
RFC 9622
An Abstract Application Programming Interface
(API) for Transport Services

Abstract
This document describes an abstract Application Programming Interface (API) to the transport
layer that enables the selection of transport protocols and network paths dynamically at
runtime. This API enables faster deployment of new protocols and protocol features without
requiring changes to the applications. The specified API follows the Transport Services
Architecture by providing asynchronous, atomic transmission of Messages. It is intended to
replace the BSD Socket API as the common interface to the transport layer, in an environment
where endpoints could select from multiple network paths and potential transport protocols.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9622
Standards Track
January 2025
2070-1721
B. Trammell, Ed.
Google Switzerland GmbH

M. Welzl, Ed.
University of Oslo

R. Enghardt
Netflix

G. Fairhurst
University of Aberdeen

M. Kühlewind
Ericsson

C. S. Perkins
University of Glasgow

P.S. Tiesel
SAP SE

T. Pauly
Apple Inc.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9622

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

Trammell, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9622
https://www.rfc-editor.org/info/rfc9622

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology and Notation

1.2. Specification of Requirements

2. Overview of the API Design

3. API Summary

3.1. Usage Examples

3.1.1. Server Example

3.1.2. Client Example

3.1.3. Peer Example

4. Transport Properties

4.1. Transport Property Names

4.2. Transport Property Types

5. Scope of the API Definition

6. Preestablishment Phase

6.1. Specifying Endpoints

6.1.1. Using Multicast Endpoints

6.1.2. Constraining Interfaces for Endpoints

6.1.3. Protocol-Specific Endpoints

6.1.4. Endpoint Examples

6.1.5. Multicast Examples

6.2. Specifying Transport Properties

6.2.1. Reliable Data Transfer (Connection)

6.2.2. Preservation of Message Boundaries

6.2.3. Configure Per-Message Reliability

6

6

8

8

9

9

10

10

11

13

14

14

15

15

16

18

19

20

20

21

23

26

26

26

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

6.2.4. Preservation of Data Ordering

6.2.5. Use 0-RTT Session Establishment with a Safely Replayable Message

6.2.6. Multistream Connections in a Group

6.2.7. Full Checksum Coverage on Sending

6.2.8. Full Checksum Coverage on Receiving

6.2.9. Congestion Control

6.2.10. Keep-Alive Packets

6.2.11. Interface Instance or Type

6.2.12. Provisioning Domain Instance or Type

6.2.13. Use Temporary Local Address

6.2.14. Multipath Transport

6.2.15. Advertisement of Alternative Addresses

6.2.16. Direction of Communication

6.2.17. Notification of ICMP Soft Error Message Arrival

6.2.18. Initiating Side Is Not the First to Write

6.3. Specifying Security Parameters and Callbacks

6.3.1. Allowed Security Protocols

6.3.2. Certificate Bundles

6.3.3. Pinned Server Certificate

6.3.4. Application-Layer Protocol Negotiation

6.3.5. Groups, Ciphersuites, and Signature Algorithms

6.3.6. Session Cache Options

6.3.7. Pre-Shared Key

6.3.8. Connection Establishment Callbacks

7. Establishing Connections

7.1. Active Open: Initiate

7.2. Passive Open: Listen

7.3. Peer-to-Peer Establishment: Rendezvous

7.4. Connection Groups

7.5. Adding and Removing Endpoints on a Connection

26

27

27

27

27

28

28

28

29

30

30

31

31

32

32

33

34

34

35

35

35

36

36

36

37

37

38

40

41

43

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 3

8. Managing Connections

8.1. Generic Connection Properties

8.1.1. Required Minimum Corruption Protection Coverage for Receiving

8.1.2. Connection Priority

8.1.3. Timeout for Aborting Connection

8.1.4. Timeout for Keep-Alive Packets

8.1.5. Connection Group Transmission Scheduler

8.1.6. Capacity Profile

8.1.7. Policy for Using Multipath Transports

8.1.8. Bounds on Send or Receive Rate

8.1.9. Group Connection Limit

8.1.10. Isolate Session

8.1.11. Read-Only Connection Properties

8.2. TCP-Specific Properties: User Timeout Option (UTO)

8.2.1. Advertised User Timeout

8.2.2. User Timeout Enabled

8.2.3. Timeout Changeable

8.3. Connection Lifecycle Events

8.3.1. Soft Errors

8.3.2. Path Change

9. Data Transfer

9.1. Messages and Framers

9.1.1. Message Contexts

9.1.2. Message Framers

9.1.3. Message Properties

9.2. Sending Data

9.2.1. Basic Sending

9.2.2. Send Events

9.2.3. Partial Sends

9.2.4. Batching Sends

44

45

45

46

46

46

47

47

48

49

49

50

50

51

52

52

52

52

53

53

53

53

53

54

56

61

62

62

63

64

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 4

9.2.5. Send on Active Open: InitiateWithSend

9.2.6. Priority and the Transport Services API

9.3. Receiving Data

9.3.1. Enqueuing Receives

9.3.2. Receive Events

9.3.3. Receive Message Properties

10. Connection Termination

11. Connection State and Ordering of Operations and Events

12. IANA Considerations

13. Privacy and Security Considerations

14. References

14.1. Normative References

14.2. Informative References

Appendix A. Implementation Mapping

A.1. Types

A.2. Events and Errors

A.3. Time Duration

Appendix B. Convenience Functions

B.1. Adding Preference Properties

B.2. Transport Property Profiles

B.2.1. reliable-inorder-stream

B.2.2. reliable-message

B.2.3. unreliable-datagram

Appendix C. Relationship to the Minimal Set of Transport Services for End Systems

Acknowledgements

Authors' Addresses

64

65

65

65

66

68

69

71

72

72

74

74

74

78

78

78

79

79

79

79

79

80

80

81

83

83

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 5

1. Introduction
This document specifies an abstract Application Programming Interface (API) that describes the
interface component of the high-level Transport Services Architecture defined in . A
Transport Services System supports asynchronous, atomic transmission of Messages over
transport protocols and network paths dynamically selected at runtime, in environments where
an endpoint selects from multiple network paths and potential transport protocols.

Applications that adopt this API will benefit from a wide set of transport features that can evolve
over time. This protocol-independent API ensures that the system providing the API can optimize
its behavior based on the application requirements and network conditions, without requiring
changes to the applications. This flexibility enables faster deployment of new features and
protocols and can support applications by offering racing and fallback mechanisms, which
otherwise need to be separately implemented in each application. Transport Services
Implementations are free to take any desired form as long as the API specification in this
document is honored; a non-prescriptive guide to implementing a Transport Services System is
available (see).

The Transport Services System derives specific path and Protocol Selection Properties and
supported transport features from the analysis provided in , , and .
The Transport Services API enables an implementation to dynamically choose a transport
protocol rather than statically binding applications to a protocol at compile time. The Transport
Services API also provides applications with a way to override transport selection and instantiate
a specific stack, e.g., to support servers wishing to listen to a specific protocol. However, forcing a
choice to use a specific Protocol Stack is discouraged for general use because it can reduce
portability.

[RFC9621]

[RFC9623]

[RFC8095] [RFC8923] [RFC8922]

1.1. Terminology and Notation
The Transport Services API is described in terms of:

Objects with which an application can interact;
Actions the application can perform on these objects;
Events, which an object can send to an application to be processed asynchronously; and
Parameters associated with these actions and events.

The following notations, which can be combined, are used in this document:

An action that creates an object:

An action that creates an array of objects:

•
•
•
•

•

 Object := Action()

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 6

Boolean:

Integer:

Numeric:

String:

IP Address:

Enumeration:

Tuple:

An action that is performed on an object:

An object sends an event:

An action takes a set of parameters; an event contains a set of parameters. Action and event
parameters whose names are suffixed with a question mark are optional:

Objects that are passed as parameters to actions use call-by-value behavior. Actions not
associated with an object are actions on the API; they are equivalent to actions on a per-
application global context.

Events are sent to the application or application-supplied code (e.g., Framers; see Section 9.1.2)
for processing; the details of event interfaces are specific to the platform or implementation and
can be implemented using other forms of asynchronous processing, as idiomatic for the
implementing platform.

We also make use of the following basic types:

Instances take the value true or false.

Instances take integer values.

Instances take real number values.

Instances are represented in UTF-8.

An IPv4 address or IPv6 address .

A family of types in which each instance takes one of a fixed, predefined set of
values specific to a given enumerated type.

An ordered grouping of multiple value types, represented as a comma-separated list in
parentheses, e.g., (Enumeration, Preference). Instances take a sequence of values, each
valid for the corresponding value type.

 []Object := Action()

•

 Object.Action()

•

 Object -> Event<>

•

 Action(param0, param1?, ...)
 Event<param0, param1?, ...>

[RFC791] [RFC4291]

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 7

Array:

Set:

Denoted []Type, an instance takes a value for each of zero or more elements in a
sequence of the given Type. An array can be of fixed or variable length.

An unordered grouping of one or more different values of the same type.

For guidance on how these abstract concepts can be implemented in languages in accordance
with language-specific design patterns and platform features, see Appendix A.

