepts_objects
allows_change_managed_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_manager

With downward superclass chaining, the invocation of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on down
the class chain to that widget’s class structure. These superclass-to-subclass fields are

class_part_initialize
get_values_hook
initialize
initialize_hook
set_values
set_values _hook
resources

In addition, for subclasses of Constraint, the following fields of the ConstraintClassPart and
ConstraintClassExtensionRec structures are chained from the Constraint class down to the sub-
class:

resources

initialize

set_values

get_values_hook

With upward superclass chaining, the invocation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the Core,
RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

For subclasses of Constraint, the following field of ConstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

1.6.8. Class Initialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some cases, however,
a class may need to register type converters or perform other sorts of once-only runtime initializa-
tion.

Because the C language does not have initialization procedures that are invoked automatically
when a program starts up, a widget class can declare a class_initialize procedure that will be auto-
matically called exactly once by the Intrinsics. A class initialization procedure pointer is of type
XtProc:

22

X Toolkit Intrinsics X11 Release 6.4

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initialize field.

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class,
but for subclasses as well, and are done in the class’s class part initialization procedure, a pointer
to which is stored in the class_part_initialize field. The class_part_initialize procedure pointer is
of type XtWidgetClassProc.

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClass widget_class;

widget_class Points to the class structure for the class being initialized.

During class initialization, the class part initialization procedures for the class and all its super-
classes are called in superclass-to-subclass order on the class record. These procedures have the
responsibility of doing any dynamic initializations necessary to their class’s part of the record.
The most common is the resolution of any inherited methods defined in the class. For example, if
a widget class C has superclasses Core, Composite, A, and B, the class record for C first is passed
to Core ’s class_part_initialize procedure. This resolves any inherited Core methods and com-
piles the textual representations of the resource list and action table that are defined in the class
record. Next, Composite’s class_part_initialize procedure is called to initialize the composite part
of C’s class record. Finally, the class_part_initialize procedures for A, B, and C, in that order, are
called. For further information, see Section 1.6.9. Classes that do not define any new class fields
or that need no extra processing for them can specify NULL in the class_part_initialize field.

All widget classes, whether they have a class initialization procedure or not, must start with their
class_inited field False.

The first time a widget of a class is created, XtCreateWidget ensures that the widget class and
all superclasses are initialized, in superclass-to-subclass order, by checking each class_inited field
and, if it is False, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then set the class_inited field to a nonzero value.
After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void ClassInitialize()

{
XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,

NULL, 0, XtCacheNone, NULL);

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class or any subclass is created. To initialize a
widget class without creating any widgets, use XtInitializeWidgetClass.

23

X Toolkit Intrinsics X11 Release 6.4

void XtlnitializeWidgetClass(object_class)
WidgetClass object_class;

object_class Specifies the object class to initialize. May be objectClass or any subclass
thereof.

If the specified widget class is already initialized, XtInitializeWidgetClass returns immediately.

If the class initialization procedure registers type converters, these type converters are not avail-
able until the first object of the class or subclass is created or XtInitializeWidgetClass is called
(see Section 9.6).

1.6.10. Inheritance of Superclass Operations

A widget class is free to use any of its superclass’s self-contained operations rather than imple-
menting its own code. The most frequently inherited operations are

expose
realize
insert_child
delete_child
geometry_manager
set_values_almost
To inherit an operation xyz, specify the constant XtInheritXyz in your class record.

Every class that declares a new procedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are never inherited. Widget classes that do nothing beyond what their super-
class does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclass’s value for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal value _XtInherit cast to the appropriate type. _XtIn-
herit is a procedure that issues an error message if it is actually called.

For example, CompositeP.h contains these definitions:

#define XtInheritGeometryManager ((XtGeometryHandler) _XtInherit)
#define XtInheritChangeManaged ((XtWidgetProc) _XtInherit)
#define XtInheritInsertChild ((XtArgsProc) _Xtlnherit)

#define XtInheritDeleteChild ((XtWidgetProc) _XtInherit)

Composite’s class_part_initialize procedure begins as follows:

static void CompositeClassPartlInitialize(widgetClass)
WidgetClass widgetClass;

{
CompositeWidgetClass we = (CompositeWidgetClass)widgetClass;

CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;

if (we->composite_class.geometry_manager == XtInheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

24

X Toolkit Intrinsics X11 Release 6.4

}

if (we->composite_class.change_managed == XtInheritChangeManaged) {
we->composite_class.change_managed = super->composite_class.change_managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare any reserved value it wishes for the inheritance constant for its new fields. The following
inheritance constants are defined:

For Object:
XtInheritAllocate
XtInheritDeallocate

For Core:
XtInheritRealize
XtInheritResize
XtInheritExpose
XtInheritSetValuesAlmost
XtInheritAcceptFocus
XtInheritQueryGeometry
XtInheritTranslations
XtInheritDisplayAccelerator

For Composite:
XtInheritGeometryManager
XtInheritChangeManaged
XtInheritInsertChild
XtInheritDeleteChild

For Shell:
XtInheritRootGeometryManager

1.6.11. Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For example, a wid-
get’s expose procedure might call its superclass’s expose and then perform a little more work on
its own. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclass’s insert_child and then calling XtManageChild to add
the child to the managed set.

25

X Toolkit Intrinsics X11 Release 6.4

Note

A class method should not use XtSuperclass but should instead call the class
method of its own specific superclass directly through the superclass record. That is,
it should use its own class pointers only, not the widget’s class pointers, as the wid-
get’s class may be a subclass of the class whose implementation is being referenced.

This technique is referred to as enveloping the superclass’s operation.

1.6.12. Class Extension Records

It may be necessary at times to add new fields to already existing widget class structures. To per-
mit this to be done without requiring recompilation of all subclasses, the last field in a class part
structure should be an extension pointer. If no extension fields for a class have yet been defined,
subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell classes, sub-
classes can provide values for these fields by setting the extension pointer for the appropriate part
in their class structure to point to a statically declared extension record containing the additional
fields. Setting the extension field is never mandatory; code that uses fields in the extension record
must always check the extension field and take some appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from a single exten-
sion field, extension records should be declared as a linked list, and each extension record defini-
tion should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;
};
next_extension Specifies the next record in the list, or NULL.
record_type Specifies the particular structure declaration to which each extension record
instance conforms.
version Specifies a version id symbolic constant supplied by the definer of the struc-
ture.
record_size Specifies the total number of bytes allocated for the extension record.

The record_type field identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list. The record_type field is normally
assigned the result of XrmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with the two characters “XT” for future standard uses. The
value NULLQUARK may also be used by the class part owner in extension records attached to its
own class part extension field to identify the extension record unique to that particular class.

The version field is an owner-defined constant that may be used to identify binary files that have
been compiled with alternate definitions of the remainder of the extension record data structure.
The private header file for a widget class should provide a symbolic constant for subclasses to use
to initialize this field. The record_size field value includes the four common header fields and

26

X Toolkit Intrinsics X11 Release 6.4

should normally be initialized with sizeof ().

Any value stored in the class part extension fields of CompositeClassPart, ConstraintClass-
Part, or ShellClassPart must point to an extension record conforming to this definition.

The Intrinsics provide a utility function for widget writers to locate a particular class extension
record in a linked list, given a widget class and the offset of the extension field in the class record.

To locate a class extension record, use XtGetClassExtension.

XtPointer XtGetClassExtension(object_class, byte_offset, type, version, record_size)
WidgetClass object_class;
Cardinal byte_offset;
XrmQuark type;
long version;
Cardinal record_size;

object_class Specifies the object class containing the extension list to be searched.

byte_offset Specifies the offset in bytes from the base of the class record of the extension
field to be searched.

type Specifies the record_type of the class extension to be located.

version Specifies the minimum acceptable version of the class extension required for a
match.

record_size Specifies the minimum acceptable length of the class extension record required

for a match, or O.

The list of extension records at the specified offset in the specified object class will be searched
for a match on the specified type, a version greater than or equal to the specified version, and a
record size greater than or equal the specified record_size if it is nonzero. XtGetClassExtension
returns a pointer to a matching extension record or NULL if no match is found. The returned
extension record must not be modified or freed by the caller if the caller is not the extension
owner.

27

X Toolkit Intrinsics X11 Release 6.4

Chapter 2

Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned by XtAp-
pCreateShell is the root of the widget tree instance. The widgets with one or more children are
the intermediate nodes of that tree, and the widgets with no children of any kind are the leaves of
the widget tree. With the exception of pop-up children (see Chapter 5), this widget tree instance
defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but the
Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the class compositeWidgetClass, are containers for an
arbitrary, but widget implementation-defined, collection of children, which may be instantiated by
the composite widget itself, by other clients, or by a combination of the two. Composite widgets
also contain methods for managing the geometry (layout) of any child widget. Under unusual cir-
cumstances, a composite widget may have zero children, but it usually has at least one. By con-
trast, primitive widgets that contain children typically instantiate specific children of known
classes themselves and do not expect external clients to do so. Primitive widgets also do not have
general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, realization and
destruction) on composite widgets and all their children. Primitive widgets that have children
must be prepared to perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, XtRealizeWidget tra-
verses the tree downward and recursively realizes all pop-up widgets and children of composite
widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resources traverse the tree
upward and determine the inheritance of resources from a widget’s ancestors. XtMake-
GeometryRequest traverses the tree up one level and calls the geometry manager that is respon-
sible for a widget child’s geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget that XtAppCreateShell returns has a parent pointer of NULL.

To facilitate downward traversal of the widget tree, the children field of each composite widget is

a pointer to an array of child widgets, which includes all normal children created, not just the sub-
set of children that are managed by the composite widget’s geometry manager. Primitive widgets
that instantiate children are entirely responsible for all operations that require downward traversal
below themselves. In addition, every widget has a pointer to an array of pop-up children.

2.1. Initializing the X Toolkit

Before an application can call any Intrinsics function other than XtSetLanguageProc and
XtToolkitThreadlInitialize, it must initialize the Intrinsics by using

. XtToolkitInitialize, which initializes the Intrinsics internals

28

X Toolkit Intrinsics X11 Release 6.4

. XtCreateApplicationContext, which initializes the per-application state
. XtDisplaylInitialize or XtOpenDisplay, which initializes the per-display state
. XtAppCreateShell, which creates the root of a widget tree

Or an application can call the convenience procedure XtOpenApplication, which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale mecha-
nism should call XtSetLanguageProc prior to calling XtDisplayInitialize, XtOpenDisplay,
XtOpenApplication, or XtApplInitialize.

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispatch events independently of any other instance.
Further, an application instance may need multiple display connections to have widgets on multi-
ple displays. From the application’s point of view, multiple display connections usually are
treated together as a single unit for purposes of event dispatching. To accommodate both require-
ments, the Intrinsics define application contexts, each of which provides the information needed
to distinguish one application instance from another. The major component of an application
context is a list of one or more X Display pointers for that application. The Intrinsics handle all
display connections within a single application context simultaneously, handling input in a round-
robin fashion. The application context type XtAppContext is opaque to clients.

To initialize the Intrinsics internals, use XtToolKitInitialize.

void XtToolkitInitialize()

If XtToolkitInitialize was previously called, it returns immediately. When XtToolkitThrea-
dInitialize is called before XtToolkitInitialize, the latter is protected against simultaneous acti-
vation by multiple threads.

To create an application context, use XtCreateApplicationContext.

XtAppContext XtCreate ApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in it, use XtDe-
stroyApplicationContext.

void XtDestroyApplicationContext(app_context)
XtAppContext app_context;

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application context. If called
from within an event dispatch (for example, in a callback procedure), XtDestroyApplication-
Context does not destroy the application context until the dispatch is complete.

29

X Toolkit Intrinsics X11 Release 6.4

To get the application context in which a given widget was created, use XtWidgetToApplica-
tionContext.

XtAppContext XtWidgetToApplicationContext(w)
Widget w;

w Specifies the widget for which you want the application context. Must be of class
Object or any subclass thereof.

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, use XtDisplayInitialize.

void XtDisplaylnitialize(app_context, display, application_name, application_class,
options, num_options, argc, argv)
XtAppContext app_context;
Display *display;
String application_name;
String application_class;
XrmOptionDescRec *options;
Cardinal num_options;
int *argc;
String *argv;

app_context Specifies the application context.

display Specifies a previously opened display connection. Note that a single dis-
play connection can be in at most one application context.

application_name Specifies the name of the application instance.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to XrmParseC-
ommand. For further information, see Section 15.9 in XIlib — C Lan-
guage X Interface and Section 2.4 of this specification.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the list of command line parameters.

The XtDisplaylnitialize function retrieves the language string to be used for the specified display
(see Section 11.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls the Xlib XrmParseCommand function to parse
the command line, and performs other per-display initialization. After XrmParseCommand has
been called, argc and argv contain only those parameters that were not in the standard option ta-
ble or in the table specified by the options argument. If the modified argc is not zero, most appli-
cations simply print out the modified argv along with a message listing the allowable options. On
POSIX-based systems, the application name is usually the final component of argv[0]. If the

30

X Toolkit Intrinsics X11 Release 6.4

synchronous resource is True, XtDisplaylInitialize calls the Xlib XSynchronize function to put
Xlib into synchronous mode for this display connection and any others currently open in the
application context. See Sections 2.3 and 2.4 for details on the application_name, applica-
tion_class, options, and num_options arguments.

XtDisplaylInitialize calls XrmSetDatabase to associate the resource database of the default
screen with the display before returning.

To open a display, initialize it, and then add it to an application context, use XtOpenDisplay .

Display *XtOpenDisplay(app_context, display_string, application_name, application_class,
options, num_options, argc, argv)
XtAppContext app_context;
String display_string;
String application_name;
String application_class;
XrmOptionDescRec *options;
Cardinal num_options;
int *argc;
String *argv;

app_context Specifies the application context.

display_string Specifies the display string, or NULL.

application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to XrmParseC-
ommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function calls XOpenDisplay with the specified display_string. If dis-
play_string is NULL, XtOpenDisplay uses the current value of the —display option specified in
argv. If no display is specified in argv, the user’s default display is retrieved from the environ-
ment. On POSIX-based systems, this is the value of the DISPLAY environment variable.

If this succeeds, XtOpenDisplay then calls XtDisplayInitialize and passes it the opened display
and the value of the —name option specified in argv as the application name. If no —name option
is specified and application_name is non-NULL, application_name is passed to XtDisplayIni-
tialize. If application_name is NULL and if the environment variable RESOURCE_NAME is
set, the value of RESOURCE_NAME is used. Otherwise, the application name is the name used
to invoke the program. On implementations that conform to ANSI C Hosted Environment sup-
port, the application name will be argv[0] less any directory and file type components, that is, the
final component of argv[0], if specified. If argv[0] does not exist or is the empty string, the appli-
cation name is “main”’. XtOpenDisplay returns the newly opened display or NULL if it failed.

See Section 7.12 for information regarding the use of XtOpenDisplay in multiple threads.

31

X Toolkit Intrinsics X11 Release 6.4

To close a display and remove it from an application context, use XtCloseDisplay.

void XtCloseDisplay(display)
Display *display;

display Specifies the display.

The XtCloseDisplay function calls XCloseDisplay with the specified display as soon as it is
safe to do so. If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications
need only call XtCloseDisplay if they are to continue executing after closing the display; other-
wise, they should call XtDestroyApplicationContext.

See Section 7.12 for information regarding the use of XtCloseDisplay in multiple threads.

2.2. Establishing the Locale

Resource databases are specified to be created in the current process locale. During display ini-
tialization prior to creating the per-screen resource database, the Intrinsics will call out to a speci-
fied application procedure to set the locale according to options found on the command line or in
the per-display resource specifications.

The callout procedure provided by the application is of type XtLanguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display *display;
String language;
XtPointer client_data;

display Passes the display.

language Passes the initial language value obtained from the command line or server per-
display resource specifications.

client_data Passes the additional client data specified in the call to XtSetLanguageProc.

The language procedure allows an application to set the locale to the value of the language
resource determined by XtDisplayInitialize. The function returns a new language string that
will be subsequently used by XtDisplayInitialize to establish the path for loading resource files.
The returned string will be copied by the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language procedure for use by
XtDisplaylnitialize, use XtSetLanguageProc.

32

X Toolkit Intrinsics X11 Release 6.4

XtLanguageProc XtSetLanguageProc(app_context, proc, client_data)
XtAppContext app_context;
XtLanguageProc proc;
XtPointer client_data;

app_context Specifies the application context in which the language procedure is to be used,

or NULL.

proc Specifies the language procedure.

client_data Specifies additional client data to be passed to the language procedure when it is
called.

XtSetLanguageProc sets the language procedure that will be called from XtDisplaylInitialize
for all subsequent Displays initialized in the specified application context. If app_context is
NULL, the specified language procedure is registered in all application contexts created by the
calling process, including any future application contexts that may be created. If proc is NULL,
a default language procedure is registered. XtSetLanguageProc returns the previously regis-
tered language procedure. If a language procedure has not yet been registered, the return value is
unspecified, but if this return value is used in a subsequent call to XtSetLanguageProc, it will
cause the default language procedure to be registered.

The default language procedure does the following:

. Sets the locale according to the environment. On ANSI C-based systems this is done by
calling setlocale(LC_ALL, language). If an error is encountered, a warning message is
issued with XtWarning.

. Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued with XtWarning and the locale is set to “C”’.

. Calls XSetLocaleModifiers specifying the empty string.

. Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call to setlocale(LC_ALL, NULL).

A client wishing to use this mechanism to establish locale can do so by calling XtSetLanguage-
Proc prior to XtDisplayInitialize, as in the following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

2.3. Loading the Resource Database

The XtDisplaylnitialize function first determines the language string to be used for the specified
display. It then creates a resource database for the default screen of the display by combining the
following sources in order, with the entries in the first named source having highest precedence:

. Application command line (argc, argv).
. Per-host user environment resource file on the local host.
. Per-screen resource specifications from the server.

33

X Toolkit Intrinsics X11 Release 6.4

. Per-display resource specifications from the server or from
the user preference file on the local host.

. Application-specific user resource file on the local host.

. Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either internally, or
when XtScreenDatabase is called), it is created in the following manner using the sources listed
above in the same order:

. A temporary database, the ‘“‘server resource database’, is created from the string returned
by XResourceManagerString or, if XResourceManagerString returns NULL, the con-
tents of a resource file in the user’s home directory. On POSIX-based systems, the usual
name for this user preference resource file is SHOME/.Xdefaults.

. If a language procedure has been set, XtDisplayInitialize first searches the command line
for the option ““-xnlLanguage’, or for a -xrm option that specifies the xnlLanguage/Xnl-
Language resource, as specified by Section 2.4. If such a resource is found, the value is
assumed to be entirely in XPCS, the X Portable Character Set. If neither option is specified
on the command line, XtDisplaylInitialize queries the server resource database (which is
assumed to be entirely in XPCS) for the resource name.xnlLanguage, class Class.XnlLan-
guage where name and Class are the application_name and application_class specified to
XtDisplaylInitialize. The language procedure is then invoked with the resource value if
found, else the empty string. The string returned from the language procedure is saved for
all future references in the Intrinsics that require the per-display language string.

. The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.
. If a language procedure has not been set, the initial database is then queried for the resource

name.xnlLanguage, class Class.XnlLanguage as specified above. If this database query
fails, the server resource database is queried; if this query also fails, the language is deter-
mined from the environment; on POSIX-based systems, this is done by retrieving the value
of the LANG environment variable. If no language string is found, the empty string is
used. This language string is saved for all future references in the Intrinsics that require the
per-display language string.

. After determining the language string, the user’s environment resource file is then merged
into the initial resource database if the file exists. This file is user-, host-, and process-spe-
cific and is expected to contain user preferences that are to override those specifications in
the per-display and per-screen resources. On POSIX-based systems, the user’s environ-
ment resource file name is specified by the value of the XENVIRONMENT environment
variable. If this environment variable does not exist, the user’s home directory is searched
for a file named .Xdefaults-h0st, where host is the host name of the machine on which the
application is running.

. The per-screen resource specifications are then merged into the screen resource database, if
they exist. These specifications are the string returned by XScreenResourceString for the
respective screen and are owned entirely by the user.

34

X Toolkit Intrinsics X11 Release 6.4

. Next, the server resource database created earlier is merged into the screen resource data-
base. The server property, and corresponding user preference file, are owned and con-
structed entirely by the user.

. The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned
by the user. Either the user or the application or both can store resource specifications in
the file. Each should be prepared to find and respect entries made by the other. The file
name is found by calling XrmSetDatabase with the current screen resource database, after
preserving the original display-associated database, then calling XtResolvePathname with
the parameters (display, NULL, NULL, NULL, path, NULL, 0, NULL), where path is
defined in an operating-system-specific way. On POSIX-based systems, path is defined to
be the value of the environment variable XUSERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. This default value is constrained in the following manner:

— If the environment variable XAPPLRESDIR is not defined, the default XUSERFILE-
SEARCHPATH must contain at least six entries. These entries must contain $HOME as
the directory prefix, plus the following substitutions:

1. %C, %N, %L or %C, %N, %1, Jot, oc
2. %C, %N, %l

3. %C, %N

4. %N, %L or %N, %l, Yot, Yoc

5. %N, %l

6. %N

The order of these six entries within the path must be as given above. The order and
use of substitutions within a given entry are implementation-dependent.

— If XAPPLRESDIR is defined, the default XUSERFILESEARCHPATH must contain at
least seven entries. These entries must contain the following directory prefixes and sub-

stitutions:

1. S$XAPPLRESDIR with 9%C, %N, %L or %C, %N, %], %t, %c
2. S$XAPPLRESDIR with %C, %N, %]

3. $XAPPLRESDIR with %C, %N

4. $XAPPLRESDIR with %N, %L or 9N, %1, Yot, %oc

5. $XAPPLRESDIR with %N, %l

6. $XAPPLRESDIR with %N

7. $HOME with %N

The order of these seven entries within the path must be as given above. The order and
use of substitutions within a given entry are implementation-dependent.

. Last, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in a
system directory when the application is installed. It may contain sitewide customizations
specified by the system manager. The name of the application class resource file is found

35

X Toolkit Intrinsics X11 Release 6.4

by calling XtResolvePathname with the parameters (display, ““app-defaults”, NULL,
NULL, NULL, NULL, 0, NULL). This file is expected to be provided by the developer of
the application and may be required for the application to function properly. A simple
application that wants to be assured of having a minimal set of resources in the absence of
its class resource file can declare fallback resource specifications with XtAppSetFallback-
Resources. Note that the customization substitution string is retrieved dynamically by
XtResolvePathname so that the resolved file name of the application class resource file
can be affected by any of the earlier sources for the screen resource database, even though
the contents of the class resource file have lowest precedence. After calling XtRe-
solvePathname, the original display-associated database is restored.

To obtain the resource database for a particular screen, use XtScreenDatabase.

XrmDatabase XtScreenDatabase(screen)
Screen *screen;

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabase function returns the fully merged resource database as specified above,
associated with the specified screen. If the specified screen does not belong to a Display initial-
ized by XtDisplaylInitialize, the results are undefined.

To obtain the default resource database associated with a particular display, use XtDatabase.

XrmDatabase XtDatabase(display)
Display *display;

display Specifies the display.

The XtDatabase function is equivalent to XrmGetDatabase. It returns the database associated
with the specified display, or NULL if a database has not been set.

To specify a default set of resource values that will be used to initialize the resource database if no
application-specific class resource file is found (the last of the six sources listed above), use
XtAppSetFallbackResources.

void XtAppSetFallbackResources(app_context, specification_list)
XtAppContext app_context;
String *specification_list;

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list ~ Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry in specification_list points to a string in the format of XrmPutLineResource. Fol-
lowing a call to XtAppSetFallbackResources, when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class

36

-

X Toolkit Intrinsics X11 Release 6.4

resource file according to the rules given above and if specification_list is not NULL, the resource
specifications in specification_list will be merged into the screen resource database in place of the
application-specific class resource file. XtAppSetFallbackResources is not required to copy
specification_list; the caller must ensure that the contents of the list and of the strings addressed
by the list remain valid until all displays are initialized or until XtAppSetFallbackResources is
called again. The value NULL for specification_list removes any previous fallback resource spec-
ification for the application context. The intended use for fallback resources is to provide a mini-
mal number of resources that will make the application usable (or at least terminate with helpful
diagnostic messages) when some problem exists in finding and loading the application defaults
file.

2.4. Parsing the Command Line

The XtOpenDisplay function first parses the command line for the following options:

—display Specifies the display name for XOpenDisplay.
—name Sets the resource name prefix, which overrides the application name passed to
XtOpenDisplay .

—xnllanguage Specifies the initial language string for establishing locale and for finding appli-
cation class resource files.

XtDisplaylInitialize has a table of standard command line options that are passed to XrmPar-
seCommand for adding resources to the resource database, and it takes as a parameter additional
application-specific resource abbreviations. The format of this table is described in Section 15.9
in XIlib — C Language X Interface.

typedef enum {

XrmoptionNoArg, /* Value is specified in OptionDescRec.value */
XrmoptionIsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNArgs, /* Ignore this option and the next */

/* OptionDescRec.value arguments in argv */
XrmoptionSkipLine /* Ignore this option and the rest of argv */

} XrmOptionKind,;

typedef struct {

char *option; /* Option name in argv */

char *specifier; /* Resource name (without application name) */
XrmOptionKind argKind; /* Location of the resource value */

XPointer value; /* Value to provide if XrmoptionNoArg */

} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

37

X Toolkit Intrinsics

X11 Release 6.4

Option String Resource Name Argument Kind Resource Value
—background *background SepArg next argument
—bd *borderColor SepArg next argument
—bg *background SepArg next argument
—borderwidth .borderWidth SepArg next argument
—bordercolor *borderColor SepArg next argument
-bw .borderWidth SepArg next argument
—display .display SepArg next argument
—fg *foreground SepArg next argument
—fn *font SepArg next argument
—font *font SepArg next argument
—foreground *foreground SepArg next argument
—geometry .geometry SepArg next argument
—iconic .iconic NoArg “true”

—name .name SepArg next argument
—reverse .reverseVideo NoArg “on”

-1V .reverseVideo NoArg “on”

+rv reverseVideo NoArg “off”
—selectionTimeout .selectionTimeout SepArg next argument
—synchronous .synchronous NoArg “on”
+synchronous .synchronous NoArg “off™

—title title SepArg next argument
—xnllanguage xnlLanguage SepArg next argument
—Xrm next argument ResArg next argument
—xtsessionlD .sessionlD SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo is True, the values of XtDefaultForeground and XtDefaultBackground are
exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous
mode. If a value is found in the resource database during display initialization, XtDisplayInitial-
ize makes a call to XSynchronize for all display connections currently open in the application
context. Therefore, when multiple displays are initialized in the same application context, the
most recent value specified for the synchronous resource is used for all displays in the application
context.

The value of the selectionTimeout resource applies to all displays opened in the same application
context. When multiple displays are initialized in the same application context, the most recent
value specified is used for all displays in the application context.

The —xrm option provides a method of setting any resource in an application. The next argument
should be a quoted string identical in format to a line in the user resource file. For example, to
give a red background to all command buttons in an application named xmh, you can start it up
as

xmh —xrm ’xmh*Command.background: red’

38

X Toolkit Intrinsics X11 Release 6.4

When it parses the command line, XtDisplaylInitialize merges the application option table with
the standard option table before calling the Xlib XrmParseCommand function. An entry in the
application table with the same name as an entry in the standard table overrides the standard table
entry. If an option name is a prefix of another option name, both names are kept in the merged ta-
ble. The Intrinsics reserve all option names beginning with the characters “-xt” for future stan-
dard uses.

2.5. Creating Widgets
The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up traversal of the
widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application calls XtCreateWidget for all its widgets and adds some
(usually, most or all) of its widgets to their respective parents’ managed set by calling XtMan-
ageChild. To avoid an O(n?) creation process where each composite widget lays itself out each
time a widget is created and managed, parent widgets are not notified of changes in their managed
set during this phase.

After all widgets have been created, the application calls XtRealizeWidget with the top-level
widget to execute the second and third phases. XtRealizeWidget first recursively traverses the
widget tree in a postorder (bottom-up) traversal and then notifies each composite widget with one
or more managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry negoti-
ation. A parent deals with constraints on its size imposed from above (for example, when a user
specifies the application window size) and suggestions made from below (for example, when a
primitive child computes its preferred size). One difference between the two can cause geometry
changes to ripple in both directions through the widget tree. The parent may force some of its
children to change size and position and may issue geometry requests to its own parent in order to
better accommodate all its children. You cannot predict where anything will go on the screen
until this process finishes.

Consequently, in the first and second phases, no X windows are actually created, because it is
likely that they will get moved around after creation. This avoids unnecessary requests to the X
Server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-down) traversal of the
widget tree, allocates an X window to each widget by means of its realize procedure, and finally
maps the widgets that are managed.

2.5.1. Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These are passed as
an arglist, a pointer to an array of Arg structures, which contains

39

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
String name;
XtArgVal value;
} Arg, *Arglist;

where XtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the size of an XtArgVal, the resource value is
stored directly in value; otherwise, a pointer to it is stored in value.

To set values in an ArgList, use XtSetArg.

void XtSetArg(arg, name, value)

Arg arg;

String name;

XtArgVal value;
arg Specifies the name/value pair to set.
name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in an XtArgVal, else the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg args[20];

int n;

n=0;

XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;

XtSetValues(widget, args, n);
Alternatively, an application can statically declare the argument list and use XtNumber:

static Args args[] = {
{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

|5

XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment or auto-decre-
ment within the first argument to XtSetArg. XtSetArg can be implemented as a macro that
evaluates the first argument twice.

To merge two arglist arrays, use XtMergeArgLists.

40

X Toolkit Intrinsics X11 Release 6.4

ArgList XtMergeArgLists(argsl, num_argsl, args2, num_args2)
ArgList argsl,;
Cardinal num_argsl,;
Arglist args2;
Cardinal num_args2;

argsl Specifies the first argument list.
num_argsl Specifies the number of entries in the first argument list.
args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned
list is the sum of the lengths of the specified lists. When it is no longer needed, free the returned
storage by using XtFree.

All Intrinsics interfaces that require ArgList arguments have analogs conforming to the ANSI C
variable argument list (traditionally called ‘““varargs’) calling convention. The name of the analog
is formed by prefixing “Va” to the name of the corresponding ArgList procedure; e.g.,
XtVaCreateWidget. Each procedure named XtVasomething takes as its last arguments, in place
of the corresponding ArgList/ Cardinal parameters, a variable parameter list of resource name
and value pairs where each name is of type String and each value is of type XtArgVal. The end
of the list is identified by a name entry containing NULL. Developers writing in the C language
wishing to pass resource name and value pairs to any of these interfaces may use the ArgList and
varargs forms interchangeably.

Two special names are defined for use only in varargs lists: XtVaTypedArg and XtVaNest-
edList.

#define XtVaTypedArg "XtVaTypedArg"

If the name XtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted as a name/type/value/size tuple where name is of type String, type is of
type String, value is of type XtArgVal, and size is of type int. When a varargs list containing
XtVaTypedArg is processed, a resource type conversion (see Section 9.6) is performed if neces-
sary to convert the value into the format required by the associated resource. If fype is XtRString,
then value contains a pointer to the string and size contains the number of bytes allocated, includ-
ing the trailing null byte. If fype is not XtRString, then if size is less than or equal to
sizeof(XtArgVal), the value should be the data cast to the type XtArgVal, otherwise value is a
pointer to the data. If the type conversion fails for any reason, a warning message is issued and
the list entry is skipped.

41

X Toolkit Intrinsics X11 Release 6.4

#define XtVaNestedList "XtVaNestedList"

If the name XtVaNestedList is specified in place of a resource name, then the following argu-
ment is interpreted as an XtVarArgsList value, which specifies another varargs list that is logi-
cally inserted into the original list at the point of declaration. The end of the nested list is identi-
fied with a name entry containing NULL. Varargs lists may nest to any depth.

To dynamically allocate a varargs list for use with XtVaNestedList in multiple calls, use
XtVaCreateArgsList.

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(unused, ...)
XtPointer unused,
unused This argument is not currently used and must be specified as NULL.

Specifies a variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single list
pointer, which may be used with XtVaNestedList. The end of both lists is identified by a name
entry containing NULL. Any entries of type XtVaTypedArg are copied as specified without
applying conversions. Data passed by reference (including Strings) are not copied, only the
pointers themselves; the caller must ensure that the data remain valid for the lifetime of the cre-
ated varargs list. The list should be freed using XtFree when no longer needed.

Use of resource files and of the resource database is generally encouraged over lengthy arglist or
varargs lists whenever possible in order to permit modification without recompilation.

2.5.2. Creating a Widget Instance

To create an instance of a widget, use XtCreateWidget.

42

X Toolkit Intrinsics X11 Release 6.4

Widget XtCreateWidget(name, object_class, parent, args, num_args)
String name;
WidgetClass object_class;
Widget parent;
ArgList args;
Cardinal num_args;

name

Specifies the resource instance name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as any other wid-
get that is a child of the same parent.

object_class Specifies the widget class pointer for the created object. Must be objectClass or

any subclass thereof.

parent Specifies the parent widget. Must be of class Object or any subclass thereof.
args Specifies the argument list to override any other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreateWidget function performs all the boilerplate operations of widget creation, doing
the following in order:

Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

If the specified class is not coreWidgetClass or a subclass thereof, and the parent’s class is
a subclass of compositeWidgetClass and either no extension record in the parent’s com-
posite class part extension field exists with the record_type NULLQUARK or the
accepts_objects field in the extension record is False, XtCreateWidget issues a fatal error;
see Section 3.1 and Chapter 12.

If the specified class contains an extension record in the object class part extension field
with record_type NULLQUARK and the allocate field is not NULL, the procedure is
invoked to allocate memory for the widget instance. If the parent is a member of the class
constraintWidgetClass, the procedure also allocates memory for the parent’s constraints
and stores the address of this memory into the constraints field. If no allocate procedure is
found, the Intrinsics allocate memory for the widget and, when applicable, the constraints,
and initializes the constraints field.

Initializes the Core nonresource data fields self, parent, widget_class, being_destroyed,
name, managed, window, visible, popup_list, and num_popups.

Initializes the resource fields (for example, background_pixel) by using the CoreClassPart
resource lists specified for this class and all superclasses.