1.2. Specification of Requirements
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Overview of the API Design
The design of the API specified in this document is based on a set of principles, themselves an
elaboration on the architectural design principles defined in . The API defined in this
document provides:

A Transport Services System that can offer a variety of transport protocols, independent of
the Protocol Stacks that will be used at runtime. To the degree possible, all common features
of these Protocol Stacks are made available to the application in a transport-independent
way. This enables applications written for a single API to make use of transport protocols in
terms of the features they provide.
A unified API to datagram and stream-oriented transports, allowing the use of a common API
for Connection establishment and closing.
Message-orientation, as opposed to stream-orientation, using application-assisted framing
and deframing where the underlying transport does not itself provide the required framing.
Asynchronous Connection establishment, transmission, and reception. This allows
concurrent operations during establishment and event-driven application interactions with
the transport layer.
Selection between alternate network paths, using additional information about the networks
over which a Connection can operate (e.g., Provisioning Domain (PvD) information

) where available.
Explicit support for transport-specific features to be applied, when that particular transport
is part of a chosen Protocol Stack.
Explicit support for security properties as first-order transport features.
Explicit support for configuration of cryptographic identities and transport Security
Parameters persistent across multiple Connections.
Explicit support for multistreaming and multipath transport protocols, and the grouping of
related Connections into Connection Groups through "cloning" of Connections (see Section
7.4). This function allows applications to take full advantage of new transport protocols
supporting these features.

[RFC9621]

•

•

•

•

•

[RFC7556]
•

•
•

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 8

3. API Summary
An application primarily interacts with this API through two objects: Preconnections and
Connections. A Preconnection object (Section 6) represents a set of Properties and constraints on
the selection and configuration of paths and protocols to establish a Connection with an
Endpoint. A Connection object represents an instance of a transport Protocol Stack on which data
can be sent to and/or received from a Remote Endpoint (i.e., a logical connection that, depending
on the kind of transport, can be bidirectional or unidirectional, and that can use a stream
protocol or a datagram protocol). Connections are presented consistently to the application,
irrespective of whether the underlying transport is connectionless or connection oriented.
Connections can be created from Preconnections in three ways:

initiating the Preconnection (i.e., creating a Connection from the Preconnection, actively
opening, as in a client; see Initiate in Section 7.1),
listening on the Preconnection (i.e., creating a Listener based on the Preconnection, passively
opening, as in a server; see Listen in Section 7.2), or
a rendezvous for the Preconnection (i.e., peer-to-peer Connection establishment; see
Rendezvous in Section 7.3).

Once a Connection is established, data can be sent and received on it in the form of Messages.
The API supports the preservation of Message boundaries via both explicit Protocol Stack
support and application support through a Message Framer that finds Message boundaries in a
stream. Messages are received asynchronously through event handlers registered by the
application. Errors and other notifications also happen asynchronously on the Connection. It is
not necessary for an application to handle all events; some events can have implementation-
specific default handlers.

The application assume that ignoring events (e.g., errors) is always safe.

•

•

•

SHOULD NOT

3.1. Usage Examples
The following usage examples illustrate how an application might use the Transport Services API
to act as:

a server, by listening for incoming Connections, receiving requests, and sending responses;
see Section 3.1.1.
a client, by connecting to a Remote Endpoint using Initiate, sending requests, and
receiving responses; see Section 3.1.2.
a peer, by connecting to a Remote Endpoint using Rendezvous while simultaneously waiting
for incoming Connections, sending Messages, and receiving Messages; see Section 3.1.3.

The examples in this section presume that a transport protocol is available between the Local
and Remote Endpoints and that this protocol provides reliable data transfer, preservation of data
ordering, and preservation of Message boundaries. In this case, the application can choose to
receive only complete Messages.

•

•

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 9

If none of the available transport protocols provide preservation of Message boundaries, but
there is a transport protocol that provides a reliable ordered byte-stream, an application could
receive this byte-stream as partial Messages and transform it into application-layer Messages.
Alternatively, an application might provide a Message Framer, which can transform a sequence
of Messages into a byte-stream and vice versa (Section 9.1.2).

3.1.1. Server Example

This is an example of how an application might listen for incoming Connections using the
Transport Services API, receive a request, and send a response.

LocalSpecifier := NewLocalEndpoint()
LocalSpecifier.WithInterface("any")
LocalSpecifier.WithService("https")

TransportProperties := NewTransportProperties()
TransportProperties.Require(preserveMsgBoundaries)
// Reliable data transfer and preserve order are required by default

SecurityParameters := NewSecurityParameters()
SecurityParameters.Set(serverCertificate, myCertificate)

// Specifying a Remote Endpoint is optional when using Listen
Preconnection := NewPreconnection(LocalSpecifier,
 TransportProperties,
 SecurityParameters)

Listener := Preconnection.Listen()

Listener -> ConnectionReceived<Connection>

// Only receive complete messages in a Conn.Received handler
Connection.Receive()

Connection -> Received<messageDataRequest, messageContext>

//---- Receive event handler begin ----
Connection.Send(messageDataResponse)
Connection.Close()

// Stop listening for incoming Connections
// (this example supports only one Connection)
Listener.Stop()
//---- Receive event handler end ----

3.1.2. Client Example

This is an example of how an application might open two Connections to a remote application
using the Transport Services API, send a request, and receive a response for each of the two
Connections. The code designated with comments as "Ready event handler" could, for example,
be implemented as a callback function. This function would receive the Connection that it
expects to operate on ("Connection" and "Connection2" in the example) handed over using the
variable name "C".

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 10

A Preconnection serves as a template for creating a Connection via initiating, listening, or via
rendezvous. Once a Connection has been created, changes made to the Preconnection that was
used to create it do not affect this Connection. Preconnections are reusable after being used to
create a Connection, whether or not this Connection was closed. Hence, in the above example, it
would be correct for the client to initiate a third Connection to the example.com server by
continuing as follows:

RemoteSpecifier := NewRemoteEndpoint()
RemoteSpecifier.WithHostName("example.com")
RemoteSpecifier.WithService("https")

TransportProperties := NewTransportProperties()
TransportProperties.Require(preserve-msg-boundaries)
// Reliable data transfer and preserve order are required by default

SecurityParameters := NewSecurityParameters()
TrustCallback := NewCallback({
 // Verify the identity of the Remote Endpoint and return the result
})
SecurityParameters.SetTrustVerificationCallback(TrustCallback)

// Specifying a Local Endpoint is optional when using Initiate
Preconnection := NewPreconnection(RemoteSpecifier,
 TransportProperties,
 SecurityParameters)

Connection := Preconnection.Initiate()
Connection2 := Connection.Clone()

Connection -> Ready<>
Connection2 -> Ready<>

//---- Ready event handler for any Connection C begin ----
C.Send(messageDataRequest)

// Only receive complete messages
C.Receive()
//---- Ready event handler for any Connection C end ----

Connection -> Received<messageDataResponse, messageContext>
Connection2 -> Received<messageDataResponse, messageContext>

// Close the Connection in a Receive event handler
Connection.Close()
Connection2.Close()

//.. carry out adjustments to the Preconnection, if desired
Connection3 := Preconnection.Initiate()

3.1.3. Peer Example

This is an example of how an application might establish a Connection with a peer using
Rendezvous, send a Message, and receive a Message.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 11

// Configure local candidates: a port on the Local Endpoint
// and via a Session Traversal Utilities for NAT (STUN) server
HostCandidate := NewLocalEndpoint()
HostCandidate.WithPort(9876)

StunCandidate := NewLocalEndpoint()
StunCandidate.WithStunServer(address, port, credentials)

LocalCandidates = [HostCandidate, StunCandidate]

TransportProperties := // ...Configure transport properties
SecurityParameters := // ...Configure security properties

Preconnection := NewPreconnection(LocalCandidates,
 [], // No remote candidates yet
 TransportProperties,
 SecurityParameters)

// Resolve the LocalCandidates. The Preconnection.Resolve()
// call resolves both local and remote candidates; however,
// because the remote candidates have not yet been specified,
// the ResolvedRemote list returned will be empty and is not
// used.
ResolvedLocal, ResolvedRemote = Preconnection.Resolve()

// Application-specific code goes here to send the ResolvedLocal
// list to the peer via some out-of-band signaling channel (e.g.,
// in a SIP message).
...

// Application-specific code goes here to receive RemoteCandidates
// (type []RemoteEndpoint, a list of RemoteEndpoint objects) from
// the peer via the signaling channel.
...

// Add remote candidates and initiate the rendezvous:
Preconnection.AddRemote(RemoteCandidates)
Preconnection.Rendezvous()

Preconnection -> RendezvousDone<Connection>

//---- RendezvousDone event handler begin ----
Connection.Send(messageDataRequest)
Connection.Receive()
//---- RendezvousDone event handler end ----

Connection -> Received<messageDataResponse, messageContext>

// If new Remote Endpoint candidates are received from the
// peer over the signaling channel -- for example, if using
// Trickle Interactive Connectivity Establishment (ICE) --
// then add them to the Connection:
Connection.AddRemote(NewRemoteCandidates)

// On a PathChange event, resolve the Local Endpoint Identifiers to
// see if a new Local Endpoint has become available and, if
// so, send to the peer as a new candidate and add to the

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 12

// Connection:
Connection -> PathChange<>

//---- PathChange event handler begin ----
ResolvedLocal, ResolvedRemote = Preconnection.Resolve()
if ResolvedLocal has changed:
 // Application-specific code goes here to send the
 // ResolvedLocal list to the peer via the signaling channel
 ...