If the parent is a member of the class constraintWidgetClass, initializes the resource
fields of the constraints record by using the ConstraintClassPart resource lists specified
for the parent’s class and all superclasses up to constraintWidgetClass.

Calls the initialize procedures for the widget starting at the Object initialize procedure on
down to the widget’s initialize procedure.

If the parent is a member of the class constraintWidgetClass, calls the ConstraintClass-
Part initialize procedures, starting at constraintWidgetClass on down to the parent’s
ConstraintClassPart initialize procedure.

If the parent is a member of the class compositeWidgetClass, puts the widget into its par-
ent’s children list by calling its parent’s insert_child procedure. For further information,

43

X Toolkit Intrinsics X11 Release 6.4

see Section 3.1.

To create an instance of a widget using varargs lists, use XtVaCreateWidget.

Widget XtVaCreateWidget(name, object_class, parent, ...)
String name;
WidgetClass object_class;
Widget parent;

name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created object. Must be objectClass or
any subclass thereof.

parent Specifies the parent widget. Must be of class Object or any subclass thereof.

Specifies the variable argument list to override any other resource specifications.

The XtVaCreateWidget procedure is identical in function to XtCreateWidget with the args and
num_args parameters replaced by a varargs list, as described in Section 2.5.1.

2.5.3. Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique widget tree
that can potentially be on different screens or displays. An application uses XtAppCreateShell
to create independent widget trees.

Widget XtAppCreateShell(name, application_class, widget_class, display, args, num_args)
String name;
String application_class;
WidgetClass widget_class;
Display *display;
Arglist args;
Cardinal num_args;

name Specifies the instance name of the shell widget. If name is NULL, the appli-
cation name passed to XtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_name string when widget_class is applicationShellWidgetClass or a
subclass thereof.

widget_class Specifies the widget class for the top-level widget (e.g., applicationShell-
WidgetClass).

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a new shell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scanning args for the XtNscreen

44

X Toolkit Intrinsics X11 Release 6.4

argument. If no XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resource name.screen, class Class.Screen where
Class is the specified application_class if widget_class is applicationShellWidgetClass or a
subclass thereof. If widget_class is not applicationShellWidgetClass or a subclass, Class is the
class_name field from the CoreClassPart of the specified widget_class. If this query fails, the
default screen of the specified display is used. Once the screen is determined, the resource data-
base associated with that screen is used to retrieve all remaining resources for the shell widget not
specified in args. The widget name and Class as determined above are used as the leftmost (i.e.,
root) components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the name and Class as determined above
will be stored into the WM_CLASS property on the widget’s window when it becomes realized.
If the specified widget_class is applicationShellWidgetClass or a subclass thereof, the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc
resources.

To create multiple top-level shells within a single (logical) application, you can use one of two
methods:

. Designate one shell as the real top-level shell and create the others as pop-up children of it
by using XtCreatePopupShell.

. Have all shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main window,
leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource specifications like
the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use XtVaAppCre-
ateShell.

45

X Toolkit Intrinsics X11 Release 6.4

Widget XtVaAppCreateShell(name, application_class, widget_class, display, ...)
String name;
String application_class;
WidgetClass widget_class;
Display *display;

name Specifies the instance name of the shell widget. If name is NULL, the
application name passed to XtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_name string when widget_class is applicationShellWidgetClass
or a subclass thereof.

widget_class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for the resource database
used to retrieve the shell widget resources.

Specifies the variable argument list to override any other resource specifi-
cations.

The XtVaAppCreateShell procedure is identical in function to XtAppCreateShell with the args
and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

2.5.4. Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application may use XtOpenApplication or
XtVaOpenApplication.

46

X Toolkit Intrinsics

X11 Release 6.4

Widget XtOpenApplication(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, widget_class, args, num_args)
XtAppContext *app_context_return;
String application_class;
XrmOptionDescList options;
Cardinal num_options;

int *argc_in_out,

String *argv_in_out;

String *fallback_resources;
WidgetClass widget_class;

Arglist args;

Cardinal num_args;
app_context_return
application_class
options
num_options
argc_in_out
argv_in_out

fallback_resources

widget_class

args

num_args

Returns the application context, if non-NULL.

Specifies the class name of the application.

Specifies the command line options table.

Specifies the number of entries in options.

Specifies a pointer to the number of command line arguments.
Specifies a pointer to the command line arguments.

Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

Specifies the argument list to override any other resource specifications
for the created shell widget.

Specifies the number of entries in the argument list.

The XtOpenApplication function calls XtToolkitInitialize followed by XtCreateApplication-
Context, then calls XtOpenDisplay with display_string NULL and application_name NULL,
and finally calls XtAppCreateShell with name NULL, the specified widget_class, an argument
list and count, and returns the created shell. The recommended widger_class is sessionShellWid-
getClass. The argument list and count are created by merging the specified args and num_args
with a list containing the specified argc and argv. The modified argc and argv returned by
XtDisplaylInitialize are returned in argc_in_out and argv_in_out. If app_context_return is not
NULL, the created application context is also returned. If the display specified by the command
line cannot be opened, an error message is issued and XtOpenApplication terminates the appli-
cation. If fallback_resources is non-NULL, XtAppSetFallbackResources is called with the
value prior to calling XtOpenDisplay.

47

X Toolkit Intrinsics X11 Release 6.4

Widget XtVaOpenApplication(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, widget_class, ...)
XtAppContext *app_context_return;
String application_class;
XrmOptionDescList options;
Cardinal num_options;
int *argc_in_out,
String *argv_in_out;
String *fallback_resources;
WidgetClass widget_class;

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file

cannot be opened, or NULL.

widget_class Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

Specifies the variable argument list to override any other resource specifi-
cations for the created shell.

The XtVaOpenApplication procedure is identical in function to XtOpenApplication with the
args and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

2.5.5. Widget Instance Allocation: The allocate Procedure

A widget class may optionally provide an instance allocation procedure in the ObjectClassEx-
tension record.

When the call to create a widget includes a varargs list containing XtVaTypedArg, these argu-
ments will be passed to the allocation procedure in an XtTypedArgList.

typedef struct {
String name;
String type;
XtArgVal value;
int size;
} XtTypedArg, *XtTypedArgList;

The allocate procedure pointer in the ObjectClassExtension record is of type XtAllocateProc.

48

X Toolkit Intrinsics X11 Release 6.4

typedef void (*XtAllocateProc)(WidgetClass, Cardinal*, Cardinal*, ArgList, Cardinal*,
XtTypedArgList, Cardinal*, Widget*, XtPointer*);
WidgetClass widget_class;
Cardinal* constraint_size;
Cardinal* more_bytes;
ArgList args;
Cardinal* num_args;
XtTypedArgList typed_args,
Cardinal* num_typed_args;
Widget* new_return;
XtPointer* more_bytes_return;

widget_class Specifies the widget class of the instance to allocate.

constraint_size Specifies the size of the constraint record to allocate, or O.

more_bytes Specifies the number of auxiliary bytes of memory to allocate.

args Specifies the argument list as given in the call to create the widget.

num_args Specifies the number of arguments.

typed_args Specifies the list of typed arguments given in the call to create the wid-
get.

num_typed_args Specifies the number of typed arguments.

new_return Returns a pointer to the newly allocated instance, or NULL in case of
erTor.

more_bytes_return Returns the auxiliary memory if it was requested, or NULL if requested

and an error occurred; otherwise, unchanged.

At widget allocation time, if an extension record with record_type equal to NULLQUARK is
located through the object class part extension field and the allocate field is not NULL, the XtAl-
locateProc will be invoked to allocate memory for the widget. If no ObjectClassPart extension
record is declared with record_type equal to NULLQUARK, then XtInheritAllocate and XtIn-
heritDeallocate are assumed. If no XtAllocateProc is found, the Intrinsics will allocate mem-
ory for the widget.

An XtAllocateProc must perform the following:

. Allocate memory for the widget instance and return it in new_return. The memory must be
at least we->core_class.widget_size bytes in length, double-word aligned.

. Initialize the core.constraints field in the instance record to NULL or to point to a con-
straint record. If constraint_size is not 0, the procedure must allocate memory for the con-
straint record. The memory must be double-word aligned.

. If more_bytes is not 0, then the address of a block of memory at least more_bytes in size,
double-word aligned, must be returned in the more_bytes_return parameter, or NULL to
indicate an error.

A class allocation procedure that envelops the allocation procedure of a superclass must rely on
the enveloped procedure to perform the instance and constraint allocation. Allocation procedures
should refrain from initializing fields in the widget record except to store pointers to newly allo-
cated additional memory. Under no circumstances should an allocation procedure that envelopes
its superclass allocation procedure modify fields in the instance part of any superclass.

49

X Toolkit Intrinsics X11 Release 6.4

2.5.6. Widget Instance Initialization: The initialize Procedure

The initialize procedure pointer in a widget class is of type XtInitProc.

typedef void (*XtInitProc)(Widget, Widget, ArgList, Cardinal*);
Widget request;
Widget new;
Arglist args;
Cardinal *num_args;

request Specifies a copy of the widget with resource values as requested by the argument
list, the resource database, and the widget defaults.

new Specifies the widget with the new values, both resource and nonresource, that are
actually allowed.

args Specifies the argument list passed by the client, for computing derived resource
values. If the client created the widget using a varargs form, any resources speci-
fied via XtVaTypedArg are converted to the widget representation and the list is
transformed into the ArgList format.

num_args Specifies the number of entries in the argument list.

An initialization procedure performs the following:

. Allocates space for and copies any resources referenced by address that the client is
allowed to free or modify after the widget has been created. For example, if a widget has a
field that is a String, it may choose not to depend on the characters at that address remain-
ing constant but dynamically allocate space for the string and copy it to the new space.
Widgets that do not copy one or more resources referenced by address should clearly so
state in their user documentation.

Note

It is not necessary to allocate space for or to copy callback lists.

. Computes values for unspecified resource fields. For example, if width and height are zero,
the widget should compute an appropriate width and height based on its other resources.

Note

A widget may directly assign only its own width and height within the initial-
ize, initialize_hook, set_values, and set_values_hook procedures; see Chapter
6.

. Computes values for uninitialized nonresource fields that are derived from resource fields.
For example, graphics contexts (GCs) that the widget uses are derived from resources like
background, foreground, and font.

An initialization procedure also can check certain fields for internal consistency. For example, it
makes no sense to specify a colormap for a depth that does not support that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields specified in the
resource lists have been initialized. The initialize procedure does not need to examine args and
num_args if all public resources are declared in the resource list. Most of the initialization code
for a specific widget class deals with fields defined in that class and not with fields defined in its

50

X Toolkit Intrinsics X11 Release 6.4

superclasses.

If a subclass does not need an initialization procedure because it does not need to perform any of
the above operations, it can specify NULL for the initialize field in the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass often are incorrect for a subclass, and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclass initialize procedure are too small and need to be incremented
by the size of the surround. The subclass needs to know if its superclass’s size was calculated by
the superclass or was specified explicitly. All widgets must place themselves into whatever size is
explicitly given, but they should compute a reasonable size if no size is requested.

The request and new arguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and a field computed by a superclass. The request
widget is a copy of the widget as initialized by the arglist and resource database. The new widget
starts with the values in the request, but it has been updated by all superclass initialization proce-
dures called so far. A subclass initialize procedure can compare these two to resolve any potential
conflicts.

In the above example, the subclass with the visual surround can see if the width and height in the
request widget are zero. If so, it adds its surround size to the width and height fields in the new
widget. If not, it must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore, the initialization pro-

cedure should do all its work on the new widget; the request widget should never be modified. If
the initialize procedure needs to call any routines that operate on a widget, it should specify new

as the widget instance.

2.5.7. Constraint Instance Initialization: The ConstraintClassPart initialize Procedure

The constraint initialization procedure pointer, found in the ConstraintClassPart initialize field

of the widget class record, is of type XtInitProc. The values passed to the parent constraint ini-

tialization procedures are the same as those passed to the child’s class widget initialization proce-
dures.

The constraints field of the request widget points to a copy of the constraints record as initialized
by the arglist and resource database.

The constraint initialization procedure should compute any constraint fields derived from con-
straint resources. It can make further changes to the new widget to make the widget and any other
constraint fields conform to the specified constraints, for example, changing the widget’s size or
position.

If a constraint class does not need a constraint initialization procedure, it can specify NULL for
the initialize field of the ConstraintClassPart in the class record.

2.5.8. Nonwidget Data Initialization: The initialize_hook Procedure

51

X Toolkit Intrinsics X11 Release 6.4

Note

The initialize_hook procedure is obsolete, as the same information is now available
to the initialize procedure. The procedure has been retained for those widgets that
used it in previous releases.

The initialize_hook procedure pointer is of type XtArgsProc:

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widget w;
ArgList args;
Cardinal *num_args;

w Specifies the widget.

args Specifies the argument list passed by the client. If the client created the widget
using a varargs form, any resources specified via XtVaTypedArg are converted
to the widget representation and the list is transformed into the ArgList format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize proce-
dure or in its place if the initialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data using infor-
mation from the specified argument list as if it were a resource.

2.6. Realizing Widgets

To realize a widget instance, use XtRealizeWidget.

void XtRealizeWidget(w)
Widget w;

w L Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realized, XtRealizeWidget simply returns. Otherwise it performs the fol-
lowing:

. Binds all action names in the widget’s translation table to procedures (see Section 10.1.2).

. Makes a postorder traversal of the widget tree rooted at the specified widget and calls each

non-NULL change_managed procedure of all composite widgets that have one or more
managed children.

. Constructs an XSetWindowAttributes structure filled in with information derived from
the Core widget fields and calls the realize procedure for the widget, which adds any wid-
get-specific attributes and creates the X window.

. If the widget is not a subclass of compositeWidgetClass, XtRealizeWidget returns; oth-
erwise it continues and performs the following:

- Descends recursively to each of the widget’s managed children and calls the realize
procedures. Primitive widgets that instantiate children are responsible for realizing
those children themselves.

52

X Toolkit Intrinsics X11 Release 6.4

- Maps all of the managed children windows that have mapped_when_managed True.
If a widget is managed but mapped_when_managed is False, the widget is allocated
visual space but is not displayed.

If the widget is a top-level shell widget (that is, it has no parent), and mapped_when_managed is
True, XtRealizeWidget maps the widget window.

XtCreateWidget, XtVaCreateWidget, XtRealizeWidget, XtManageChildren,
XtUnmanageChildren, XtUnrealizeWidget, XtSetMappedWhenManaged, and XtDestroy-
Widget maintain the following invariants:

. If a composite widget is realized, then all its managed children are realized.

. If a composite widget is realized, then all its managed children that have
mapped_when_managed True are mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized wid-
gets. When calling the realize or change_managed procedures for children of a composite wid-
get, XtRealizeWidget calls the procedures in reverse order of appearance in the CompositePart
children list. By default, this ordering of the realize procedures will result in the stacking order of
any newly created subwindows being top-to-bottom in the order of appearance on the list, and the
most recently created child will be at the bottom.

To check whether or not a widget has been realized, use XtIsRealized.

Boolean XtIsRealized(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtIsRealized function returns True if the widget has been realized, that is, if the widget has
a nonzero window ID. If the specified object is not a widget, the state of the nearest widget
ancestor is returned.

Some widget procedures (for example, set_values) might wish to operate differently after the wid-
get has been realized.

2.6.1. Widget Instance Window Creation: The realize Procedure

The realize procedure pointer in a widget class is of type XtRealizeProc.

typedef void (*XtRealizeProc)(Widget, XtValueMask*, XSetWindowAttributes*);
Widget w;
XtValueMask *value_mask;
XSetWindowAttributes *attributes,

w Specifies the widget.

value_mask Specifies which fields in the attributes structure are used.

attributes Specifies the window attributes to use in the XCreateWindow call.

The realize procedure must create the widget’s window.

53

X Toolkit Intrinsics X11 Release 6.4

Before calling the class realize procedure, the generic XtRealizeWidget function fills in a mask
and a corresponding XSetWindowA ttributes structure. It sets the following fields in attributes
and corresponding bits in value_mask based on information in the widget core structure:

. The background_pixmap (or background_pixel it background_pixmap is XtUnspecified-
Pixmap) is filled in from the corresponding field.

. The border_pixmap (or border_pixel if border_pixmap is XtUnspecifiedPixmap) is filled
in from the corresponding field.

. The colormap is filled in from the corresponding field.

. The event_mask is filled in based on the event handlers registered, the event translations
specified, whether the expose field is non-NULL, and whether visible_interest is True.

. The bit_gravity is set to NorthWestGravity if the expose field is NULL.

These or any other fields in attributes and the corresponding bits in value_mask can be set by the
realize procedure.

Note that because realize is not a chained operation, the widget class realize procedure must
update the XSetWindowAttributes structure with all the appropriate fields from non-Core super-
classes.

A widget class can inherit its realize procedure from its superclass during class initialization. The
realize procedure defined for coreWidgetClass calls XtCreateWindow with the passed
value_mask and attributes and with window_class and visual set to CopyFromParent. Both
compositeWidgetClass and constraintWidgetClass inherit this realize procedure, and most
new widget subclasses can do the same (see Section 1.6.10).

The most common noninherited realize procedures set bit_gravity in the mask and attributes to
the appropriate value and then create the window. For example, depending on its justification,
Label might set bit_gravity to WestGravity, CenterGravity, or EastGravity. Consequently,
shrinking it would just move the bits appropriately, and no exposure event is needed for repaint-
ing.

If a composite widget’s children should be realized in an order other than that specified (to control
the stacking order, for example), it should call XtRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

Widgets that have children and whose class is not a subclass of compositeWidgetClass are
responsible for calling XtRealizeWidget on their children, usually from within the realize proce-
dure.

Realize procedures cannot manage or unmanage their descendants.

2.6.2. Window Creation Convenience Routine

Rather than call the Xlib XCreateWindow function explicitly, a realize procedure should nor-
mally call the Intrinsics analog XtCreateWindow, which simplifies the creation of windows for
widgets.

54

X Toolkit Intrinsics X11 Release 6.4

void XtCreateWindow(w, window_class, visual, value_mask, attributes)
Widget w;
unsigned int window_class;
Visual *visual;
XtValueMask value_mask;
XSetWindowAttributes *attributes,

w Specifies the widget that defines the additional window attributed. Must be of
class Core or any subclass thereof.

window_class Specifies the Xlib window class (for example, InputOutput, InputOnly, or
CopyFromParent).

visual Specifies the visual type (usually CopyFromParent).
value_mask Specifies which fields in the attributes structure are used.

attributes Specifies the window attributes to use in the XCreateWindow call.

The XtCreateWindow function calls the Xlib XCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the created window to the widget’s
window field.

XtCreateWindow evaluates the following fields of the widget core structure: depth, screen, par-
ent->core.window, x, y, width, height, and border_width.

2.7. Obtaining Window Information from a Widget

The Core widget class definition contains the screen and window ids. The window field may be
NULL for a while (see Sections 2.5 and 2.6).

The display pointer, the parent widget, screen pointer, and window of a widget are available to the
widget writer by means of macros and to the application writer by means of functions.

Display *XtDisplay(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtDisplay returns the display pointer for the specified widget.

Widget XtParent(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

XtParent returns the parent object for the specified widget. The returned object will be of class
Object or a subclass.

55

X Toolkit Intrinsics X11 Release 6.4

Screen *XtScreen(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtScreen returns the screen pointer for the specified widget.

Window XtWindow(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.
XtWindow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest widget ancestor of a
nonwidget object are available by means of XtDisplayOfObject, XtScreenOfObject, and
XtWindowOfObject.

Display *XtDisplayOfObject(object)
Widget object;

object Specifies the object. Must be of class Object or any subclass thereof.
XtDisplayOfObject is identical in function to XtDisplay if the object is a widget; otherwise

XtDisplayOfObject returns the display pointer for the nearest ancestor of object that is of class
Widget or a subclass thereof.

Screen *XtScreenOfObject(object)
Widget object;

object Specifies the object. Must be of class Object or any subclass thereof.
XtScreenOfObject is identical in function to XtScreen if the object is a widget; otherwise

XtScreenOfObject returns the screen pointer for the nearest ancestor of object that is of class
Widget or a subclass thereof.

Window XtWindowOfObject(object)
Widget object;

object Specifies the object. Must be of class Object or any subclass thereof.

XtWindowOfObject is identical in function to XtWindow if the object is a widget; otherwise
XtWindowOfObject returns the window for the nearest ancestor of object that is of class Widget
or a subclass thereof.

56

X Toolkit Intrinsics X11 Release 6.4

To retrieve the instance name of an object, use XtName.

String XtName(object)
Widget object;

object Specifies the object whose name is desired. Must be of class Object or any sub-
class thereof.

XtName returns a pointer to the instance name of the specified object. The storage is owned by
the Intrinsics and must not be modified. The name is not qualified by the names of any of the
object’s ancestors.

Several window attributes are locally cached in the widget instance. Thus, they can be set by the
resource manager and XtSetValues as well as used by routines that derive structures from these
values (for example, depth for deriving pixmaps, background_pixel for deriving GCs, and so on)
or in the XtCreateWindow call.

The x, y, width, height, and border_width window attributes are available to geometry managers.
These fields are maintained synchronously inside the Intrinsics. When an XConfigureWindow
is issued by the Intrinsics on the widget’s window (on request of its parent), these values are
updated immediately rather than some time later when the server generates a ConfigureNotify
event. (In fact, most widgets do not select SubstructureNotify events.) This ensures that all
geometry calculations are based on the internally consistent toolkit world rather than on either an
inconsistent world updated by asynchronous ConfigureNotify events or a consistent, but slow,
world in which geometry managers ask the server for window sizes whenever they need to lay out
their managed children (see Chapter 6).

2.7.1. Unrealizing Widgets

To destroy the windows associated with a widget and its non-pop-up descendants, use XtUnreal-
izeWidget.

void XtUnrealizeWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealized, XtUnrealizeWidget simply returns. Otherwise it performs
the following:

. Unmanages the widget if the widget is managed.

. Makes a postorder (child-to-parent) traversal of the widget tree rooted at the specified wid-
get and, for each widget that has declared a callback list resource named ‘‘unrealizeCall-
back”, executes the procedures on the XtNunrealizeCallback list.

. Destroys the widget’s window and any subwindows by calling XDestroyWindow with the
specified widget’s window field.

Any events in the queue or which arrive following a call to XtUnrealizeWidget will be dis-
patched as if the window(s) of the unrealized widget(s) had never existed.

57

X Toolkit Intrinsics X11 Release 6.4

2.8. Destroying Widgets
The Intrinsics provide support

. To destroy all the pop-up children of the widget being destroyed and destroy all children of
composite widgets.

. To remove (and unmap) the widget from its parent.

. To call the callback procedures that have been registered to trigger when the widget is
destroyed.

. To minimize the number of things a widget has to deallocate when destroyed.

. To minimize the number of XDestroyWindow calls when destroying a widget tree.

To destroy a widget instance, use XtDestroyWidget.

void XtDestroyWidget(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtDestroyWidget function provides the only method of destroying a widget, including wid-
gets that need to destroy themselves. It can be called at any time, including from an application
callback routine of the widget being destroyed. This requires a two-phase destroy process in
order to avoid dangling references to destroyed widgets.

In phase 1, XtDestroyWidget performs the following:
. If the being_destroyed field of the widget is True, it returns immediately.

. Recursively descends the widget tree and sets the being_destroyed field to True for the
widget and all normal and pop-up children.

. Adds the widget to a list of widgets (the destroy list) that should be destroyed when it is
safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after w1 on the destroy list, then
w2 is not a descendent, either normal or pop-up, of w1l.

Phase 2 occurs when all procedures that should execute as a result of the current event have been
called, including all procedures registered with the event and translation managers, that is, when
the current invocation of XtDispatchEvent is about to return, or immediately if not in XtDis-
patchEvent.

In phase 2, XtDestroyWidget performs the following on each entry in the destroy list in the
order specified:

. If the widget is not a pop-up child and the widget’s parent is a subclass of composite-
WidgetClass, and if the parent is not being destroyed, it calls XtUnmanageChild on the
widget and then calls the widget’s parent’s delete_child procedure (see Section 3.3).

. Calls the destroy callback procedures registered on the widget and all normal and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

The XtDestroyWidget function then makes second traversal of the widget and all normal and
pop-up descendants to perform the following three items on each widget in postorder:

. If the widget is not a pop-up child and the widget’s parent is a subclass of constraint-
WidgetClass, it calls the ConstraintClassPart destroy procedure for the parent, then for

58

X Toolkit Intrinsics X11 Release 6.4

the parent’s superclass, until finally it calls the ConstraintClassPart destroy procedure for
constraintWidgetClass.

. Calls the CoreClassPart destroy procedure declared in the widget class, then the destroy
procedure declared in its superclass, until finally it calls the destroy procedure declared in
the Object class record. Callback lists are deallocated.

. If the widget class object class part contains an ObjectClassExtension record with the
record_type NULLQUARK and the deallocate field is not NULL, calls the deallocate pro-
cedure to deallocate the instance and if one exists, the constraint record. Otherwise, the
Intrinsics will deallocate the widget instance record and if one exists, the constraint record.

. Calls XDestroyWindow if the specified widget is realized (that is, has an X window). The
server recursively destroys all normal descendant windows. (Windows of realized pop-up
Shell children, and their descendants, are destroyed by a shell class destroy procedure.)

2.8.1. Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget, it
should register a destroy callback procedure for the widget. The destroy callback procedures use
the mechanism described in Chapter 8. The destroy callback list is identified by the resource
name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure ClientDe-
stroy with client data to a widget by calling XtAddCallback.

XtAddCallback(w, XtNdestroyCallback, ClientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback procedure ClientDe-
stroy by calling XtRemoveCallback.

XtRemoveCallback(w, XtNdestroyCallback, ClientDestroy, client_data)

The ClientDestroy argument is of type XtCallbackProc; see Section 8.1.

2.8.2. Dynamic Data Deallocation: The destroy Procedure

The destroy procedure pointers in the ObjectClassPart, RectObjClassPart, and CoreClass-
Part structures are of type XtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-superclass order. Therefore, a widget’s destroy
procedure should deallocate only storage that is specific to the subclass and should ignore the
storage allocated by any of its superclasses. The destroy procedure should deallocate only
resources that have been explicitly created by the subclass. Any resource that was obtained from
the resource database or passed in an argument list was not created by the widget and therefore
should not be destroyed by it. If a widget does not need to deallocate any storage, the destroy
procedure entry in its class record can be NULL.

59

X Toolkit Intrinsics X11 Release 6.4

Deallocating storage includes, but is not limited to, the following steps:

. Calling XtFree on dynamic storage allocated with XtMalloc, XtCalloc, and so on.
. Calling XFreePixmap on pixmaps created with direct X calls.

. Calling XtReleaseGC on GCs allocated with XtGetGC.

. Calling XFreeGC on GCs allocated with direct X calls.

. Calling XtRemoveEventHandler on event handlers added to other widgets.

. Calling XtRemoveTimeOut on timers created with XtAppAddTimeQOut.

. Calling XtDestroyWidget for each child if the widget has children and is not a subclass of
compositeWidgetClass.

During destroy phase 2 for each widget, the Intrinsics remove the widget from the modal cascade,
unregister all event handlers, remove all key, keyboard, button, and pointer grabs and remove all
callback procedures registered on the widget. Any outstanding selection transfers will time out.

2.8.3. Dynamic Constraint Data Deallocation: The ConstraintClassPart destroy Procedure

The constraint destroy procedure identified in the ConstraintClassPart structure is called for a
widget whose parent is a subclass of constraintWidgetClass. This constraint destroy procedure
pointer is of type XtWidgetProc. The constraint destroy procedures are called in subclass-to-
superclass order, starting at the class of the widget’s parent and ending at constraint-
WidgetClass. Therefore, a parent’s constraint destroy procedure should deallocate only storage
that is specific to the constraint subclass and not storage allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy procedure
entry in its class record can be NULL.

2.8.4. Widget Instance Deallocation: The deallocate Procedure

The deallocate procedure pointer in the ObjectClassExtension record is of type XtDeallo-
cateProc.

typedef void (*XtDeallocateProc)(Widget, XtPointer);
Widget widget;
XtPointer more_bytes;

widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory received from the corresponding allocator along
with the widget, or NULL.

When a widget is destroyed, if an ObjectClassExtension record exists in the object class part
extension field with record_type NULLQUARK and the deallocate field is not NULL, the
XtDeallocateProc will be called. If no ObjectClassPart extension record is declared with
record_type equal to NULLQUARK, then XtInheritAllocate and XtInheritDeallocate are
assumed. The responsibilities of the deallocate procedure are to deallocate the memory specified
by more_bytes if it is not NULL, to deallocate the constraints record as specified by the widget’s
core.constraints field if it is not NULL, and to deallocate the widget instance itself.

If no XtDeallocateProc is found, it is assumed that the Intrinsics originally allocated the memory
and is responsible for freeing it.

60

X Toolkit Intrinsics X11 Release 6.4

2.9. Exiting from an Application

All X Toolkit applications should terminate by calling XtDestroyApplicationContext and then
exiting using the standard method for their operating system (typically, by calling exit for
POSIX-based systems). The quickest way to make the windows disappear while exiting is to call
XtUnmapWidget on each top-level shell widget. The Intrinsics have no resources beyond those
in the program image, and the X server will free its resources when its connection to the applica-
tion is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy individual wid-
gets or widget trees with XtDestroyWidget before calling XtDestroyApplicationContext in
order to ensure that any required widget cleanup is properly executed. The application developer
must refer to the widget documentation to learn if a widget needs to perform cleanup beyond that
performed automatically by the operating system. If the client is a session participant (see Sec-
tion 4.2), then the client may wish to resign from the session before exiting. See Section 4.2.4 for
details.

61

X Toolkit Intrinsics X11 Release 6.4

Chapter 3

Composite Widgets and Their Children

Composite widgets (widgets whose class is a subclass of compositeWidgetClass) can have an
arbitrary number of children. Consequently, they are responsible for much more than primitive
widgets. Their responsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include:

. Overall management of children from creation to destruction.
. Destruction of descendants when the composite widget is destroyed.
. Physical arrangement (geometry management) of a displayable subset of children (that is,

the managed children).
. Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedures XtCreateWidget and XtDestroyWid-
get. XtCreateWidget adds children to their parent by calling the parent’s insert_child proce-
dure. XtDestroyWidget removes children from their parent by calling the parent’s delete_child
procedure and ensures that all children of a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager and
hence possibly visible. For example, a composite editor widget supporting multiple editing
buffers might allocate one child widget for each file buffer, but it might display only a small num-
ber of the existing buffers. Widgets that are in this displayable subset are called managed widgets
and enter into geometry manager calculations. The other children are called unmanaged widgets
and, by definition, are not mapped by the Intrinsics.

Children are added to and removed from their parent’s managed set by using XtManageChild,
XtManageChildren, XtUnmanageChild, XtUnmanageChildren, and XtChangeManaged-
Set, which notify the parent to recalculate the physical layout of its children by calling the par-
ent’s change_managed procedure. The XtCreateManagedWidget convenience function calls
XtCreateWidget and XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state where they take up physi-
cal space but do not show anything. Managed widgets are not mapped automatically if their
map_when_managed field is False. The default is True and is changed by using XtSetMapped-
WhenManaged .

Each composite widget class declares a geometry manager, which is responsible for figuring out
where the managed children should appear within the composite widget’s window. Geometry
management techniques fall into four classes:

Fixed boxes Fixed boxes have a fixed number of children created by the parent. All
these children are managed, and none ever makes geometry manager
requests.

Homogeneous boxes Homogeneous boxes treat all children equally and apply the same

geometry constraints to each child. Many clients insert and delete wid-
gets freely.

Heterogeneous boxes Heterogeneous boxes have a specific location where each child is
placed. This location usually is not specified in pixels, because the

62

X Toolkit Intrinsics X11 Release 6.4

window may be resized, but is expressed rather in terms of the relation-
ship between a child and the parent or between the child and other spe-
cific children. The class of heterogeneous boxes is usually a subclass
of Constraint.

Shell boxes Shell boxes typically have only one child, and the child’s size is usually
exactly the size of the shell. The geometry manager must communicate
with the window manager, if it exists, and the box must also accept
ConfigureNotify events when the window size is changed by the win-
dow manager.

3.1. Addition of Children to a Composite Widget: The insert_child Procedure

To add a child to the parent’s list of children, the XtCreateWidget function calls the parent’s
class routine insert_child. The insert_child procedure pointer in a composite widget is of type
XtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Passes the newly created child.

Most composite widgets inherit their superclass’s operation. The insert_child routine in Com-
positeWidgetClasscalls and inserts the child at the specified position in the children list, expand-
ing it if necessary.

Some composite widgets define their own insert_child routine so that they can order their children
in some convenient way, create companion controller widgets for a new widget, or limit the num-
ber or class of their child widgets. A composite widget class that wishes to allow nonwidget chil-
dren (see Chapter 12) must specify a CompositeClassExtension extension record as described in
Section 1.4.2.1 and set the accepts_objects field in this record to True. If the CompositeClas-
sExtension record is not specified or the accepts_objects field is False, the composite widget can
assume that all its children are of a subclass of Core without an explicit subclass test in the
insert_child procedure.

If there is not enough room to insert a new child in the children array (that is, num_children is
equal to num_slots), the insert_child procedure must first reallocate the array and update
num_slots. The insert_child procedure then places the child at the appropriate position in the
array and increments the num_children field.

3.2. Insertion Order of Children: The insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in which their
children are kept. For example, an application may want a set of command buttons in some logi-
cal order grouped by function, and it may want buttons that represent file names to be kept in
alphabetical order without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsertPosi-
tion resource. The insert_position procedure pointer in a composite widget instance is of type
XtOrderProc.

63

X Toolkit Intrinsics X11 Release 6.4

typedef Cardinal (*XtOrderProc)(Widget);
Widget w;

w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes) can call
their widget instance’s insert_position procedure from the class’s insert_child procedure to deter-
mine where a new child should go in its children array. Thus, a client using a composite class can
apply different sorting criteria to widget instances of the class, passing in a different insert_posi-
tion procedure resource when it creates each composite widget instance.