 // Add the new Local Endpoints to the Connection:
 Connection.AddLocal(ResolvedLocal)
//---- PathChange event handler end ----

// Close the Connection in a Receive event handler:
Connection.Close()

4. Transport Properties
Each application using the Transport Services API declares its preferences for how the Transport
Services System is to operate. This is done by using Transport Properties, as defined in ,
at each stage of the lifetime of a Connection.

Transport Properties are divided into Selection, Connection, and Message Properties.

Selection Properties (see Section 6.2) can only be set during preestablishment. They are only used
to specify which paths and Protocol Stacks can be used and are preferred by the application.
Calling Initiate on a Preconnection creates an outbound Connection, and the Selection
Properties remain readable from the Connection but become immutable. Selection Properties
can be set on Preconnections, and the effect of Selection Properties can be queried on
Connections and Messages.

Connection Properties (see Section 8.1) are used to inform decisions made during establishment
and to fine-tune the established Connection. They can be set during preestablishment and can be
changed later. Connection Properties can be set on Connections and Preconnections; when set on
Preconnections, they act as an initial default for the resulting Connections.

Message Properties (see Section 9.1.3) control the behavior of the selected Protocol Stack(s) when
sending Messages. Message Properties can be set on Messages, Connections, and Preconnections;
when set on the latter two, they act as an initial default for the Messages sent over those
Connections.

Note that configuring Connection Properties and Message Properties on Preconnections is
preferred over setting them later. Early specification of Connection Properties allows their use as
additional input to the selection process. Protocol-specific Properties, which enable configuration
of specialized features of a specific protocol (see), are not used as input
to the selection process; they only support configuration if the respective protocol has been
selected.

[RFC9621]

Section 3.2 of [RFC9621]

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc9621#section-3.2

4.1. Transport Property Names
Transport Properties are referred to by names, represented as case-insensitive strings. These
names serve two purposes:

Allowing different components of a Transport Services Implementation to pass Transport
Properties (e.g., between a language frontend and a policy manager) or to enable a Transport
Services Implementation to represent Properties retrieved from a file or other storage to the
application.
Making the code of different Transport Services Implementations look similar. While
individual programming languages might preclude strict adherence to the naming
convention of representing Property names as case-insensitive strings (for instance, by
prohibiting the use of hyphens in symbols), users interacting with multiple implementations
will still benefit from the consistency resulting from the use of visually similar symbols.

Transport Property names are hierarchically organized in the form
[<Namespace>.]<PropertyName>.

The optional Namespace component and its trailing dot character (".") be omitted for
well-known generic Properties, i.e., for Properties that are not specific to a protocol.
Protocol-specific Properties use the protocol acronym as the Namespace (e.g., a
Connection that uses TCP could support a TCP-specific Transport Property, such as the TCP
User Timeout value, in a Protocol-specific Property called tcp.userTimeoutValue (see
Section 8.2)).
Vendor-specific or implementation-specific Properties be placed in a Namespace
starting with the underscore character ("_") and use a string identifying the vendor
or implementation.
For IETF protocols, the name of a Protocol-specific Property be specified in an RFC
from the IETF Stream (after IETF Review). An IETF protocol Namespace does not
start with an underscore character ("_").

Namespaces for each of the keywords provided in the "Protocol Numbers" registry (see
) are reserved for Protocol-specific Properties and

 be used for vendor-specific or implementation-specific Properties. Terms listed as
keywords, as in the "Protocol Numbers" registry, be avoided as any part of a vendor-
specific or implementation-specific Property name.

Though Transport Property names are case insensitive, it is recommended to use camelCase to
improve readability. Implementations may transpose Transport Property names into snake_case
or PascalCase to blend into the language environment.

•

•

• MUST

• MUST

• MUST
SHOULD

• MUST
[RFC8126]

<https://
www.iana.org/assignments/protocol-numbers/>
MUST NOT

SHOULD

4.2. Transport Property Types
Each Transport Property has one of the basic types described in Section 1.1.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 14

https://www.iana.org/assignments/protocol-numbers/
https://www.iana.org/assignments/protocol-numbers/

Most Selection Properties (see Section 6.2) are of the Enumeration type, and they use the
Preference Enumeration, which takes one of five possible values (Prohibit, Avoid, No
Preference, Prefer, or Require) denoting the level of preference for a given Property during
protocol selection.

5. Scope of the API Definition
This document defines a language- and platform-independent API of a Transport Services
System. Given the wide variety of languages and language conventions used to write applications
that use the transport layer to connect to other applications over the Internet, this independence
makes this API necessarily abstract.

There is no interoperability benefit in tightly defining how the API is presented to application
programmers across diverse platforms. However, maintaining the "shape" of the abstract API
across different platforms reduces the effort for programmers who learn to use the Transport
Services API to then apply their knowledge to another platform. That said, implementations have
significant freedom in presenting this API to programmers, balancing the conventions of the
protocol with the shape of the API. We make the following recommendations:

Actions, events, and errors in implementations of the Transport Services API use the
names assigned to them in this document, subject to capitalization, punctuation, and other
typographic conventions in the language of the implementation, unless the implementation
itself uses different names for substantially equivalent objects for networking by convention.
Transport Services Systems implement each Selection Property, Connection
Property, and MessageContext Property specified in this document. These features
be implemented even when, in a specific implementation, it will always result in no
operation, e.g., there is no action when the API specifies a Property that is not available in a
transport protocol implemented on a specific platform. For example, if TCP is the only
underlying transport protocol, the Message Property msgOrdered can be implemented
(trivially, as a no-op) as disabling the requirement for ordering will not have any effect on
delivery order for Connections over TCP. Similarly, the msgLifetime Message Property can
be implemented but ignored, as the description of this Property (Section 9.1.3.1) states that "it
is not guaranteed that a Message will not be sent when its Lifetime has expired".
Implementations can use other representations for Transport Property names, e.g., by
providing constants, but should provide a straightforward mapping between their
representation and the Property names specified here.

• SHOULD

• SHOULD
SHOULD

•

6. Preestablishment Phase
The preestablishment phase allows applications to specify Properties for the Connections that
they are about to make or to query the API about potential Connections they could make.

A Preconnection object represents a potential Connection. It is a passive object (a data structure)
that merely maintains the state that describes the Properties of a Connection that might exist in
the future. This state comprises Local Endpoint and Remote Endpoint objects that denote the

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 15

Endpoints of the potential Connection (see Section 6.1), the Selection Properties (see Section 6.2),
any preconfigured Connection Properties (Section 8.1), and the Security Parameters (see Section
6.3):

At least one Local Endpoint be specified if the Preconnection is used to Listen for
incoming Connections, but the list of Local Endpoints be empty if the Preconnection is used
to Initiate connections. If no Local Endpoint is specified, the Transport Services System will
assign an ephemeral local port to the Connection on the appropriate interface(s). At least one
Remote Endpoint be specified if the Preconnection is used to Initiate Connections, but
the list of Remote Endpoints be empty if the Preconnection is used to Listen for incoming
Connections. At least one Local Endpoint and one Remote Endpoint be specified if a peer-
to-peer Rendezvous is to occur based on the Preconnection.

If more than one Local Endpoint is specified on a Preconnection, then the application is
indicating that all of the Local Endpoints are eligible to be used for Connections. For example,
their Endpoint Identifiers might correspond to different interfaces on a multihomed host or their
Endpoint Identifiers might correspond to local interfaces and a STUN server that can be resolved
to a server-reflexive address for a Preconnection used to make a peer-to-peer Rendezvous.

If more than one Remote Endpoint is specified on the Preconnection, the application is indicating
that it expects all of the Remote Endpoints to offer an equivalent service and that the Transport
Services System can choose any of them for a Connection. For example, a Remote Endpoint might
represent various network interfaces of a host, or a server-reflexive address that can be used to
reach a host, or a set of hosts that provide equivalent local balanced service.

In most cases, it is expected that a single Remote Endpoint will be specified by name, and a later
call to Initiate on the Preconnection (see Section 7.1) will internally resolve that name to a list
of concrete Endpoint Identifiers. Specifying multiple Remote Endpoints on a Preconnection
allows applications to override this for more detailed control.

If Message Framers are used (see Section 9.1.2), they be added to the Preconnection during
preestablishment.

 Preconnection := NewPreconnection([]LocalEndpoint,
 []RemoteEndpoint,
 TransportProperties,
 SecurityParameters)

MUST
MAY

MUST
MAY

MUST

MUST

6.1. Specifying Endpoints
The Transport Services API uses the Local Endpoint and Remote Endpoint objects to refer to the
Endpoints of a Connection. Endpoints can be created as either remote or local:

RemoteSpecifier := NewRemoteEndpoint()
LocalSpecifier := NewLocalEndpoint()

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 16

A single Endpoint object represents the identity of a network host. That Endpoint can be more or
less specific, depending on which Endpoint Identifiers are set. For example, an Endpoint that
only specifies a hostname can, in fact, finally correspond to several different IP addresses on
different hosts.