The return value of the insert_position procedure indicates how many children should go before
the widget. Returning zero indicates that the widget should go before all other children, and
returning num_children indicates that it should go after all other children. The default
insert_position function returns num_children and can be overridden by a specific composite wid-
get’s resource list or by the argument list provided when the composite widget is created.

3.3. Deletion of Children: The delete_child Procedure

To remove the child from the parent’s children list, the XtDestroyWidget function eventually
causes a call to the Composite parent’s class delete_child procedure. The delete_child procedure
pointer is of type XtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own delete_child procedure to remove these companion
widgets.

3.4. Adding and Removing Children from the Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or the removal
of widgets from a composite widget’s managed set. These generic routines eventually call the
composite widget’s change_managed procedure if the procedure pointer is non-NULL. The
change_managed procedure pointer is of type XtWidgetProc. The widget argument specifies the
composite widget whose managed child set has been modified.

3.4.1. Managing Children

To add a list of widgets to the geometry-managed (and hence displayable) subset of their Com-
posite parent, use XtManageChildren.

64

X Toolkit Intrinsics X11 Release 6.4

typedef Widget *WidgetList;

void XtManageChildren(children, num_children)
WidgetList children;
Cardinal num_children;

children Specifies a list of child widgets. Each child must be of class RectObj or any sub-
class thereof.

num_children Specifies the number of children in the list.

The XtManageChildren function performs the following:
. Issues an error if the children do not all have the same parent or if the parent’s class is not a
subclass of compositeWidgetClass.

. Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list, XtManageChildren ignores the child if it already is managed or is being
destroyed, and marks it if not.

. If the parent is realized and after all children have been marked, it makes some of the newly
managed children viewable:
- Calls the change_managed routine of the widgets’ parent.
- Calls XtRealizeWidget on each previously unmanaged child that is unrealized.
- Maps each previously unmanaged child that has map_when_managed True.

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children whose managed field
is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, call XtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and resize any of its children. It moves
each child as needed by calling XtMoveWidget, which first updates the x and y fields and which
then calls XMoveWindow.

If the composite widget wishes to change the size or border width of any of its children, it calls
XtResizeWidget, which first updates the width, height, and border_width fields and then calls
XConfigureWindow. Simultaneous repositioning and resizing may be done with XtConfig-
ureWidget; see Section 6.6.

To add a single child to its parent widget’s set of managed children, use XtManageChild.

void XtManageChild(child)
Widget child;

child Specifies the child. Must be of class RectObj or any subclass thereof.

The XtManageChild function constructs a WidgetList of length 1 and calls XtManageChil-
dren.

To create and manage a child widget in a single procedure, use XtCreateManagedWidget or
XtVaCreateManagedWidget .

65

X Toolkit Intrinsics X11 Release 6.4

Widget XtCreateManagedWidget(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
ArgList args;
Cardinal num_args;

name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Must be rectObjClass
or any subclass thereof.

parent Specifies the parent widget. Must be of class Composite or any subclass thereof.
args Specifies the argument list to override any other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a convenience routine that calls XtCreateWidget
and XtManageChild.

Widget XtVaCreateManagedWidget(name, widget_class, parent, ...)
String name;
WidgetClass widget_class;
Widget parent;
name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Must be rectObjClass
or any subclass thereof.

parent Specifies the parent widget. Must be of class Composite or any subclass thereof.

Specifies the variable argument list to override any other resource specifications.

XtVaCreateManagedWidget is identical in function to XtCreateManagedWidget with the
args and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

3.4.2. Unmanaging Children

To remove a list of children from a parent widget’s managed list, use XtUnmanageChildren.

void XtUnmanageChildren(children, num_children)
WidgetList children;
Cardinal num_children,

children Specifies a list of child widgets. Each child must be of class RectObj or any sub-
class thereof.
num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

66

X Toolkit Intrinsics X11 Release 6.4

. Returns immediately if the common parent is being destroyed.

. Issues an error if the children do not all have the same parent or if the parent is not a sub-
class of compositeWidgetClass.

. For each unique child on the list, XtUnmanageChildren ignores the child if it is unman-
aged; otherwise it performs the following:

- Marks the child as unmanaged.
- If the child is realized and the map_when_managed field is True, it is unmapped.

. If the parent is realized and if any children have become unmanaged, calls the change_man-
aged routine of the widgets’ parent.

XtUnmanageChildren does not destroy the child widgets. Removing widgets from a parent’s
managed set is often a temporary banishment, and some time later the client may manage the
children again. To destroy widgets entirely, XtDestroyWidget should be called instead; see Sec-
tion 2.9.

To remove a single child from its parent widget’s managed set, use XtUnmanageChild.

void XtUnmanageChild(child)
Widget child;

child Specifies the child. Must be of class RectObj or any subclass thereof.

The XtUnmanageChild function constructs a widget list of length 1 and calls XtUnman-
ageChildren.

These functions are low-level routines that are used by generic composite widget building rou-
tines. In addition, composite widgets can provide widget-specific, high-level convenience proce-
dures.

3.4.3. Bundling Changes to the Managed Set

A client may simultaneously unmanage and manage children with a single call to the Intrinsics.
In this same call the client may provide a callback procedure that can modify the geometries of
one or more children. The composite widget class defines whether this single client call results in
separate invocations of the change_managed method, one to unmanage and the other to manage,
or in just a single invocation.

To simultaneously remove from and add to the geometry-managed set of children of a composite
parent, use XtChangeManagedSet.

67

X Toolkit Intrinsics X11 Release 6.4

void XtChangeManagedSet(unmanage_children, num_unmanage_children,

do_change_proc, client_data,
manage_children, num_manage_children)

WidgetList unmanage_children;
Cardinal num_unmanage_children;
XtDoChangeProc do_change_proc;
XtPointer client_data;

WidgetList manage_children;
Cardinal num_manage_children;

unmanage_children Specifies the list of widget children to initially remove from the

managed set.

num_unmanage_children Specifies the number of entries in the unmanage_children list.

do_change_proc Specifies a procedure to invoke between unmanaging and managing
the children, or NULL.

client_data Specifies client data to be passed to the do_change_proc.

manage_children Specifies the list of widget children to finally add to the managed
set.

num_manage_children Specifies the number of entries in the manage_children list.

The XtChangeManagedSet function performs the following:

Returns immediately if num_unmanage_children and num_manage_children are both 0.

Issues a warning and returns if the widgets specified in the manage_children and the
unmanage_children lists do not all have the same parent or if that parent is not a subclass of
compositeWidgetClass.

Returns immediately if the common parent is being destroyed.

If do_change_proc is not NULL and the parent’s CompositeClassExtension
allows_change_managed_set field is False, then XtChangeManagedSet performs the fol-
lowing:

- Calls XtUnmanageChildren (unmanage_children, num_unmanage_children).

- Calls the do_change_proc.

- Calls XtManageChildren (manage_children, num_manage_children).

Otherwise, the following is performed:

- For each child on the unmanage_children list; if the child is already unmanaged it is
ignored, otherwise it is marked as unmanaged, and if it is realized and its
map_when_managed field is True, it is unmapped.

- If do_change_proc is non-NULL, the procedure is invoked.

- For each child on the manage_children list; if the child is already managed or is
being destroyed, it is ignored; otherwise it is marked as managed.

- If the parent is realized and after all children have been marked, the change_managed
method of the parent is invoked, and subsequently some of the newly managed chil-
dren are made viewable by calling XtRealizeWidget on each previously unmanaged
child that is unrealized and mapping each previously unmanaged child that has
map_when_managed True.

68

X Toolkit Intrinsics X11 Release 6.4

If no CompositeClassExtension record is found in the parent’s composite class part extension
field with record type NULLQUARK and version greater than 1, and if XtInheritChangeMan-
aged was specified in the parent’s class record during class initialization, the value of the
allows_change_managed_set field is inherited from the superclass. The value inherited from
compositeWidgetClass for the allows_change_managed_set field is False.

It is not an error to include a child in both the unmanage_children and the manage_children lists.
The effect of such a call is that the child remains managed following the call, but the
do_change_proc is able to affect the child while it is in an unmanaged state.

The do_change_proc is of type XtDoChangeProc.

typedef void (*XtDoChangeProc)(Widget, WidgetList, Cardinal*, WidgetList, Cardinal*, XtPointer);
Widget composite_parent;
WidgetList unmange_children;
Cardinal *num_unmanage_children;
WidgetList manage_children;
Cardinal *num_manage_children;
XtPointer client_data;

composite_parent Passes the composite parent whose managed set is being altered.
unmanage_children Passes the list of children just removed from the managed set.

num_unmanage_children Passes the number of entries in the unmanage_children list.

manage_children Passes the list of children about to be added to the managed set.
num_manage_children Passes the number of entries in the manage_children list.
client_data Passes the client data passed to XtChangeManagedSet.

The do_change_proc procedure is used by the caller of XtChangeManagedSet to make changes
to one or more children at the point when the managed set contains the fewest entries. These
changes may involve geometry requests, and in this case the caller of XtChangeManagedSet
may take advantage of the fact that the Intrinsics internally grant geometry requests made by
unmanaged children without invoking the parent’s geometry manager. To achieve this advantage,
if the do_change_proc procedure changes the geometry of a child or of a descendant of a child,
then that child should be included in the unmanage_children and manage_children lists.

3.4.4. Determining if a Widget Is Managed

To determine the managed state of a given child widget, use XtIsManaged.

Boolean XtIsManaged(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtIsManaged function returns True if the specified widget is of class RectObj or any sub-
class thereof and is managed, or False otherwise.

69

X Toolkit Intrinsics X11 Release 6.4

3.5. Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be overridden by set-
ting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_managed field to False.

To change the value of a given widget’s map_when_managed field, use XtSetMappedWhen-
Managed.

void XtSetMappedWhenManaged(w, map_when_managed)
Widget w;
Boolean map_when_managed,

w Specifies the widget. Must be of class Core or any subclass thereof.

map_when_managed
Specifies a Boolean value that indicates the new value that is stored into the wid-
get’s map_when_managed field.

If the widget is realized and managed, and if map_when_managed is True, XtSetMapped-
WhenManaged maps the window. If the widget is realized and managed, and if
map_when_managed is False, it unmaps the window. XtSetMappedWhenManaged is a con-
venience function that is equivalent to (but slightly faster than) calling XtSetValues and setting
the new value for the XtNmappedWhenManaged resource then mapping the widget as appropri-
ate. As an alternative to using XtSetMappedWhenManaged to control mapping, a client may
set mapped_when_managed to False and use XtMapWidget and XtUnmapWidget explicitly.

To map a widget explicitly, use XtMapWidget.

XtMapWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

To unmap a widget explicitly, use XtUnmapWidget.

XtUnmapWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

3.6. Constrained Composite Widgets

The Constraint widget class is a subclass of compositeWidgetClass. The name is derived from
the fact that constraint widgets may manage the geometry of their children based on constraints
associated with each child. These constraints can be as simple as the maximum width and height
the parent will allow the child to occupy or can be as complicated as how other children should
change if this child is moved or resized. Constraint widgets let a parent define constraints as

70

X Toolkit Intrinsics X11 Release 6.4

resources that are supplied for their children. For example, if the Constraint parent defines the
maximum sizes for its children, these new size resources are retrieved for each child as if they
were resources that were defined by the child widget’s class. Accordingly, constraint resources
may be included in the argument list or resource file just like any other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has a constraints field, which is the address of a parent-specific structure that
contains constraint information about the child. If a child’s parent does not belong to a subclass
of constraintWidgetClass, then the child’s constraints field is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their super-
class. To allow this, widget writers should define the constraint records in their private .h file by
using the same conventions as used for widget records. For example, a widget class that needs to
maintain a maximum width and height for each child might define its constraint record as fol-
lows:

typedef struct {
Dimension max_width, max_height;
} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;
} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its con-
straint record as follows:

typedef struct {
Dimension min_width, min_height;
} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible by
the Intrinsics. The Constraint class record part has several entries that facilitate this. All entries
in ConstraintClassPart are fields and procedures that are defined and implemented by the par-
ent, but they are called whenever actions are performed on the parent’s children.

The XtCreateWidget function uses the constraint_size field in the parent’s class record to allo-
cate a constraint record when a child is created. XtCreateWidget also uses the constraint
resources to fill in resource fields in the constraint record associated with a child. It then calls the
constraint initialize procedure so that the parent can compute constraint fields that are derived
from constraint resources and can possibly move or resize the child to conform to the given con-
straints.

When the XtGetValues and XtSetValues functions are executed on a child, they use the con-
straint resources to get the values or set the values of constraints associated with that child.
XtSetValues then calls the constraint set_values procedures so that the parent can recompute
derived constraint fields and move or resize the child as appropriate. If a Constraint widget class

71

X Toolkit Intrinsics X11 Release 6.4

or any of its superclasses have declared a ConstraintClassExtension record in the Constraint-
ClassPart extension fields with a record type of NULLQUARK and the get_values_hook field in
the extension record is non-NULL, XtGetValues calls the get_values_hook procedure(s) to allow
the parent to return derived constraint fields.

The XtDestroyWidget function calls the constraint destroy procedure to deallocate any dynamic
storage associated with a constraint record. The constraint record itself must not be deallocated
by the constraint destroy procedure; XtDestroyWidget does this automatically.

72

X Toolkit Intrinsics X11 Release 6.4

Chapter 4

Shell Widgets

Shell widgets hold an application’s top-level widgets to allow them to communicate with the win-
dow manager and session manager. Shells have been designed to be as nearly invisible as possi-
ble. Clients have to create them, but they should never have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the shell widget
also resizes its managed child widget automatically. Similarly, if the shell’s child widget needs to
change size, it can make a geometry request to the shell, and the shell negotiates the size change
with the outer environment. Clients should never attempt to change the size of their shells
directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the window manager
(for example, pop-up menu shells).

TransientShell Used for shell windows that have the WM_TRANSIENT_FOR prop-
erty set. The effect of this property is dependent upon the window
manager being used.

TopLevelShell Used for normal top-level windows (for example, any additional top-
level widgets an application needs).

ApplicationShell Formerly used for the single main top-level window that the window
manager identifies as an application instance and made obsolete by
SessionShell.

SessionShell Used for the single main top-level window that the window manager

identifies as an application instance and that interacts with the ses-
sion manager.

4.1. Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly
contains them. Widgets at the top of the hierarchy do not have parent widgets. Instead, they must
deal with the outside world. To provide for this, each top-level widget is encapsulated in a special
widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and
can allow a widget to avoid the geometry clipping imposed by the parent-child window relation-
ship. They also can provide a layer of communication with the window manager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed for all types
of shells. Shell is a direct subclass of compositeWidgetClass.

73

X Toolkit Intrinsics X11 Release 6.4

OverrideShell A subclass of Shell; used for shell windows that completely bypass the
window manager.

WMShell A subclass of Shell; contains fields needed by the common window man-
ager protocol.

VendorShell A subclass of WMShell; contains fields used by vendor-specific window
managers.

TransientShell A subclass of VendorShell; used for shell windows that desire the
WM_TRANSIENT_FOR property.

TopLevelShell A subclass of VendorShell; used for normal top-level windows.

ApplicationShell A subclass of TopLevelShell; may be used for an application’s additional
root windows.

SessionShell A subclass of ApplicationShell; used for an application’s main root win-
dow.

Note that the classes Shell, WMShell, and VendorShell are internal and should not be instantiated
or subclassed. Only OverrrideShell, TransientShell, TopLevelShell, ApplicationShell, and Ses-
sionShell are intended for public use.

4.1.1. ShellClassPart Definitions

Only the Shell class has additional class fields, which are all contained in the ShellClassExten-
sionRec. None of the other Shell classes have any additional class fields:

typedef struct {
XtPointer extension;
} ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are:

74

X Toolkit Intrinsics

typedef struct _ShellClassRec {

CoreClassPart

CompositeClassPart

ShellClassPart
} ShellClassRec;

typedef struct {
XtPointer
XrmQuark
long
Cardinal

XtGeometryHandler

core_class;
composite_class;
shell_class;

next_extension;
record_type;

version;

record_size;
root_geometry_manager;

} ShellClassExtensionRec, *ShellClassExtension;

typedef struct _OverrideShellClassRec {

CoreClassPart

CompositeClassPart

ShellClassPart

OverrideShellClassPart

} OverrideShellClassRec;

typedef struct _WMShellClassRec {

CoreClassPart

CompositeClassPart

ShellClassPart

WMShellClassPart

} WMShellClassRec;

typedef struct _VendorShellClassRec {

CoreClassPart

CompositeClassPart

ShellClassPart

WMShellClassPart
VendorShellClassPart

} VendorShellClassRec;

typedef struct _TransientShellClassRec {

CoreClassPart

CompositeClassPart

ShellClassPart

WMShellClassPart
VendorShellClassPart
TransientShellClassPart

} TransientShellClassRec;

core_class;
composite_class;
shell_class;
override_shell_class;

core_class;
composite_class;
shell_class;
wm_shell_class;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;

core_class;
composite_class;
shell_class;
wm_shell class;
vendor_shell_class;
transient_shell_class;

75

X11 Release 6.4

See Section 1.6.12
See Section 1.6.12
See Section 1.6.12
See Section 1.6.12
See below

X Toolkit Intrinsics

X11 Release 6.4

typedef struct _TopLevelShellClassRec {

CoreClassPart

CompositeClassPart

ShellClassPart

WDMShellClassPart

VendorShellClassPart

TopLevelShellClassPart
} TopLevelShellClassRec;

core_class;
composite_class;
shell_class;

wm_shell class;
vendor_shell_class;
top_level_shell_class;

typedef struct _ApplicationShellClassRec {

CoreClassPart
CompositeClassPart
ShellClassPart
WMShellClassPart
VendorShellClassPart
TopLevelShellClassPart
ApplicationShellClassPart
} ApplicationShellClassRec;

typedef struct _SessionShellClassRec {
CoreClassPart
CompositeClassPart
ShellClassPart
WMShellClassPart
VendorShellClassPart
TopLevelShellClassPart
ApplicationShellClassPart
SessionShellClassPart

} SessionShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_level_shell_class;
application_shell_class;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_level_shell_class;
application_shell_class;
session_shell_class;

76

X Toolkit Intrinsics X11 Release 6.4

The single occurrences of the class records and pointers for creating instances of shells are:

extern ShellClassRec shellClassRec;

extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;

extern VendorShellClassRec vendorShellClassRec;

extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;
extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;

extern WidgetClass shellWidgetClass;

extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;

extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;
extern WidgetClass sessionShellWidgetClass;

The following opaque types and opaque variables are defined for generic operations on widgets
whose class is a subclass of Shell.