An Endpoint object can be configured with the following identifiers:

HostName (string):

Port (a 16-bit unsigned Integer):

Service (an identifier string that maps to a port; either a service name associated with a port
number (from) or a DNS
SRV service name to be resolved):

IP address (an IPv4 or IPv6 address type; note that the examples here show the human-
readable form of the IP addresses, but the functions can take a binary encoding of the
addresses):

Interface identifier (which can be a string name or other platform-specific identifier), e.g., to
qualify link-local addresses (see Section 6.1.2 for details):

The Resolve action on a Preconnection can be used to obtain a list of available local interfaces.

Note that an IPv6 address specified with a scope zone ID (e.g., fe80::2001:db8%en0) is
equivalent to WithIPAddress with an unscoped address and WithInterface together.

•

RemoteSpecifier.WithHostName("example.com")

•

RemoteSpecifier.WithPort(443)

•
<https://www.iana.org/assignments/service-names-port-numbers/>

RemoteSpecifier.WithService("https")

•

RemoteSpecifier.WithIPAddress(192.0.2.21)

RemoteSpecifier.WithIPAddress(2001:db8:4920:e29d:a420:7461:7073:a)

•

LocalSpecifier.WithInterface("en0")

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 17

https://www.iana.org/assignments/service-names-port-numbers/

Applications creating Endpoint objects using WithHostName provide Fully Qualified
Domain Names (FQDNs). Not providing an FQDN will result in the Transport Services
Implementation needing to use DNS search domains for name resolution, which might lead to
inconsistent or unpredictable behavior.

The design of the API permit an Endpoint object to be configured with multiple
Endpoint Identifiers of the same type. For example, an Endpoint object cannot specify two IP
addresses. Two separate IP addresses are represented as two Endpoint objects. If a
Preconnection specifies a Remote Endpoint with a specific IP address set, it will only establish
Connections to that IP address. If, on the other hand, a Remote Endpoint specifies a hostname but
no addresses, the Transport Services Implementation can perform name resolution and attempt
using any address derived from the original hostname of the Remote Endpoint. Note that
multiple Remote Endpoints can be added to a Preconnection, as discussed in Section 7.5.

The Transport Services System resolves names internally, when the Initiate, Listen, or
Rendezvous action is called to establish a Connection. Privacy considerations for the timing of
this resolution are given in Section 13.

The Resolve action on a Preconnection can be used by the application to force early binding
when required, for example, with some Network Address Translator (NAT) traversal protocols
(see Section 7.3).

SHOULD

MUST NOT

6.1.1. Using Multicast Endpoints

To use multicast, a Preconnection is first created with the Local or Remote Endpoint Identifier
specifying the Any-Source Multicast (ASM) or Source-Specific Multicast (SSM) group and
destination port number. This is then followed by a call to either Initiate, Listen, or
Rendezvous, depending on whether the resulting Connection is to be used to send Messages to
the multicast group, receive Messages from the group, or both send and receive Messages (as is
the case for an ASM group).

Note that the Transport Services API has separate specifier calls for multicast groups to avoid
introducing filter Properties for single-source multicast and seeks to avoid confusion that can be
caused by overloading the unicast specifiers.

Calling Initiate on that Preconnection creates a Connection that can be used to send Messages
to the multicast group. The Connection object that is created will support Send but not Receive.
Any Connections created this way are send-only and do not join the multicast group. The
resulting Connection will have a Local Endpoint identifying the local interface to which the
Connection is bound and a Remote Endpoint identifying the multicast group.

The following API calls can be used to configure a Preconnection before calling Initiate:

RemoteSpecifier.WithMulticastGroupIP(GroupAddress)
RemoteSpecifier.WithPort(PortNumber)
RemoteSpecifier.WithHopLimit(HopLimit)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 18

Calling Listen on a Preconnection with a multicast group address specified as the Remote
Endpoint Identifier will trigger the Transport Services Implementation to join the multicast
group to receive Messages. This Listener will create one Connection for each Remote Endpoint
sending to the group, with the Local Endpoint Identifier specified as a group address. The set of
Connection objects created forms a Connection Group. The receiving interface can be restricted
by passing it as part of the LocalSpecifier or queried through the MessageContext on the
Messages received (see Section 9.1.1 for further details).

Specifying WithHopLimit sets the Time To Live (TTL) field in the header of IPv4 packets or the
Hop Count field in the header of IPv6 packets.

The following API calls can be used to configure a Preconnection before calling Listen:

Calling Rendezvous on a Preconnection with an ASM group address as the Remote Endpoint
Identifier will trigger the Transport Services Implementation to join the multicast group and also
indicates that the resulting Connection can be used to send Messages to the multicast group. The
Rendezvous action will return both:

a Connection that can be used to send to the group and that acts the same as a Connection
returned by calling Initiate with a multicast Remote Endpoint and
a Listener that acts as if Listen had been called with a multicast Remote Endpoint.

Calling Rendezvous on a Preconnection with an SSM group address as the Local Endpoint
Identifier results in an EstablishmentError.

The following API calls can be used to configure a Preconnection before calling Rendezvous:

See Section 6.1.5 for more examples.

LocalSpecifier.WithSingleSourceMulticastGroupIP(GroupAddress,
 SourceAddress)
LocalSpecifier.WithAnySourceMulticastGroupIP(GroupAddress)
LocalSpecifier.WithPort(PortNumber)

1.

2.

RemoteSpecifier.WithMulticastGroupIP(GroupAddress)
RemoteSpecifier.WithPort(PortNumber)
RemoteSpecifier.WithHopLimit(HopLimit)
LocalSpecifier.WithAnySourceMulticastGroupIP(GroupAddress)
LocalSpecifier.WithPort(PortNumber)
LocalSpecifier.WithHopLimit(HopLimit)

6.1.2. Constraining Interfaces for Endpoints

Note that this API has multiple ways to constrain and prioritize Endpoint candidates based on the
network interface:

Specifying an interface on a Remote Endpoint qualifies the scope zone of the Remote
Endpoint, e.g., for link-local addresses.

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 19

Specifying an interface on a Local Endpoint explicitly binds all candidates derived from this
Endpoint to use the specified interface.
Specifying an interface using the interface Selection Property (Section 6.2.11) or indirectly
via the pvd Selection Property (Section 6.2.12) influences the selection among the available
candidates.

While specifying an interface on an Endpoint restricts the candidates available for Connection
establishment in the preestablishment phase, the Selection Properties prioritize and constrain
the Connection establishment.

•

•

6.1.3. Protocol-Specific Endpoints

An Endpoint can have an alternative definition when using different protocols. For example, a
server that supports both TLS/TCP and QUIC could be accessible on two different port numbers,
depending on which protocol is used.

To scope an Endpoint to apply conditionally to a specific transport protocol (such as defining an
alternate port to use when QUIC is selected, as opposed to TCP), an Endpoint can be associated
with a protocol identifier. Protocol identifiers are objects or Enumeration values provided by the
Transport Services API that will vary based on which protocols are implemented in a particular
system.

The following example shows a case where example.com has a server running on port 443 with
an alternate port of 8443 for QUIC. Both endpoints can be passed when creating a Preconnection.

AlternateRemoteSpecifier.WithProtocol(QUIC)

RemoteSpecifier := NewRemoteEndpoint()
RemoteSpecifier.WithHostName("example.com")
RemoteSpecifier.WithPort(443)

QUICRemoteSpecifier := NewRemoteEndpoint()
QUICRemoteSpecifier.WithHostName("example.com")
QUICRemoteSpecifier.WithPort(8443)
QUICRemoteSpecifier.WithProtocol(QUIC)

RemoteSpecifiers := [RemoteSpecifier, QUICRemoteSpecifier]

6.1.4. Endpoint Examples

The following examples of Endpoints show common usage patterns.

Specify a Remote Endpoint using a hostname example.com and a service name https, which tells
the system to use the default port for HTTPS (443):

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 20

Specify a Remote Endpoint using an IPv6 address and remote port:

Specify a Remote Endpoint using an IPv4 address and remote port:

Specify a Local Endpoint using a local interface name and no local port to let the system assign
an ephemeral local port:

Specify a Local Endpoint using a local interface name and local port:

As an alternative to specifying an interface name for the Local Endpoint, an application can
express more fine-grained preferences using the interface Selection Property; see Section
6.2.11. However, if the application specifies Selection Properties that are inconsistent with the
Local Endpoint, this will result in an error once the application attempts to open a Connection.

Specify a Local Endpoint using a STUN server:

RemoteSpecifier := NewRemoteEndpoint()
RemoteSpecifier.WithHostName("example.com")
RemoteSpecifier.WithService("https")

RemoteSpecifier := NewRemoteEndpoint()
RemoteSpecifier.WithIPAddress(2001:db8:4920:e29d:a420:7461:7073:a)
RemoteSpecifier.WithPort(443)

RemoteSpecifier := NewRemoteEndpoint()
RemoteSpecifier.WithIPAddress(192.0.2.21)
RemoteSpecifier.WithPort(443)

LocalSpecifier := NewLocalEndpoint()
LocalSpecifier.WithInterface("en0")

LocalSpecifier := NewLocalEndpoint()
LocalSpecifier.WithInterface("en0")
LocalSpecifier.WithPort(443)

LocalSpecifier := NewLocalEndpoint()
LocalSpecifier.WithStunServer(address, port, credentials)

6.1.5. Multicast Examples

The following examples show how multicast groups can be used.

Join an ASM group in receive-only mode, bound to a known port on a named local interface:

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 21

Join an SSM group in receive-only mode, bound to a known port on a named local interface:

Create an SSM group as a sender:

 RemoteSpecifier := NewRemoteEndpoint()

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithAnySourceMulticastGroupIP(233.252.0.0)
 LocalSpecifier.WithPort(5353)
 LocalSpecifier.WithInterface("en0")

 TransportProperties := ...
 SecurityParameters := ...

 Preconnection := NewPreconnection(LocalSpecifier,
 RemoteSpecifier,
 TransportProperties,
 SecurityProperties)
 Listener := Preconnection.Listen()

 RemoteSpecifier := NewRemoteEndpoint()

 LocalSpecifier := NewLocalEndpoint()

 LocalSpecifier.WithSingleSourceMulticastGroupIP(233.252.0.0,
 198.51.100.10)
 LocalSpecifier.WithPort(5353)
 LocalSpecifier.WithInterface("en0")

 TransportProperties := ...
 SecurityParameters := ...

 Preconnection := NewPreconnection(LocalSpecifier,
 RemoteSpecifier,
 TransportProperties,
 SecurityProperties)
 Listener := Preconnection.Listen()

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 22

Join an ASM group as both a sender and a receiver:

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithMulticastGroupIP(233.251.240.1)
 RemoteSpecifier.WithPort(5353)
 RemoteSpecifier.WithHopLimit(8)

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithIPAddress(192.0.2.22)
 LocalSpecifier.WithInterface("en0")

 TransportProperties := ...
 SecurityParameters := ...

 Preconnection := NewPreconnection(LocalSpecifier,
 RemoteSpecifier,
 TransportProperties,
 SecurityProperties)
 Connection := Preconnection.Initiate()

 RemoteSpecifier := NewRemoteEndpoint()
 RemoteSpecifier.WithMulticastGroupIP(233.252.0.0)
 RemoteSpecifier.WithPort(5353)
 RemoteSpecifier.WithHopLimit(8)

 LocalSpecifier := NewLocalEndpoint()
 LocalSpecifier.WithAnySourceMulticastGroupIP(233.252.0.0)
 LocalSpecifier.WithIPAddress(192.0.2.22)
 LocalSpecifier.WithPort(5353)
 LocalSpecifier.WithInterface("en0")

 TransportProperties := ...
 SecurityParameters := ...

 Preconnection := NewPreconnection(LocalSpecifier,
 RemoteSpecifier,
 TransportProperties,
 SecurityProperties)
 Connection, Listener := Preconnection.Rendezvous()

6.2. Specifying Transport Properties
A Preconnection object holds Properties reflecting the application's requirements and
preferences for the transport. These include Selection Properties for selecting Protocol Stacks
and paths, as well as Connection Properties and Message Properties for configuration of the
detailed operation of the selected Protocol Stacks on a per-Connection and per-Message level.

The protocol(s) and path(s) selected as candidates during establishment are determined and
configured using these Properties. Since there could be paths over which some transport
protocols are unable to operate, or Remote Endpoints that support only specific network

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 23

addresses or transports, transport protocol selection is necessarily tied to path selection. This
could involve choosing between multiple local interfaces that are connected to different access
networks.

When additional information (such as PvD information) is available about the
networks over which an Endpoint can operate, this can inform the selection between alternate
network paths. Path information can include the Path MTU (PMTU), the set of supported
Differentiated Services Code Points (DSCPs), expected usage, cost, etc. The usage of this
information by the Transport Services System is generally independent of the specific
mechanism or protocol used to receive the information (e.g., zero-conf, DHCP, or IPv6 Router
Advertisements (RAs)).

Most Selection Properties are represented as Preferences, which can take one of five values:

The implementation ensure an outcome that is consistent with all application
requirements expressed using Require and Prohibit. While preferences expressed using
Prefer and Avoid influence protocol and path selection as well, outcomes can vary, even given
the same Selection Properties, because the available protocols and paths can differ across
systems and contexts. However, implementations are to seek to provide a
consistent outcome to an application, when provided with the same set of Selection Properties.

Note that application preferences can conflict with each other. For example, if an application
indicates a preference for a specific path by specifying an interface, but also a preference for a
protocol, a situation might occur in which the preferred protocol is not available on the
preferred path. In such cases, applications can expect Properties that determine path selection to
be prioritized over Properties that determine protocol selection. The Transport Services System

 determine the preferred path first, regardless of protocol preferences. This ordering is
chosen to provide consistency across implementations; this is based on the fact that it is more
common for the use of a given network path to determine cost to the user (i.e., an interface type
preference might be based on a user's preference to avoid being charged more for a cellular data
plan).

[RFC7556]

Preference Effect

Require Select only protocols/paths providing the Property; otherwise, fail

Prefer Prefer protocols/paths providing the Property; otherwise, proceed

No Preference No preference

Avoid Prefer protocols/paths not providing the Property; otherwise, proceed

Prohibit Select only protocols/paths not providing the Property; otherwise, fail

Table 1: Selection Property Preference Levels

MUST

RECOMMENDED

SHOULD

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 24

Selection and Connection Properties, as well as defaults for Message Properties, can be added to
a Preconnection to configure the selection process and to further configure the eventually
selected Protocol Stack(s). They are collected into a TransportProperties object to be passed into a
Preconnection object:

Individual Properties are then set on the TransportProperties object. Setting a Transport
Property to a value overrides the previous value of this Transport Property.

To aid readability, implementations provide additional convenience functions to simplify
the use of Selection Properties: see Appendix B.1 for examples. In addition, implementations
provide a mechanism to create TransportProperties objects that are preconfigured for common
use cases, as outlined in Appendix B.2.

Transport Properties for an established Connection can be queried via the Connection object, as
outlined in Section 8.

A Connection gets its Transport Properties by either being explicitly configured via a
Preconnection, being configured after establishment, or inheriting them from an antecedent via
cloning; see Section 7.4 for more details.

Section 8.1 provides a list of Connection Properties, while Selection Properties are listed in the
subsections below. Selection Properties are only considered during establishment and cannot be
changed after a Connection is established. At this point, Selection Properties can only be read to
check the Properties used by the Connection. Upon reading, the Preference type of a Selection
Property changes into Boolean, where:

true means that the selected Protocol Stack supports the feature or uses the path associated
with the Selection Property, and
false means that the Protocol Stack does not support the feature or use the path.

Implementations of Transport Services Systems could alternatively use the Require and
Prohibit Preference values to represent true and false, respectively. Other types of Selection
Properties remain unchanged when they are made available for reading after a Connection is
established.

An implementation of the Transport Services API needs to provide sensible defaults for Selection
Properties. The default values for each Property below represent a configuration that can be
implemented over TCP. If these default values are used and TCP is not supported by a Transport
Services System, then an application using the default set of Properties might not succeed in
establishing a Connection. Using the same default values for independent Transport Services
Systems can be beneficial when applications are ported between different implementations/

TransportProperties := NewTransportProperties()

TransportProperties.Set(property, value)

MAY
MAY

•

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 25

platforms, even if this default could lead to a Connection failure when TCP is not available. If
default values other than those suggested below are used, it is to clearly
document any differences.

RECOMMENDED

Name:

Type:

Default:

6.2.1. Reliable Data Transfer (Connection)

reliability

Preference

Require

This Property specifies whether the application needs to use a transport protocol that ensures
that all data is received at the Remote Endpoint in order, without loss or duplication. When
reliable data transfer is enabled, this also entails being notified when a Connection is closed or
aborted.

Name:

Type:

Default:

6.2.2. Preservation of Message Boundaries

preserveMsgBoundaries

Preference

No Preference

This Property specifies whether the application needs or prefers to use a transport protocol that
preserves Message boundaries.

Name:

Type:

Default:

6.2.3. Configure Per-Message Reliability

perMsgReliability

Preference

No Preference

This Property specifies whether an application considers it useful to specify different reliability
requirements for individual Messages in a Connection.

Name:

Type:

Default:

6.2.4. Preservation of Data Ordering

preserveOrder

Preference

Require

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 26

This Property specifies whether the application wishes to use a transport protocol that can
ensure that data is received by the application at the Remote Endpoint in the same order as it
was sent.

Name:

Type:

Default:

6.2.5. Use 0-RTT Session Establishment with a Safely Replayable Message

zeroRttMsg

Preference

No Preference

This Property specifies whether an application would like to supply a Message to the transport
protocol before Connection establishment, which will then be reliably transferred to the Remote
Endpoint before or during connection establishment. This Message can potentially be received
multiple times (i.e., multiple copies of the Message data could be passed to the Remote Endpoint).
See also Section 9.1.3.4.

Name:

Type:

Default:

6.2.6. Multistream Connections in a Group

multistreaming

Preference

Prefer

This Property specifies whether the application would prefer multiple Connections within a
Connection Group to be provided by streams of a single underlying transport connection, where
possible.