Types Variables

ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShell WidgetClass
TransientShellWidget transientShellWidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShell Widget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass
ShellWidgetClass

OverrideShellWidgetClass

WMShellWidgetClass

VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShell WidgetClass
SessionShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell appear in Shell.h and
ShellP.h. VendorShell has separate public and private .h files which are included by Shell.h and
ShellP.h.

Shell.h uses incomplete structure definitions to ensure that the compiler catches attempts to
access private data in any of the Shell instance or class data structures.

77

X Toolkit Intrinsics X11 Release 6.4

The symbolic constant for the ShellClassExtension version identifier is XtShellExtension Ver-
sion (see Section 1.6.12).

The root_geometry_manager procedure acts as the parent geometry manager for geometry
requests made by shell widgets. When a shell widget calls either XtMakeGeometryRequest or
XtMakeResizeRequest, the root_geometry_manager procedure is invoked to negotiate the new
geometry with the window manager. If the window manager permits the new geometry, the
root_geometry_manager procedure should return XtGeometryYes; if the window manager
denies the geometry request or does not change the window geometry within some timeout inter-
val (equal to wm_timeout in the case of WMShells), the root_geometry_manager procedure
should return XtGeometryNo. If the window manager makes some alternative geometry change,
the root_geometry_manager procedure may return either XtGeometryNo and handle the new
geometry as a resize or XtGeometryAlmost in anticipation that the shell will accept the compro-
mise. If the compromise is not accepted, the new size must then be handled as a resize. Sub-
classes of Shell that wish to provide their own root_geometry_manager procedures are strongly
encouraged to use enveloping to invoke their superclass’s root_geometry_manager procedure
under most situations, as the window manager interaction may be very complex.

If no ShellClassPart extension record is declared with record_type equal to NULLQUARK, then
XtInheritRootGeometryManager is assumed.

4.1.2. ShellPart Definition

The various shell widgets have the following additional instance fields defined in their widget
records:

78

X Toolkit Intrinsics X11 Release 6.4

typedef struct {

String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded;
Boolean popped_up;
Boolean allow_shell_resize;
Boolean client_specified;
Boolean save_under;
Boolean override_redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;
Visual * visual;

} ShellPart;
typedef struct {

int empty;
} OverrideShellPart;

typedef struct {

String title;
int wimn_timeout;
Boolean wait_for_wm;
Boolean transient;
Boolean urgency;
Widget client_leader;
String window_role;
struct _OldXSizeHints {
long flags;
int X, Y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {
int X;
int y;

} min_aspect, max_aspect;
} size_hints;

XWMHints wm_hints;
int base_width, base_height, win_gravity;
Atom title_encoding;

} WMShellPart;
typedef struct {
int vendor_specific;
} VendorShellPart;
typedef struct {
Widget transient_for;

79

-

X Toolkit Intrinsics

} TransientShellPart;

typedef struct {
String
Boolean
Atom

} TopLevelShellPart;

typedef struct {
char *
XrmClass
int
char **
} ApplicationShellPart;

typedef struct {
SmcConn
String
String *
String *
String *
String *
String *
String *
String
String
unsigned char
Boolean
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList
} SessionShellPart;

icon_name;
iconic;
icon_name_encoding;

class;
xrm_class;
arge;
argv;

connection;
session_id;
restart_command;
clone_command;
discard_command;
resign_command;
shutdown_command;
environment;
current_dir;
program_path;
restart_style;
join_session;
save_callbacks;
interact_callbacks;
cancel_callbacks;

save_complete_callbacks;

die_callbacks;
error_callbacks;

80

X11 Release 6.4

X Toolkit Intrinsics X11 Release 6.4

The full shell widget instance record definitions are:

typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
OverrideShellPart override;

} OverrideShellRec, *OverrideShellWidget;

typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TransientShellPart transient;

} TransientShellRec, *TransientShellWidget;

typedef struct {

CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

81

X Toolkit Intrinsics

typedef struct {

CorePart

CompositePart

ShellPart

WMShellPart
VendorShellPart
TopLevelShellPart
ApplicationShellPart

core;
composite;
shell;

wim;
vendor;
topLevel;
application;

} ApplicationShellRec, *ApplicationShellWidget;

typedef struct {

CorePart

CompositePart

ShellPart

WMShellPart
VendorShellPart
TopLevelShellPart
ApplicationShellPart
SessionShellPart

core;
composite;
shell;

wm;
vendor;
topLevel;
application;
session;

} SessionShellRec, *SessionShellWidget;

4.1.3. Shell Resources

X11 Release 6.4

The resource names, classes, and representation types specified in the shellClassRec resource list

are:
Name Representation
XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc ~ XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisual XtCVisual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specified in the wmShellClassRec
resource list are:

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNclientLeader XtCClientLeader XtRWidget

82

X Toolkit Intrinsics

XtNheightlnc
XtNiconMask
XtNiconPixmap
XtNiconWindow
XtNiconX
XtNiconY
XtNinitialState
XtNinput
XtNmaxAspectX
XtNmaxAspectY
XtNmaxHeight
XtNmaxWidth
XtNminAspectX
XtNminAspectY
XtNminHeight
XtNminWidth
XtNtitle
XtNtitleEncoding
XtNtransient
XtNwaitforwm, XtNwaitForWm
XtNwidthInc
XtNwindowRole
XtNwinGravity
XtNwindowGroup
XtNwmTimeout
XtNurgency

XtCHeightInc
XtCIconMask
XtClconPixmap
XtCIconWindow
XtCIconX
XtCIconY
XtClnitialState
XtClInput
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWidth
XtCMinAspectX
XtCMinAspectY
XtCMinHeight
XtCMinWidth
XtCTitle
XtCTitleEncoding
XtCTransient
XtCWaitforwm, XtCWaitForWm
XtCWidthInc
XtCWindowRole
XtCWinGravity
XtCWindowGroup
XtCWmTimeout
XtCUrgency

X11 Release 6.4

XtRInt
XtRBitmap
XtRBitmap
XtRWindow
XtRInt
XtRInt
XtRInitialState
XtRBool
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRString
XtRAtom
XtRBoolean
XtRBoolean
XtRInt
XtRString
XtRGravity
XtRWindow
XtRInt
XtRBoolean

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specified in the transient-

ShellClassRec resource list are:

Name

Class

Representation

XtNtransientFor

XtCTransientFor

XtRWidget

The resource names, classes, and representation types that are specified in the topLevelShell-

ClassRec resource list are:

Name Class Representation
XtNiconName XtClconName XtRString
XtNiconNameEncoding XtCIconNameEncoding XtRAtom
XtNiconic XtClconic XtRBoolean

The resource names, classes, and representation types that are specified in the application-

ShellClassRec resource list are:

83

X Toolkit Intrinsics

X11 Release 6.4

Name Class Representation
XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

The resource names, classes, and representation types that are specified in the sessionShellClass-

Rec resource list are:

Name Class Representation
XtNcancelCallback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNenvironment XtCEnvironment XtREnvironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPath XtCProgramPath XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompleteCallback XtCCallback XtRCallback
XtNsessionlD XtCSessionID XtRString
XtNshutdownCommand XtCShutdownCommand XtRCommandArgArray

4.1.4. ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the Shell resource

lists and the Shell initialize procedures) are:

Field Default Value
geometry NULL
create_popup_child_proc NULL
grab_kind (none)
spring_loaded (none)
popped_up False
allow_shell_resize False
client_specified (internal)

save_under

override_redirect
popup_callback
popdown_callback

True for OverrideShell and TransientShell,

False otherwise

True for OverrideShell, False otherwise

NULL
NULL

84

X Toolkit Intrinsics X11 Release 6.4

visual CopyFromParent

The geometry field specifies the size and position and is usually given only on a command line or
in a defaults file. If the geometry field is non-NULL when a widget of class WMShell is realized,
the geometry specification is parsed using XWMGeometry with a default geometry string con-
structed from the values of x, y, width, height, width_inc, and height_inc and the size and position
flags in the window manager size hints are set. If the geometry specifies an x or y position, then
USPosition is set. If the geometry specifies a width or height, then USSize is set. Any fields in
the geometry specification override the corresponding values in the Core x, y, width, and height
fields. If geometry is NULL or contains only a partial specification, then the Core x, y, width, and
height fields are used and PPosition and PSize are set as appropriate. The geometry string is not
copied by any of the Intrinsics Shell classes; a client specifying the string in an arglist or varargs
list must ensure that the value remains valid until the shell widget is realized. For further infor-
mation on the geometry string, see Section 16.4 in X/ib — C Language X Interface.

The create_popup_child_proc procedure is called by the XtPopup procedure and may remain
NULL. The grab_kind, spring_loaded, and popped_up fields maintain widget state information
as described under XtPopup, XtMenuPopup, XtPopdown, and XtMenuPopdown. The
allow_shell_resize field controls whether the widget contained by the shell is allowed to try to
resize itself. If allow_shell_resize is False, any geometry requests made by the child will always
return XtGeometryNo without interacting with the window manager. Setting save_under True
instructs the server to attempt to save the contents of windows obscured by the shell when it is
mapped and to restore those contents automatically when the shell is unmapped. It is useful for
pop-up menus. Setting override_redirect True determines whether the window manager can
intercede when the shell window is mapped. For further information on override_redirect, see
Section 3.2 in XIlib — C Language X Interface and Sections 4.1.10 and 4.2.2 in the Inter-Client
Communication Conventions Manual. The pop-up and pop-down callbacks are called during
XtPopup and XtPopdown. The default value of the visual resource is the symbolic value
CopyFromParent. The Intrinsics do not need to query the parent’s visual type when the default
value is used; if a client using XtGetValues to examine the visual type receives the value Copy-
FromParent, it must then use XGetWindowAttributes if it needs the actual visual type.

The default values for Shell fields in WMShell and its subclasses are:

Field Default Value

title Icon name, if specified, otherwise the application’s name
wm_timeout Five seconds, in units of milliseconds
wait_for_wm True

transient True for TransientShell, False otherwise
urgency False

client_leader NULL

window_role NULL

min_width XtUnspecifiedShelllnt

min_height XtUnspecifiedShelllnt

max_width XtUnspecifiedShellInt

max_height XtUnspecifiedShellInt

width_inc XtUnspecifiedShellInt

height_inc XtUnspecifiedShellInt

85

X Toolkit Intrinsics X11 Release 6.4

min_aspect_x XtUnspecifiedShellInt
min_aspect_y XtUnspecifiedShellInt
max_aspect_x XtUnspecifiedShellInt
max_aspect_y XtUnspecifiedShellInt

input False

initial_state Normal

icon_pixmap None

icon_window None

icon_x XtUnspecifiedShelllnt
icon_y XtUnspecifiedShellInt
icon_mask None

window_group XtUnspecified Window
base_width XtUnspecifiedShellInt
base_height XtUnspecifiedShellInt
win_gravity XtUnspecifiedShellInt
title_encoding See text

The title and title_encoding fields are stored in the WM_NAME property on the shell’s window
by the WMShell realize procedure. If the title_encoding field is None, the title string is assumed
to be in the encoding of the current locale and the encoding of the WM_NAME property is set to
XStdICCTextStyle. If a language procedure has not been set the default value of title_encoding
is XA_STRING, otherwise the default value is None. The wm_timeout field specifies, in millisec-
onds, the amount of time a shell is to wait for confirmation of a geometry request to the window
manager. If none comes back within that time, the shell assumes the window manager is not
functioning properly and sets wait_for_wm to False (later events may reset this value). When
wait_for_wm is False, the shell does not wait for a response, but relies on asynchronous notifica-
tion. If transient is True, the WM_TRANSIENT_FOR property will be stored on the shell win-
dow with a value as specified below. The interpretation of this property is specific to the window
manager under which the application is run; see the Inter-Client Communication Conventions
Manual for more details.

The realize and set_values procedures of WMShell store the WM_CLIENT_LEADER property
on the shell window. When client_leader is not NULL and the client leader widget is realized,
the property will be created with the value of the window of the client leader widget. When
client_leader is NULL and the shell widget has a NULL parent, the widget’s window is used as
the value of the property. When client_leader is NULL and the shell widget has a non-NULL
parent, a search is made for the closest shell ancestor with a non-NULL client_leader, and if none
is found the shell ancestor with a NULL parent is the result. If the resulting widget is realized,
the property is created with the value of the widget’s window.

When the value of window_role is not NULL, the realize and set_values procedures store the
WM_WINDOW_ROLE property on the shell’s window with the value of the resource.

All other resources specify fields in the window manager hints and the window manager size
hints. The realize and set_values procedures of WMShell set the corresponding flag bits in the
hints if any of the fields contain nondefault values. In addition, if a flag bit is set that refers to a
field with the value XtUnspecifiedShelllnt, the value of the field is modified as follows:

Field Replacement

86

X Toolkit Intrinsics X11 Release 6.4

base_width, base_height 0

width_inc, height_inc 1

max_width, max_height 32767

min_width, min_height 1

min_aspect_x, min_aspect_y -1

max_aspect_x, max_aspect_y -1

icon_x, icon_y -1

win_gravity Value returned by XWMGeometry if called,
else NorthWestGravity

If the shell widget has a non-NULL parent, then the realize and set_values procedures replace the
value XtUnspecifiedWindow in the window_group field with the window id of the root widget
of the widget tree if the root widget is realized. The symbolic constant XtUnspecified Window-
Group may be used to indicate that the window_group hint flag bit is not to be set. If transient is
True, the shell’s class is not a subclass of TransientShell, and window_group is not XtUnspeci-
fiedWindowGroup, the WMShell realize and set_values procedures then store the WM_TRAN-
SIENT_FOR property with the value of window_group.

Transient shells have the following additional resource:

Field Default Value

transient_for NULL

The realize and set_values procedures of TransientShell store the WM_TRANSIENT_FOR prop-
erty on the shell window if transient is True. If transient_for is non-NULL and the widget speci-
fied by transient_for is realized, then its window is used as the value of the WM_TRAN-
SIENT_FOR property; otherwise, the value of window_group is used.

TopLevel shells have the the following additional resources:

Field Default Value
icon_name Shell widget’s name
iconic False

icon_name_encoding See text

The icon_name and icon_name_encoding fields are stored in the WM_ICON_NAME property on
the shell’s window by the TopLevelShell realize procedure. If the icon_name_encoding field is
None, the icon_name string is assumed to be in the encoding of the current locale and the encod-
ing of the WM_ICON_NAME property is set to XStdICCTextStyle. If a language procedure has
not been set, the default value of icon_name_encoding is XA_STRING, otherwise the default
value is None. The iconic field may be used by a client to request that the window manager
iconify or deiconify the shell; the TopLevelShell set_values procedure will send the appropriate
WM_CHANGE_STATE message (as specified by the Inter-Client Communication Conventions
Manual) if this resource is changed from False to True and will call XtPopup specifying
grab_kind as XtGrabNone if iconic is changed from True to False. The XtNiconic resource is
also an alternative way to set the XtNinitialState resource to indicate that a shell should be

87

X Toolkit Intrinsics X11 Release 6.4

initially displayed as an icon; the TopLevelShell initialize procedure will set initial_state to Icon-
icState if iconic is True.

Application shells have the following additional resources:

Field Default Value

argc 0
argv NULL

The argc and argv fields are used to initialize the standard property WM_COMMAND. See the
Inter-Client Communication Conventions Manual for more information.

The default values for the SessionShell instance fields, which are filled in from the resource lists
and by the initialize procedure, are

Field Default Value
cancel_callbacks NULL
clone_command See text
connection NULL
current_dir NULL
die_callbacks NULL
discard_command NULL
environment NULL
error_callbacks NULL
interact_callbacks NULL
join_session True
program_path See text
resign_command NULL
restart_command See text
restart_style SmRestartIfRunning
save_callbacks NULL
save_complete_callbacks NULL
session_id NULL
shutdown_command NULL

The connection field contains the session connection object or NULL if a session connection is
not being managed by this widget.

The session_id is an identification assigned to the session participant by the session manager.
The session_id will be passed to the session manager as the client identifier of the previous ses-
sion. When a connection is established with the session manager, the client id assigned by the
session manager is stored in the session_id field. When not NULL, the session_id of the Session
shell widget that is at the root of the widget tree of the client leader widget will be used to create
the SM_CLIENT_ID property on the client leader’s window.

If join_session is False, the widget will not attempt to establish a connection to the session man-
ager at shell creation time. See Sections 4.2.1 and 4.2.4 for more information on the functionality
of this resource.

The restart_command, clone_command, discard_command, resign_command, shutdown_com-
mand, environment, current_dir, program_path, and restart_style fields contain standard session

88

X Toolkit Intrinsics X11 Release 6.4

properties.

When a session connection is established or newly managed by the shell, the shell initialize and
set_values methods check the values of the restart_command, clone_command, and pro-
gram_path resources. At that time, if restart_command is NULL, the value of the argv resource
will be copied to restart_command. Whether or not restart_command was NULL, if “-xtses-
sionID” “‘<session id>"" does not already appear in the restart_command, it will be added by the
initialize and set_values methods at the beginning of the command arguments; if the ““-xtses-
sionID” argument already appears with an incorrect session id in the following argument, that
argument will be replaced with the current session id.

After this, the shell initialize and set_values procedures check the clone_command. If
clone_command is NULL, restart_command will be copied to clone_command, except the
“-xtsessionID”” and following argument will not be copied.

Finally, the shell initialize and set_values procedures check the program_path. If program_path
is NULL, the first element of restart_command is copied to program_path.

The possible values of restart_style are SmRestartIfRunning, SmRestartAnyway, SmRestar-
tImmediately, and SmRestartNever. A resource converter is registered for this resource; for
the strings that it recognizes, see Section 9.6.1.

The resource type EnvironmentArray is a NULL-terminated array of pointers to strings; each
string has the format "name=value". The ‘=" character may not appear in the name, and the string
is terminated by a null character.

4.2. Session Participation

Applications can participate in a user’s session, exchanging messages with the session manager as
described in the X Session Management Protocol and the X Session Management Library.

When a widget of sessionShellWidgetClass or a subclass is created, the widget provides support
for the application as a session participant and continues to provide support until the widget is
destroyed.

4.2.1. Joining a Session

When a Session shell is created, if connection is NULL, and if join_session is True, and if argv
or restart_command is not NULL, and if in POSIX environments the SESSION_MANAGER envi-
ronment variable is defined, the shell will attempt to establish a new connection with the session
manager.

To transfer management of an existing session connection from an application to the shell at wid-
get creation time, pass the existing session connection ID as the connection resource value when
creating the Session shell, and if the other creation-time conditions on session participation are
met, the widget will maintain the connection with the session manager. The application must
ensure that only one Session shell manages the connection.

In the Session shell set_values procedure, if join_session changes from False to True and con-
nection is NULL and when in POSIX environments the SESSION_MANAGER environment vari-
able is defined, the shell will attempt to open a connection to the session manager. If connection
changes from NULL to non-NULL, the Session shell will take over management of that session
connection and will set join_session to True. If join_session changes from False to True and
connection is not NULL, the Session shell will take over management of the session connection.

89

X Toolkit Intrinsics X11 Release 6.4

When a successful connection has been established, connection contains the session connection
ID for the session participant. When the shell begins to manage the connection, it will call XtAp-
pAddInput to register the handler which watches for protocol messages from the session man-
ager. When the attempt to connect fails, a warning message is issued and connection is set to
NULL.

While the connection is being managed, if a SaveYourself, SaveYourselfPhase2, Interact,
ShutdownCancelled, SaveComplete, or Die message is received from the session manager, the
Session shell will call out to application callback procedures registered on the respective callback
list of the Session shell and will send SaveYourselfPhase2Request, InteractRequest, Interact-
Done, SaveYourselfDone, and ConnectionClosed messages as appropriate. Initially, all of the
client’s session properties are undefined. When any of the session property resource values are
defined or change, the Session shell initialize and set_values procedures will update the client’s
session property value by a SetProperties or a DeleteProperties message, as appropriate. The
session ProcessID and UserID properties are always set by the shell when it is possible to deter-
mine the value of these properties.

4.2.2. Saving Application State

The session manager instigates an application checkpoint by sending a SaveYourself request.
Applications are responsible for saving their state in response to the request.

When the SaveYourself request arrives, the procedures registered on the Session shell’s save call-
back list are called. If the application does not register any save callback procedures on the save
callback list, the shell will report to the session manager that the application failed to save its
state. Each procedure on the save callback list receives a token in the call_data parameter.

The checkpoint token in the call_data parameter is of type XtCheckpointToken.

typedef struct {

int save_type;

int interact_style;

Boolean shutdown;

Boolean fast;

Boolean cancel_shutdown

int phase;

int interact_dialog_type; /* return */
Boolean request_cancel; [* return */
Boolean request_next_phase; /* return */
Boolean save_success; /* return */

} XtCheckpointTokenRec, *XtCheckpointToken;

The save_type, interact_style, shutdown, and fast fields of the token contain the parameters of the
SaveYourself message. The possible values of save_type are SmSaveLocal, SmSaveGlobal,
and SmSaveBoth; these indicate the type of information to be saved. The possible values of
interact_style are SmInteractStyleNone, SmInteractStyleErrors, and SmInteractStyleAny;
these indicate whether user interaction would be permitted and, if so, what kind of interaction. If
shutdown is True, the checkpoint is being performed in preparation for the end of the session. If
fast is True, the client should perform the checkpoint as quickly as possible. If cancel_shutdown
is True, a ShutdownCancelled message has been received for the current save operation. (See

90

X Toolkit Intrinsics X11 Release 6.4

Section 4.4.4.) The phase is used by manager clients, such as a window manager, to distinguish
between the first and second phase of a save operation. The phase will be either 1 or 2. The
remaining fields in the checkpoint token structure are provided for the application to communi-
cate with the shell.

Upon entry to the first application save callback procedure, the return fields in the token have the
following initial values: interact_dialog_type is SmDialogNormal; request_cancel is False;
request_next_phase is False; and save_success is True. When a token is returned with any of
the four return fields containing a noninitial value, and when the field is applicable, subsequent
tokens passed to the application during the current save operation will always contain the nonini-
tial value.

The purpose of the token’s save_success field is to indicate the outcome of the entire operation to
the session manager and ultimately, to the user. Returning False indicates some portion of the
application state could not be successfully saved. If any token is returned to the shell with
save_success False, tokens subsequently received by the application for the current save opera-
tion will show save_success as False. When the shell sends the final status of the checkpoint to
the session manager, it will indicate failure to save application state if any token was returned
with save_success False.

Session participants that manage and save the state of other clients should structure their save or
interact callbacks to set request_next_phase to True when phase is 1, which will cause the shell
to send the SaveYourselfPhase2Request when the first phase is complete. When the SaveYour-
selfPhase2 message is received, the shell will invoke the save callbacks a second time with phase
equal to 2. Manager clients should save the state of other clients when the callbacks are invoked
the second time and phase equal to 2.

The application may request additional tokens while a checkpoint is under way, and these addi-
tional tokens must be returned by an explicit call.

To request an additional token for a save callback response that has a deferred outcome, use
XtSessionGetToken.

XtCheckpointToken XtSessionGetToken(widget)
Widget widget;

widget Specifies the Session shell widget which manages session participation.

The XtSessionGetToken function will return NULL if no checkpoint operation is currently
under way.

To indicate the completion of checkpoint processing including user interaction, the application
must signal the Session shell by returning all tokens. (See Sections 4.2.2.2 and 4.2.2.4). To
return a token, use XtSessionReturnToken.

void XtSessionReturnToken(token)
XtCheckpointToken foken;

token Specifies a token that was received as the call_data by a procedure on the interact
callback list or a token that was received by a call to XtSessionGetToken.

91

X Toolkit Intrinsics X11 Release 6.4

Tokens passed as call_data to save callbacks are implicitly returned when the save callback pro-
cedure returns. A save callback procedure should not call XtSessionReturnToken on the token
passed in its call_data.

4.2.2.1. Requesting Interaction

When the token interact_style allows user interaction, the application may interact with the user
during the checkpoint, but must wait for permission to interact. Applications request permission
to interact with the user during the checkpointing operation by registering a procedure on the Ses-
sion shell’s interact callback list. When all save callback procedures have returned, and each time
a token that was granted by a call to XtSessionGetToken is returned, the Session shell examines
the interact callback list. If interaction is permitted and the interact callback list is not empty, the
shell will send an InteractRequest to the session manager when an interact request is not already
outstanding for the application.

The type of interaction dialog that will be requested is specified by the interact_dialog_type field
in the checkpoint token. The possible values for interact_dialog_type are SmDialogError and
SmDialogNormal. If a token is returned with interact_dialog_type containing SmDialogError,
the interact request and any subsequent interact requests will be for an error dialog; otherwise, the
request will be for a normal dialog with the user.

When a token is returned with save_success False or interact_dialog_type SmDialogError,
tokens subsequently passed to callbacks during the same active SaveYourself response will
reflect these changed values, indicating that an error condition has occurred during the check-
point.

The request_cancel field is a return value for interact callbacks only. Upon return from a proce-
dure on the save callback list, the value of the token’s request_cancel field is not examined by the
shell. This is also true of tokens received through a call to XtSessionGetToken.

4.2.2.2. Interacting with the User during a Checkpoint

When the session manager grants the application’s request for user interaction, the Session shell
receives an Interact message. The procedures registered on the interact callback list are
executed, but not as if executing a typical callback list. These procedures are individually
executed in sequence, with a checkpoint token functioning as the sequencing mechanism. Each
step in the sequence begins by removing a procedure from the interact callback list and executing
it with a token passed in the call_data. The interact callback will typically pop up a dialog box
and return. When the user interaction and associated application checkpointing has completed,
the application must return the token by calling XtSessionReturnToken. Returning the token
completes the current step and triggers the next step in the sequence.

During interaction the client may request cancellation of a shutdown. When a token passed as
call_data to an interact procedure is returned, if shutdown is True and cancel_shutdown is False,
request_cancel indicates whether the application requests that the pending shutdown be cancelled.
If request_cancel is True, the field will also be True in any tokens subsequently granted during
the checkpoint operation. When a token is returned requesting cancellation of the session shut-
down, pending interact procedures will still be called by the Session shell. When all interact pro-
cedures have been removed from the interact callback list, executed, and the final interact token
returned to the shell, an InteractDone message is sent to the session manager, indicating whether
a pending session shutdown is requested to be cancelled.

92

X Toolkit Intrinsics X11 Release 6.4

4.2.2.3. Responding to a Shutdown Cancellation

Callbacks registered on the cancel callback list are invoked when the Session shell processes a
ShutdownCancelled message from the session manager. This may occur during the processing
of save callbacks, while waiting for interact permission, during user interaction, or after the save
operation is complete and the application is expecting a SaveComplete or a Die message. The
call_data for these callbacks is NULL.

When the shell notices that a pending shutdown has been cancelled, the token cancel_shutdown
field will be True in tokens subsequently given to the application.

Receiving notice of a shutdown cancellation does not cancel the pending execution of save call-
backs or interact callbacks. After the cancel callbacks execute, if interact_style is not SmInter-
actStyleNone and the interact list is not empty, the procedures on the interact callback list will be
executed and passed a token with inferact_style SmInteractStyleNone. The application should
not interact with the user, and the Session shell will not send an InteractDone message.

4.2.2.4. Completing a Save

When there is no user interaction, the shell regards the application as having finished saving state
when all callback procedures on the save callback list have returned, and any additional tokens
passed out by XtSessionGetToken have been returned by corresponding calls to XtSessionRe-
turnToken. If the save operation involved user interaction, the above completion conditions
apply, and in addition, all requests for interaction have been granted or cancelled, and all tokens
passed to interact callbacks have been returned through calls to XtSessionReturnToken. If the
save operation involved a manager client that requested the second phase, the above conditions
apply to both the first and second phase of the save operation.

When the application has finished saving state, the Session shell will report the result to the ses-
sion manager by sending the SaveYourselfDone message. If the session is continuing, the shell
will receive the SaveComplete message when all applications have completed saving state. This
message indicates that applications may again allow changes to their state. The shell will execute
the save_complete callbacks. The call_data for these callbacks is NULL.

4.2.3. Responding to a Shutdown

Callbacks registered on the die callback list are invoked when the session manager sends a Die
message. The callbacks on this list should do whatever is appropriate to quit the application.
Before executing procedures on the die callback list, the Session shell will close the connection to
the session manager and will remove the handler that watches for protocol messages. The
call_data for these callbacks is NULL.

4.2.4. Resigning from a Session

When the Session shell widget is destroyed, the destroy method will close the connection to the
session manager by sending a ConnectionClosed protocol message and will remove the input
callback that was watching for session protocol messages.

When XtSetValues is used to set join_session to False, the set_values method of the Session
shell will close the connection to the session manager if one exists by sending a Connection-
Closed message, and connection will be set to NULL.

Applications that exit in response to user actions and that do not wait for phase 2 destroy to com-
plete on the Session shell should set join_session to False before exiting.

93

X Toolkit Intrinsics X11 Release 6.4

When XtSetValues is used to set connection to NULL, the Session shell will stop managing the
connection, if one exists. However, that session connection will not be closed.

Applications that wish to ensure continuation of a session connection beyond the destruction of
the shell should first retrieve the connection resource value, then set the connection resource to
NULL, and then they may safely destroy the widget without losing control of the session connec-
tion.

The error callback list will be called if an unrecoverable communications error occurs while the
shell is managing the connection. The shell will close the connection, set connection to NULL,
remove the input callback, and call the procedures registered on the error callback list. The
call_data for these callbacks is NULL.

94

X Toolkit Intrinsics X11 Release 6.4

Chapter 5

Pop-Up Widgets

Pop-up widgets are used to create windows outside of the window hierarchy defined by the wid-
get tree. Each pop-up child has a window that is a descendant of the root window, so that the
pop-up window is not clipped by the pop-up widget’s parent window. Therefore, pop-ups are cre-
ated and attached differently to their widget parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually does
not operate upon them in any way. The popup_list field in the CorePart structure contains the
list of its pop-up children. This pop-up list exists mainly to provide the proper place in the widget
hierarchy for the pop-up to get resources and to provide a place for XtDestroyWidget to look for
all extant children.

A composite widget can have both normal and pop-up children. A pop-up can be popped up from
almost anywhere, not just by its parent. The term child always refers to a normal, geometry-man-
aged widget on the composite widget’s list of children, and the term pop-up child always refers to
a widget on the pop-up list.

5.1. Pop-Up Widget Types

There are three kinds of pop-up widgets:

. Modeless pop-ups
A modeless pop-up (for example, a dialog box that does not prevent continued interaction
with the rest of the application) can usually be manipulated by the window manager and

looks like any other application window from the user’s point of view. The application
main window itself is a special case of a modeless pop-up.

. Modal pop-ups
A modal pop-up (for example, a dialog box that requires user input to continue) can some-

times be manipulated by the window manager, and except for events that occur in the dia-
log box, it disables user-event distribution to the rest of the application.

. Spring-loaded pop-ups
A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the window

manager, and except for events that occur in the pop-up or its descendants, it disables user-
event distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they were
the same. In fact, the same widget (for example, a ButtonBox or Menu widget) can be used both
as a modal pop-up and as a spring-loaded pop-up within the same application. The main differ-
ence is that spring-loaded pop-ups are brought up with the pointer and, because of the grab that
the pointer button causes, require different processing by the Intrinsics. Furthermore, all user
input remap events occurring outside the spring-loaded pop-up (e.g., in a descendant) are also
delivered to the spring-loaded pop-up after they have been dispatched to the appropriate descen-
dant, so that, for example, button-up can take down a spring-loaded pop-up no matter where the
button-up occurs.

95

X Toolkit Intrinsics X11 Release 6.4

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can
constrain user events to the most recent such pop-up or allow user events to be dispatched to any
of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with the X
window manager and therefore are subclasses of one of the Shell widget classes.

5.2. Creating a Pop-Up Shell

For a widget to be popped up, it must be the child of a pop-up shell widget. None of the Intrin-
sics-supplied shells will simultaneously manage more than one child. Both the shell and child
taken together are referred to as the pop-up. When you need to use a pop-up, you always refer to
the pop-up by the pop-up shell, not the child.

To create a pop-up shell, use XtCreatePopupShell.

Widget XtCreatePopupShell(name, widget_class, parent, args, num_args)
String name;
WidgetClass widget_class;
Widget parent;
ArgList args;
Cardinal num_args;

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass thereof.
args Specifies the argument list to override any other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreatePopupShell function ensures that the specified class is a subclass of Shell and,
rather than using insert_child to attach the widget to the parent’s children list, attaches the shell to
the parent’s popup_list directly.

The screen resource for this widget is determined by first scanning args for the XtNscreen argu-
ment. If no XtNscreen argument is found, the resource database associated with the parent’s
screen is queried for the resource name.screen, class Class.Screen where Class is the class_name
field from the CoreClassPart of the specified widget_class. If this query fails, the parent’s
screen is used. Once the screen is determined, the resource database associated with that screen is
used to retrieve all remaining resources for the widget not specified in args.