Name:

Type:

Default:

6.2.7. Full Checksum Coverage on Sending

fullChecksumSend

Preference

Require

This Property specifies the application's need for protection against corruption for all data
transmitted on this Connection. Disabling this Property could enable the application to influence
the sender checksum coverage after Connection establishment (see Section 9.1.3.6).

Name:

Type:

Default:

6.2.8. Full Checksum Coverage on Receiving

fullChecksumRecv

Preference

Require

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 27

This Property specifies the application's need for protection against corruption for all data
received on this Connection. Disabling this Property could enable the application to influence the
required minimum receiver checksum coverage after Connection establishment (see Section
8.1.1).

Name:

Type:

Default:

6.2.9. Congestion Control

congestionControl

Preference

Require

This Property specifies whether or not the application would like the Connection to be congestion
controlled. Note that if a Connection is not congestion controlled, an application using such a
Connection itself perform congestion control in accordance with or use a
circuit breaker in accordance with , whichever is appropriate. Also note that reliability
is usually combined with congestion control in protocol implementations rendering "reliable but
not congestion controlled", a request that is unlikely to succeed. If the Connection is congestion
controlled, performing additional congestion control in the application can have negative
performance implications.

SHOULD [RFC2914]
[RFC8084]

Name:

Type:

Default:

6.2.10. Keep-Alive Packets

keepAlive

Preference

No Preference

This Property specifies whether or not the application would like the Connection to send keep-
alive packets. Note that if a Connection determines that keep-alive packets are being sent, the
application itself avoid generating additional keep-alive Messages. Note that, when
supported, the system will use the default period for generation of the keep-alive packets. (See
also Section 8.1.4.)

SHOULD

Name:

Type:

Default:

6.2.11. Interface Instance or Type

interface

Set of (Preference, Enumeration)

Empty (not setting a Preference for any interface)

This Property allows the application to select any specific network interfaces or categories of
interfaces it wants to Require, Prohibit, Prefer, or Avoid. Note that marking a specific interface
as Require strictly limits path selection to that single interface, and often leads to less flexible
and resilient Connection establishment.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 28

In contrast to other Selection Properties, this Property is a set of tuples of (enumerated) interface
identifier and Preference. It can either be implemented directly as such or be implemented to
make one Preference available for each interface and interface type available on the system.

The set of valid interface types is specific to the implementation or system. For example, on a
mobile device, there could be Wi-Fi and Cellular interface types available; whereas, on a
desktop computer, Wi-Fi and Wired Ethernet interface types might be available. An
implementation should provide all types that are supported on the local system to allow
applications to be written generically. For example, if a single implementation is used on both
mobile devices and desktop devices, it ought to define the Cellular interface type for both
systems, since an application might wish to always prohibit Cellular.

The set of interface types is expected to change over time as new access technologies become
available. The taxonomy of interface types on a given Transport Services System is
implementation specific.

Interface types be treated as a proxy for properties of interfaces, such as metered
or unmetered network access. If an application needs to prohibit metered interfaces, this should
be specified via Provisioning Domain attributes (see Section 6.2.12) or another specific Property.

Note that this Property is not used to specify an interface scope zone for a particular Endpoint.
Section 6.1.2 provides details about how to qualify endpoint candidates on a per-interface basis.

SHOULD NOT

Name:

Type:

Default:

6.2.12. Provisioning Domain Instance or Type

pvd

Set of (Preference, Enumeration)

Empty (not setting a Preference for any PvD)

Similar to interface (see Section 6.2.11), this Property allows the application to control path
selection by selecting which specific PvD or categories of PvDs it wants to Require, Prohibit,
Prefer, or Avoid. Provisioning Domains define consistent sets of network properties that might
be more specific than network interfaces .

As with interface, this Property is a set of tuples of (enumerated) PvD identifier and Preference.
It can either be implemented directly as such or be implemented to make one Preference
available for each interface and interface type available on the system.

The identification of a specific PvD is specific to the implementation or system. defines
how to use an FQDN to identify a PvD when advertised by a network, but systems might also use
other locally relevant identifiers such as string names or Integers to identify PvDs. As with
requiring specific interfaces, requiring a specific PvD strictly limits the path selection.

Categories or types of PvDs are also defined to be specific to the implementation or system. These
can be useful to identify a service that is provided by a PvD. For example, if an application wants
to use a PvD that provides a Voice-Over-IP (VoIP) service on a Cellular network, it can use the

[RFC7556]

[RFC8801]

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 29

relevant PvD type to require a PvD that provides this service, without needing to look up a
particular instance. While this does restrict path selection, it is broader than requiring specific
PvD instances or interface instances and should be preferred over these options.

Name:

Type:

Default:

6.2.13. Use Temporary Local Address

useTemporaryLocalAddress

Preference

Avoid for Listeners and Rendezvous Connections; Prefer for other Connections

This Property allows the application to express a preference for the use of temporary local
addresses, sometimes called "privacy" addresses . Temporary addresses are generally
used to prevent linking connections over time when a stable address, sometimes called a
"permanent" address, is not needed. There are some caveats to note when specifying this
Property. First, if an application requires the use of temporary addresses, the resulting
Connection cannot use IPv4 because temporary addresses do not exist in IPv4. Second,
temporary local addresses might involve trading off privacy for performance. For instance,
temporary addresses (e.g.,) can interfere with resumption mechanisms that some
protocols rely on to reduce initial latency.

[RFC8981]

[RFC8981]

Name:

Type:

Default:

Disabled:

Active:

Passive:

6.2.14. Multipath Transport

multipath

Enumeration

Disabled for Connections created through Initiate and Rendezvous; Passive for
Listeners

This Property specifies whether, and how, applications want to take advantage of transferring
data across multiple paths between the same end hosts. Using multiple paths allows Connections
to migrate between interfaces or aggregate bandwidth as availability and performance
properties change. Possible values are as follows:

The Connection will not use multiple paths once established, even if the chosen
transport supports using multiple paths.

The Connection will negotiate the use of multiple paths if the chosen transport supports
it.

The Connection will support the use of multiple paths if the Remote Endpoint requests
it.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 30

The policy for using multiple paths is specified using the separate multipathPolicy Property;
see Section 8.1.7. To enable the peer Endpoint to initiate additional paths toward a local address
other than the one initially used, it is necessary to set the advertisesAltaddr Property (see
Section 6.2.15).

Setting this Property to Active can have privacy implications. It enables the transport to
establish connectivity using alternate paths that might result in users being linkable across the
multiple paths, even if the advertisesAltaddr Property (see Section 6.2.15) is set to false.

Note that this Property has no corresponding Selection Property of type "Preference".
Enumeration values other than Disabled are interpreted as a preference for choosing protocols
that can make use of multiple paths. The Disabled value implies a requirement not to use
multiple paths in parallel but does not prevent choosing a protocol that is capable of using
multiple paths, e.g., it does not prevent choosing TCP but prevents sending the MP_CAPABLE
option in the TCP handshake.

Name:

Type:

Default:

6.2.15. Advertisement of Alternative Addresses

advertisesAltaddr

Boolean

false

This Property specifies whether alternative addresses, e.g., of other interfaces, ought to be
advertised to the peer Endpoint by the Protocol Stack. Advertising these addresses enables the
peer Endpoint to establish additional connectivity, e.g., for Connection migration or using
multiple paths.

Note that this can have privacy implications because it might result in users being linkable
across the multiple paths. Also, note that setting this to false does not prevent the local
Transport Services System from establishing connectivity using alternate paths (see Section
6.2.14); it only prevents proactive advertisement of addresses.

Name:

Type:

Default:

Bidirectional:

6.2.16. Direction of Communication

direction

Enumeration

Bidirectional

This Property specifies whether an application wants to use the Connection for sending and/or
receiving data. Possible values are as follows:

The Connection must support sending and receiving data.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 31

Unidirectional send:

Unidirectional receive:

The Connection must support sending data, and the application cannot use
the Connection to receive any data.

The Connection must support receiving data, and the application cannot
use the Connection to send any data.

Since unidirectional communication can be supported by transports offering bidirectional
communication, specifying unidirectional communication might cause a Protocol Stack that
supports bidirectional communication to be selected.

Name:

Type:

Default:

6.2.17. Notification of ICMP Soft Error Message Arrival

softErrorNotify

Preference

No Preference

This Property specifies whether an application considers it useful to be informed when an ICMP
error message arrives that does not force termination of a connection. When set to true,
received ICMP errors are available as SoftError events; see Section 8.3.1. Note that even if a
protocol supporting this Property is selected, not all ICMP errors will necessarily be delivered, so
applications cannot rely upon receiving them .[RFC8085]

Name:

Type:

Default:

6.2.18. Initiating Side Is Not the First to Write

activeReadBeforeSend

Preference

No Preference

The most common client-server communication pattern involves the client actively opening a
Connection, then sending data to the server. The server listens (passive open), reads, and then
answers. This Property specifies whether an application wants to diverge from this pattern by
either:

actively opening with Initiate, immediately followed by reading or
passively opening with Listen, immediately followed by writing.

This Property is ignored when establishing connections using Rendezvous. Requiring this
Property limits the choice of mappings to underlying protocols, which can reduce efficiency. For
example, it prevents the Transport Services System from mapping Connections to Stream Control
Transmission Protocol (SCTP) streams, where the first transmitted data takes the role of an active
open signal.

1.
2.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 32

6.3. Specifying Security Parameters and Callbacks
Most Security Parameters, e.g., TLS ciphersuites, local identity and private key, etc., can be
configured statically. Others are dynamically configured during Connection establishment.
Security Parameters and callbacks are partitioned based on their place in the lifetime of
Connection establishment. Similar to Transport Properties, both parameters and callbacks are
inherited during cloning (see Section 7.4).

This document specifies an abstract API, which could appear to conflict with the need for
Security Parameters to be unambiguous. The Transport Services System provide
reasonable, secure defaults for each enumerated Security Parameter, such that users of the
system only need to specify parameters required to establish a secure connection (e.g.,
serverCertificate or clientCertificate). Specifying Security Parameters from enumerated
values (e.g., specific ciphersuites) might constrain which transport protocols can be selected
during Connection establishment.

Security Parameters are specified in the preestablishment phase and are created as follows:

Specific parameters are added using a call to Set on the SecurityParameters.

As with the rest of the Transport Services API, the exact names of parameters and/or values of
Enumerations (e.g., ciphersuites) used in the Security Parameters are specific to the system or
implementation and ought to be chosen to follow the principle of least surprise for users of the
platform/language environment in question.

For Security Parameters that are Enumerations of known values, such as TLS ciphersuites,
implementations are responsible for exposing the set of values they support. For Security
Parameters that are not simple value types, such as certificates and keys, implementations are
responsible for exposing types appropriate for the platform/language environment.

Applications use common safe defaults for values such as TLS ciphersuites whenever
possible. However, as discussed in , many transport security protocols require specific
Security Parameters and constraints from the client at the time of configuration and actively
during a handshake.

The set of Security Parameters defined here is not exhaustive, but illustrative. Implementations
 expose an equivalent to the parameters listed below to allow for sufficient configuration

of Security Parameters, but the details are expected to vary based on platform and
implementation constraints. Applications be able to constrain the security protocols and
versions that the Transport Services System will use.

Representation of Security Parameters in implementations ought to parallel that chosen for
Transport Property names as suggested in Section 5.

SHOULD

SecurityParameters := NewSecurityParameters()

SHOULD
[RFC8922]

SHOULD

MUST

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 33

Connections that use Transport Services use security in general. However, for
compatibility with endpoints that do not support transport security protocols (such as a TCP
endpoint that does not support TLS), applications can initialize their Security Parameters to
indicate that security can be disabled or opportunistic. If security is disabled, the Transport
Services System will not attempt to add transport security automatically. If security is
opportunistic, it will allow Connections without transport security, but it will still attempt to use
unauthenticated security if available.

SHOULD

SecurityParameters := NewDisabledSecurityParameters()

SecurityParameters := NewOpportunisticSecurityParameters()

Name:

Type:

Default:

6.3.1. Allowed Security Protocols

allowedSecurityProtocols

Implementation-specific Enumeration of security protocol names and/or versions

Implementation-specific best available security protocols

This Property allows applications to restrict which security protocols and security protocol
versions can be used in the Protocol Stack. Applications be able to constrain the security
protocols used by this or an equivalent mechanism, in order to prevent the use of security
protocols with unknown or weak security properties.

MUST

SecurityParameters.Set(allowedSecurityProtocols, [tls_1_2, tls_1_3])

Names:

Type:

Default:

6.3.2. Certificate Bundles

serverCertificate, clientCertificate

Array of certificate objects

Empty array

One or more certificate bundles identifying the Local Endpoint as a server certificate or a client
certificate. Multiple bundles may be provided to allow selection among different Protocol Stacks
that may require differently formatted bundles. The form and format of the certificate bundle
are implementation specific. Note that if the private keys associated with a bundle are not
available, e.g., since they are stored in Hardware Security Modules (HSMs), handshake callbacks
are necessary. See below for details.

SecurityParameters.Set(serverCertificate, myCertificateBundle[])
SecurityParameters.Set(clientCertificate, myCertificateBundle[])

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 34

Name:

Type:

Default:

6.3.3. Pinned Server Certificate

pinnedServerCertificate

Array of certificate chain objects

Empty array

Zero or more certificate chains to use as pinned server certificates, such that connecting will fail
if the presented server certificate does not match one of the supplied pinned certificates. The
form and format of the certificate chain are implementation specific.

SecurityParameters.Set(pinnedServerCertificate, yourCertificateChain[])

Name:

Type:

Default:

6.3.4. Application-Layer Protocol Negotiation

alpn

Array of strings

Automatic selection

Application-Layer Protocol Negotiation (ALPN) values: used to indicate which application-layer
protocols are negotiated by the security protocol layer. See for a definition of the ALPN
field. Note that the Transport Services System can provide ALPN values automatically based on
the protocols being used, if not explicitly specified by the application.

[ALPN]

SecurityParameters.Set(alpn, ["h2"])

Names:

Types:

Default:

6.3.5. Groups, Ciphersuites, and Signature Algorithms

supportedGroup, ciphersuite, signatureAlgorithm

Arrays of implementation-specific Enumerations

Automatic selection

These are used to restrict what cryptographic parameters are used by underlying transport
security protocols. When not specified, these algorithms should use known and safe defaults for
the system.

SecurityParameters.Set(supportedGroup, secp256r1)
SecurityParameters.Set(ciphersuite, TLS_AES_128_GCM_SHA256)
SecurityParameters.Set(signatureAlgorithm, ecdsa_secp256r1_sha256)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 35

Names:

Type:

Default:

6.3.6. Session Cache Options

maxCachedSessions, cachedSessionLifetimeSeconds

Integer

Automatic selection

These values are used to tune session cache capacity and lifetime and can be extended to include
other policies.

SecurityParameters.Set(maxCachedSessions, 16)
SecurityParameters.Set(cachedSessionLifetimeSeconds, 3600)

Name:

Type:

Default:

6.3.7. Pre-Shared Key

preSharedKey

Key and identity (platform specific)

None

Used to install pre-shared keying material established out of band. Each instance of pre-shared
keying material is associated with some identity that typically identifies its use or has some
protocol-specific meaning to the Remote Endpoint. Note that the use of a pre-shared key will tend
to select a single security protocol and, therefore, directly select a single underlying Protocol
Stack. A Transport Services API could express None in an environment-typical way, e.g., as a
Union type or special value.

SecurityParameters.Set(preSharedKey, key, myIdentity)

6.3.8. Connection Establishment Callbacks

Security decisions, especially pertaining to trust, are not static. Once configured, parameters can
also be supplied during Connection establishment. These are best handled as client-provided
callbacks. Callbacks block the progress of the Connection establishment, which distinguishes
them from other events in the Transport Services System. How callbacks and events are
implemented is specific to each implementation. Security handshake callbacks that could be
invoked during Connection establishment include:

Trust verification callback: Invoked when a Remote Endpoint's trust must be verified before
the handshake protocol can continue. For example, the application could verify an X.509
certificate as described in .

•

[RFC5280]

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 36

Identity challenge callback: Invoked when a private key operation is required, e.g., when
local authentication is requested by a Remote Endpoint.

TrustCallback := NewCallback({
 // Handle the trust and return the result
})
SecurityParameters.SetTrustVerificationCallback(TrustCallback)

•

ChallengeCallback := NewCallback({
 // Handle the challenge
})
SecurityParameters.SetIdentityChallengeCallback(ChallengeCallback)

7. Establishing Connections
Before a Connection can be used for data transfer, it needs to be established. Establishment ends
the preestablishment phase; all transport Properties and cryptographic parameter specification
must be complete before establishment, as these will be used to select Candidate Paths and
Protocol Stacks for the Connection. Establishment can be active, using the Initiate action;
passive, using the Listen action; or simultaneous for peer-to-peer connections, using the
Rendezvous action. These actions are described in the subsections below.

7.1. Active Open: Initiate
Active open is the action of establishing a Connection to a Remote Endpoint presumed to be
listening for incoming Connection requests. Active open is used by clients in client-server
interactions. Active open is supported by the Transport Services API through the Initiate
action:

The timeout parameter specifies how long to wait before aborting active open. Before calling
Initiate, the caller must have populated a Preconnection object with a Remote Endpoint object
to identify the Endpoint, optionally a Local Endpoint object (if not specified, the system will
attempt to determine a suitable Local Endpoint), as well as all Properties necessary for candidate
selection.

The Initiate action returns a Connection object. Once Initiate has been called, any changes to
the Preconnection have any effect on the Connection. However, the Preconnection can
be reused, e.g., to Initiate another Connection.

Connection := Preconnection.Initiate(timeout?)

MUST NOT

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 37

Once Initiate is called, the Candidate Protocol Stack(s) can cause one or more candidate
transport-layer connections to be created to the specified Remote Endpoint. The caller could
immediately begin sending Messages on the Connection (see Section 9.2) after calling Initiate;
note that any data marked as "safely replayable" that is sent while the Connection is being
established could be sent multiple times or using multiple candidates.