A spring-loaded pop-up invoked from a translation table via XtMenuPopup must already exist at
the time that the translation is invoked, so the translation manager can find the shell by name.
Pop-ups invoked in other ways can be created when the pop-up actually is needed. This delayed
creation of the shell is particularly useful when you pop up an unspecified number of pop-ups.
You can look to see if an appropriate unused shell (that is, not currently popped up) exists and
create a new shell if needed.

To create a pop-up shell using varargs lists, use XtVaCreatePopupShell.

96

X Toolkit Intrinsics X11 Release 6.4

Widget XtVaCreatePopupShell(name, widget_class, parent, ...)
String name;
WidgetClass widget_class;
Widget parent;

name Specifies the instance name for the created shell widget.
widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass thereof.

Specifies the variable argument list to override any other resource specifications.

XtVaCreatePopupShell is identical in function to XtCreatePopupShell with the args and
num_args parameters replaced by a varargs list as described in Section 2.5.1.

5.3. Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created either statically
or dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-up
children composed of a fixed set of widgets. The application can change the state of the subparts
of the pop-up child as the application state changes. For example, if an application creates a static
menu, it can call XtSetSensitive (or, in general, XtSetValues) on any of the buttons that make up
the menu. Creating the pop-up child early means that pop-up time is minimized, especially if the
application calls XtRealizeWidget on the pop-up shell at startup. When the menu is needed, all
the widgets that make up the menu already exist and need only be mapped. The menu should pop
up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed, which mini-
mizes application startup time and allows the pop-up child to reconfigure itself each time it is
popped up. In this case, the pop-up child creation routine might poll the application to find out if
it should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call XtReal-
izeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to make
last-minute changes to a pop-up child before it is popped up or to change it after it is popped
down. Note that excessive use of pop-up callbacks can make popping up occur more slowly.

5.4. Mapping a Pop-Up Widget
Pop-ups can be popped up through several mechanisms:
. A call to XtPopup or XtPopupSpringlLoaded.

. One of the supplied callback procedures XtCallbackNone, XtCallbackNonexclusive, or
XtCallbackExclusive.

. The standard translation action XtMenuPopup.

Some of these routines take an argument of type XtGrabKind, which is defined as

97

X Toolkit Intrinsics X11 Release 6.4

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusive} XtGrabKind;

The create_popup_child_proc procedure pointer in the shell widget instance record is of type
XtCreatePopupChildProc.

typedef void (*XtCreatePopupChildProc)(Widget);
Widget w;

w Specifies the shell widget being popped up.

To map a pop-up from within an application, use XtPopup.

void XtPopup(popup_shell, grab_kind)
Widget popup_shell,
XtGrabKind grab_kind,

popup_shell Specifies the shell widget.

grab_kind Specifies the way in which user events should be constrained.

The XtPopup function performs the following:
. Calls XtCheckSubclass to ensure popup_shell’s class is a subclass of shellWidgetClass.
. Raises the window and returns if the shell’s popped_up field is already True.

. Calls the callback procedures on the shell’s popup_callback list, specifying a pointer to the
value of grab_kind as the call_data argument.

. Sets the shell popped_up field to True, the shell spring_loaded field to False, and the shell
grab_kind field from grab_kind.

. If the shell’s create_popup_child_proc field is non-NULL, XtPopup calls it with
popup_shell as the parameter.

. If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls
XtAddGrab(popup_shell, (grab_kind == XtGrabExclusive), False)

. Calls XtRealizeWidget with popup_shell specified.
. Calls XMapRaised with the window of popup_shell.

To map a spring-loaded pop-up from within an application, use XtPopupSpringLoaded.

void XtPopupSpringl.oaded(popup_shell)
Widget popup_shell,

popup_shell Specifies the shell widget to be popped up.

The XtPopupSpringLoaded function performs exactly as XtPopup except that it sets the shell
spring_loaded field to True and always calls XtAddGrab with exclusive True and spring-

98

X Toolkit Intrinsics X11 Release 6.4

loaded True.

To map a pop-up from a given widget’s callback list, you also can register one of the XtCallbac-
kNone, XtCallbackNonexclusive, or XtCallbackExclusive convenience routines as callbacks,
using the pop-up shell widget as the client data.

void XtCallbackNone(w, client_data, call_data)
Widget w;
XtPointer client_data,
XtPointer call_data,

w Specifies the widget.
client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackNonexclusive(w, client_data, call_data)
Widget w;
XtPointer client_data,
XtPointer call_data;

w Specifies the widget.
client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackExclusive(w, client_data, call_data)
Widget w;
XtPointer client_data;
XtPointer call_data;

w Specifies the widget.
client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive functions call
XtPopup with the shell specified by the client_data argument and grab_kind set as the name
specifies. XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive specify
XtGrabNone, XtGrabNonexclusive, and XtGrabExclusive, respectively. Each function then
sets the widget that executed the callback list to be insensitive by calling XtSetSensitive. Using
these functions in callbacks is not required. In particular, an application must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than desensitizing
the button.

Within a translation table, to pop up a menu when a key or pointer button is pressed or when the
pointer is moved into a widget, use XtMenuPopup, or its synonym, MenuPopup. From a trans-
lation writer’s point of view, the definition for this translation action is

99

X Toolkit Intrinsics X11 Release 6.4

void XtMenuPopup(shell_name)
String shell_name;

shell_name Specifies the name of the shell widget to pop up.

XtMenuPopup is known to the translation manager, which registers the corresponding built-in
action procedure XtMenuPopupAction using XtRegisterGrabAction specifying owner_events
True, event_mask ButtonPressMask | ButtonReleaseMask, and pointer_mode and
keyboard_mode GrabModeAsync.

If XtMenuPopup is invoked on ButtonPress, it calls XtPopupSpringl.oaded on the specified
shell widget. If XtMenuPopup is invoked on KeyPress or EnterWindow, it calls XtPopup on
the specified shell widget with grab_kind set to XtGrabNonexclusive. Otherwise, the transla-
tion manager generates a warning message and ignores the action.

XtMenuPopup tries to find the shell by searching the widget tree starting at the widget in which
it is invoked. If it finds a shell with the specified name in the pop-up children of that widget, it
pops up the shell with the appropriate parameters. Otherwise, it moves up the parent chain to find
a pop-up child with the specified name. If XtMenuPopup gets to the application top-level shell
widget and has not found a matching shell, it generates a warning and returns immediately.

5.5. Unmapping a Pop-Up Widget

Pop-ups can be popped down through several mechanisms:

. A call to XtPopdown

. The supplied callback procedure XtCallbackPopdown

. The standard translation action XtMenuPopdown

To unmap a pop-up from within an application, use XtPopdown.

void XtPopdown(popup_shell)
Widget popup_shell;

popup_shell Specifies the shell widget to pop down.

The XtPopdown function performs the following:
. Calls XtCheckSubclass to ensure popup_shell’s class is a subclass of shellWidgetClass.
. Checks that the popped_up field of popup_shell is True; otherwise, it returns immediately.

. Unmaps popup_shell’s window and, if override_redirect is False, sends a synthetic
UnmapNotify event as specified by the Inter-Client Communication Conventions Manual.

. If popup_shell’s grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls
XtRemoveGrab.

. Sets popup_shell’s popped_up field to False.

. Calls the callback procedures on the shell’s popdown_callback list, specifying a pointer to
the value of the shell’s grab_kind field as the call_data argument.

100

X Toolkit Intrinsics X11 Release 6.4

To pop down a pop-up from a callback list, you may use the callback XtCallbackPopdown.

void XtCallbackPopdown(w, client_data, call_data)
Widget w;
XtPointer client_data,
XtPointer call_data;

w Specifies the widget.
client_data Specifies a pointer to the XtPopdownID structure.

call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackPopdown function casts the client_data parameter to a pointer of type XtPop-
downlD.

typedef struct {
Widget shell_widget;
Widget enable_widget;
} XtPopdownIDRec, *XtPopdownlID;

The shell_widget is the pop-up shell to pop down, and the enable_widget is usually the widget
that was used to pop it up in one of the pop-up callback convenience procedures.

XtCallbackPopdown calls XtPopdown with the specified shell_widget and then calls XtSet-
Sensitive to resensitize enable_widget.

Within a translation table, to pop down a spring-loaded menu when a key or pointer button is
released or when the pointer is moved into a widget, use XtMenuPopdown or its synonym,
MenuPopdown. From a translation writer’s point of view, the definition for this translation
action is

void XtMenuPopdown(shell_name)
String shell_name;

shell_name Specifies the name of the shell widget to pop down.

If a shell name is not given, XtMenuPopdown calls XtPopdown with the widget for which the
translation is specified. If shell_name is specified in the translation table, XtMenuPopdown tries
to find the shell by looking up the widget tree starting at the widget in which it is invoked. If it
finds a shell with the specified name in the pop-up children of that widget, it pops down the shell;
otherwise, it moves up the parent chain to find a pop-up child with the specified name. If
XtMenuPopdown gets to the application top-level shell widget and cannot find a matching shell,
it generates a warning and returns immediately.

101

X Toolkit Intrinsics X11 Release 6.4

Chapter 6

Geometry Management

A widget does not directly control its size and location; rather, its parent is responsible for con-
trolling them. Although the position of children is usually left up to their parent, the widgets
themselves often have the best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its parent,
the Intrinsics provide the geometry management mechanism. Almost all composite widgets have
a geometry manager specified in the geometry_manager field in the widget class record that is
responsible for the size, position, and stacking order of the widget’s children. The only exception
is fixed boxes, which create their children themselves and can ensure that their children will never
make a geometry request.

6.1. Initiating Geometry Changes

Parents, children, and clients each initiate geometry changes differently. Because a parent has
absolute control of its children’s geometry, it changes the geometry directly by calling
XtMoveWidget, XtResizeWidget, or XtConfigureWidget. A child must ask its parent for a
geometry change by calling XtMakeGeometryRequest or XtMakeResizeRequest. An appli-
cation or other client code initiates a geometry change by calling XtSetValues on the appropriate
geometry fields, thereby giving the widget the opportunity to modify or reject the client request
before it gets propagated to the parent and the opportunity to respond appropriately to the parent’s
reply.

When a widget that needs to change its size, position, border width, or stacking depth asks its par-
ent’s geometry manager to make the desired changes, the geometry manager can allow the
request, disallow the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager
may also rearrange and resize any or all of the other children that it controls. The geometry man-
ager can move children around freely using XtMoveWidget. When it resizes a child (that is,
changes the width, height, or border width) other than the one making the request, it should do so
by calling XtResizeWidget. The requesting child may be given special treatment; see Section
6.5. It can simultaneously move and resize a child with a single call to XtConfigureWidget.

Often, geometry managers find that they can satisfy a request only if they can reconfigure a wid-
get that they are not in control of; in particular, the composite widget may want to change its own
size. In this case, the geometry manager makes a request to its parent’s geometry manager.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation, windows
are not actually allocated to widgets at application startup until all widgets are satisfied with their
geometry; see Sections 2.5 and 2.6.

102

X Toolkit Intrinsics X11 Release 6.4

Notes

1. The Intrinsics treatment of stacking requests is deficient in several areas.
Stacking requests for unrealized widgets are granted but will have no effect. In
addition, there is no way to do an XtSetValues that will generate a stacking
geometry request.

2. After a successful geometry request (one that returned XtGeometryYes), a
widget does not know whether its resize procedure has been called. Widgets
should have resize procedures that can be called more than once without ill
effects.

6.2. General Geometry Manager Requests
When making a geometry request, the child specifies an XtWidgetGeometry structure.

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

To make a general geometry manager request from a widget, use XtMakeGeometryRequest.

XtGeometryResult XtMakeGeometryRequest(w, request, reply_return)
Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *reply_return;

w Specifies the widget making the request. Must be of class RectObj or any sub-
class thereof.

request Specifies the desired widget geometry (size, position, border width, and stacking
order).

reply_return Returns the allowed widget size, or may be NULL if the requesting widget is not
interested in handling XtGeometryAlmost.

Depending on the condition, XtMakeGeometryRequest performs the following:

. If the widget is unmanaged or the widget’s parent is not realized, it makes the changes and
returns XtGeometryYes.

. If the parent’s class is not a subclass of compositeWidgetClass or the parent’s geome-
try_manager field is NULL, it issues an error.

103

X Toolkit Intrinsics X11 Release 6.4

. If the widget’s being_destroyed field is True, it returns XtGeometryNo.

. If the widget x, y, width, height, and border_width fields are all equal to the requested val-
ues, it returns XtGeometryYes; otherwise, it calls the parent’s geometry_manager proce-
dure with the given parameters.

. If the parent’s geometry manager returns XtGeometryYes and if XtCWQueryOnly is not
set in request->request_mode and if the widget is realized, XtMakeGeometryRequest
calls the XConfigureWindow Xlib function to reconfigure the widget’s window (set its
size, location, and stacking order as appropriate).

. If the geometry manager returns XtGeometryDone, the change has been approved and
actually has been done. In this case, XtMakeGeometryRequest does no configuring and
returns XtGeometryYes. XtMakeGeometryRequest never returns XtGeometryDone.

. Otherwise, XtMakeGeometryRequest just returns the resulting value from the parent’s
geometry manager.

Children of primitive widgets are always unmanaged; therefore, XtMakeGeometryRequest
always returns XtGeometryYes when called by a child of a primitive widget.

The return codes from geometry managers are

typedef enum {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

The request_mode definitions are from <X11/X.h>.

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

The Intrinsics also support the following value.

#define XtCWQueryOnly (1<<7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to what
would happen if this geometry request were made and that no widgets should actually be
changed.

XtMakeGeometryRequest, like the XConfigureWindow Xlib function, uses request_mode to
determine which fields in the XtWidgetGeometry structure the caller wants to specify.

104

X Toolkit Intrinsics X11 Release 6.4

The stack_mode definitions are from <X11/X.h>:

#define Above 0
#define Below 1
#define TopIf 2
#define BottomIf 3
#define Opposite 4
The Intrinsics also support the following value.

#define XtSMDontChange 5

For definition and behavior of Above, Below, Toplf, BottomlIf, and Opposite, see Section 3.7
in Xlib — C Language X Interface. XtSMDontChange indicates that the widget wants its cur-
rent stacking order preserved.

6.3. Resize Requests

To make a simple resize request from a widget, you can use XtMakeResizeRequest as an alter-
native to XtMakeGeometryRequest.

XtGeometryResult XtMakeResizeRequest(w, width, height, width_return, height_return)
Widget w;
Dimension width, height;
Dimension *width_return, *height_return;

w Specifies the widget making the request. Must be of class RectObj or any sub-
class thereof.

width Specify the desired widget width and height.

height

width_return Return the allowed widget width and height.
height_return

The XtMakeResizeRequest function, a simple interface to XtMakeGeometryRequest, creates
an XtWidgetGeometry structure and specifies that width and height should change by setting
request_mode to CWWidth | CWHeight. The geometry manager is free to modify any of the
other window attributes (position or stacking order) to satisfy the resize request. If the return
value is XtGeometryAlmost, width_return and height_return contain a compromise width and
height. If these are acceptable, the widget should immediately call XtMakeResizeRequest again
and request that the compromise width and height be applied. If the widget is not interested in
XtGeometryAlmost replies, it can pass NULL for width_return and height_return.

105

X Toolkit Intrinsics X11 Release 6.4

6.4. Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child without first
making a geometry request to the widget’s own parent (the original requestor’s grandparent). If
the request to the grandparent would allow the parent to satisfy the original request, the geometry
manager can make the intermediate geometry request as if it were the originator. On the other
hand, if the geometry manager already has determined that the original request cannot be com-
pletely satisfied (for example, if it always denies position changes), it needs to tell the grandparent
to respond to the intermediate request without actually changing the geometry because it does not
know if the child will accept the compromise. To accomplish this, the geometry manager uses
XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough information to
exactly reconstruct the intermediate request. If the grandparent’s response to the intermediate
query was XtGeometryAlmost, the geometry manager needs to cache the entire reply geometry
in the event the child accepts the parent’s compromise.

If the grandparent’s response was XtGeometryAlmost, it may also be necessary to cache the
entire reply geometry from the grandparent when XtCWQueryOnly is not used. If the geometry
manager is still able to satisfy the original request, it may immediately accept the grandparent’s
compromise and then act on the child’s request. If the grandparent’s compromise geometry is
insufficient to allow the child’s request and if the geometry manager is willing to offer a different
compromise to the child, the grandparent’s compromise should not be accepted until the child has
accepted the new compromise.

Note that a compromise geometry returned with XtGeometryAlmost is guaranteed only for the
next call to the same widget; therefore, a cache of size 1 is sufficient.

6.5. Child Geometry Management: The geometry_manager Procedure

The geometry_manager procedure pointer in a composite widget class is of type XtGeometry-
Handler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widget w;
XtWidgetGeometry *request;
XtWidgetGeometry *geometry_return;

w Passes the widget making the request.

request Passes the new geometry the child desires.

geometry_return Passes a geometry structure in which the geometry manager may store a com-
promise.

A class can inherit its superclass’s geometry manager during class initialization.

A bit set to zero in the request’s request_mode field means that the child widget does not care
about the value of the corresponding field, so the geometry manager can change this field as it
wishes. A bit set to 1 means that the child wants that geometry element set to the value in the
corresponding field.

If the geometry