The following events can be sent by the Connection after Initiate is called:

The Ready event occurs after Initiate has established a transport-layer connection on at least
one usable Candidate Protocol Stack over at least one Candidate Path. No Receive events (see
Section 9.3) will occur before the Ready event for Connections established using Initiate.

An EstablishmentError occurs when:

the set of transport Properties and Security Parameters cannot be fulfilled on a Connection
for initiation (e.g., the set of available paths and/or Protocol Stacks meeting the constraints is
empty) or reconciled with the Local and/or Remote Endpoints,
a Remote Endpoint Identifier cannot be resolved, or
no transport-layer connection can be established to the Remote Endpoint (e.g., because the
Remote Endpoint is not accepting connections, the application is prohibited from opening a
Connection by the operating system, or the establishment attempt has timed out for any
other reason).

Connection establishment and transmission of the first Message can be combined in a single
action (Section 9.2.5).

Connection -> Ready<>

Connection -> EstablishmentError<reason?>

•

•
•

7.2. Passive Open: Listen
Passive open is the action of waiting for Connections from Remote Endpoints, commonly used by
servers in client-server interactions. Passive open is supported by the Transport Services API
through the Listen action and returns a Listener object:

Before calling Listen, the caller must have initialized the Preconnection during the
preestablishment phase with a Local Endpoint object, as well as all Properties necessary for
Protocol Stack selection. A Remote Endpoint can optionally be specified, to constrain what
Connections are accepted.

Listener := Preconnection.Listen()

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 38

The Listen action returns a Listener object. Once Listen has been called, any changes to the
Preconnection have any effect on the Listener. The Preconnection can be disposed of
or reused, e.g., to create another Listener.

Listening continues until the global context shuts down or until the Stop action is performed on
the Listener object.

The ConnectionReceived event occurs when:

a Remote Endpoint has established or cloned (e.g., by creating a new stream in a multi-
stream transport; see Section 7.4) a transport-layer connection to this Listener (for
connection-oriented transport protocols), or
the first Message has been received from the Remote Endpoint (for connectionless protocols
or streams of a multi-streaming transport) causing a new Connection to be created.

The resulting Connection is contained within the ConnectionReceived event and is ready to use
as soon as it is passed to the application via the event.

If the caller wants to rate-limit the number of inbound Connections that will be delivered, it can
set a cap using SetNewConnectionLimit. This mechanism allows a server to protect itself from
being drained of resources. Each time a new Connection is delivered by the ConnectionReceived
event, the value is automatically decremented. Once the value reaches zero, no further
Connections will be delivered until the caller sets the limit to a higher value. By default, this
value is Infinite. The caller is also able to reset the value to Infinite at any point.

An EstablishmentError occurs when:

the Properties and Security Parameters of the Preconnection cannot be fulfilled for listening
or cannot be reconciled with the Local Endpoint (and/or Remote Endpoint, if specified),
the Local Endpoint (or Remote Endpoint, if specified) cannot be resolved, or
the application is prohibited from listening by policy.

MUST NOT

Listener.Stop()

Listener -> ConnectionReceived<Connection>

•

•

Listener.SetNewConnectionLimit(value)

Listener -> EstablishmentError<reason?>

•

•
•

Listener -> Stopped<>

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 39

A Stopped event occurs after the Listener has stopped listening.

7.3. Peer-to-Peer Establishment: Rendezvous
Simultaneous peer-to-peer Connection establishment is supported by the Rendezvous action:

A Preconnection object used in a Rendezvous have both the Local Endpoint candidates and
the Remote Endpoint candidates specified, along with the Transport Properties and Security
Parameters needed for Protocol Stack selection before the Rendezvous action is initiated.

The Rendezvous action listens on the Local Endpoint candidates for an incoming Connection
from the Remote Endpoint candidates, while also simultaneously trying to establish a Connection
from the Local Endpoint candidates to the Remote Endpoint candidates.

If there are multiple Local Endpoints or Remote Endpoints configured, then initiating a
Rendezvous action will cause the Transport Services Implementation to systematically probe the
reachability of those endpoint candidates following an approach such as that used in Interactive
Connectivity Establishment (ICE) .

If the endpoints are suspected to be behind a NAT, and the Local Endpoint supports a method of
discovering NAT bindings, such as STUN or Traversal Using Relays around NAT (TURN)

, then the Resolve action on the Preconnection can be used to discover such bindings:

The Resolve action returns lists of Local Endpoints and Remote Endpoints that represent the
concrete addresses, local and server reflexive, on which a Rendezvous for the Preconnection will
listen for incoming Connections and to which it will attempt to establish Connections.

Note that the set of Local Endpoints returned by Resolve might or might not contain information
about all possible local interfaces, depending on how the Preconnection is configured. The set of
available local interfaces can also change over time, so care needs to be taken when using stored
interface names.

An application that uses Rendezvous to establish a peer-to-peer Connection in the presence of
NATs will configure the Preconnection object with at least one Local Endpoint that supports NAT
binding discovery. It will then Resolve the Preconnection and pass the resulting list of Local
Endpoint candidates to the peer via a signaling protocol, for example, as part of an ICE exchange

 within SIP or WebRTC . The peer will then, via the same signaling
channel, return the Remote Endpoint candidates. The set of Remote Endpoint candidates is then
configured on the Preconnection:

Preconnection.Rendezvous()

MUST

[RFC8445]

[RFC8489]
[RFC8656]

[]LocalEndpoint, []RemoteEndpoint := Preconnection.Resolve()

[RFC8445] [RFC3261] [RFC7478]

Preconnection.AddRemote([]RemoteEndpoint)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 40

Once the application has added both the Local Endpoint candidates and the Remote Endpoint
candidates retrieved from the peer via the signaling channel to the Preconnection, the
Rendezvous action is initiated and causes the Transport Services Implementation to begin
connectivity checks.

If successful, the Rendezvous action returns a Connection object via a RendezvousDone event:

The RendezvousDone event occurs when a Connection is established with the Remote Endpoint.
For connection-oriented transports, this occurs when the transport-layer connection is
established; for connectionless transports, it occurs when the first Message is received from the
Remote Endpoint. The resulting Connection is contained within the RendezvousDone event and is
ready to use as soon as it is passed to the application via the event. Changes made to a
Preconnection after Rendezvous has been called have any effect on existing
Connections.

An EstablishmentError occurs when:

the Properties and Security Parameters of the Preconnection cannot be fulfilled for
rendezvous or cannot be reconciled with the Local and/or Remote Endpoints,
the Local Endpoint or Remote Endpoint cannot be resolved,
no transport-layer connection can be established to the Remote Endpoint, or
the application is prohibited from rendezvous by policy.

Preconnection -> RendezvousDone<Connection>

MUST NOT

•

•
•
•

Preconnection -> EstablishmentError<reason?>

7.4. Connection Groups
Connection Groups can be created using the Clone action:

Calling Clone on a Connection yields a Connection Group containing two Connections: the parent
Connection on which Clone was called and a resulting cloned Connection. The new Connection is
actively opened, and it will locally send a Ready event or an EstablishmentError event. Calling
Clone on any of these Connections adds another Connection to the Connection Group.
Connections in a Connection Group share all Connection Properties except connPriority (see
Section 8.1.2), and these Connection Properties are entangled: changing one of the Connection
Properties on one Connection in the Connection Group automatically changes the Connection
Property for all others. For example, changing connTimeout (see Section 8.1.3) on one Connection
in a Connection Group will automatically make the same change to this Connection Property for

Connection := Connection.Clone(framer?, connectionProperties?)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 41

all other Connections in the Connection Group. Like all other Properties, connPriority is copied
to the new Connection when calling Clone, but, in this case, a later change to the connPriority
on one Connection does not change it on the other Connections in the same Connection Group.

The optional connectionProperties parameter allows passing Transport Properties that control
the behavior of the underlying stream or connection to be created, e.g., Protocol-specific
Properties to request specific stream IDs for SCTP or QUIC.

Message Properties set on a Connection also apply only to that Connection.

A new Connection created by Clone can have a Message Framer assigned via the optional framer
parameter of the Clone action. If this parameter is not supplied, the stack of Message Framers
associated with a Connection is copied to the cloned Connection when calling Clone. Then, a
cloned Connection has the same stack of Message Framers as the Connection from which they
are cloned, but these Framers can internally maintain per-Connection state.

It is also possible to check which Connections belong to the same Connection Group. Calling
GroupedConnections on a specific Connection returns a set of all Connections in the same group.

Connections will belong to the same group if the application previously called Clone. Passive
Connections can also be added to the same group, e.g., when a Listener receives a new
Connection that is just a new stream of an already-active multi-streaming protocol instance.

If the underlying protocol supports multi-streaming, it is natural to use this functionality to
implement Clone. In that case, Connections in a Connection Group are multiplexed together,
giving them similar treatment not only inside Endpoints, but also across the end-to-end Internet
path.

Note that calling Clone can result in on-the-wire signaling, e.g., to open a new transport
connection, depending on the underlying Protocol Stack. When Clone leads to the opening of
multiple such connections, the Transport Services System will ensure consistency of Connection
Properties by uniformly applying them to all underlying connections in a group. Even in such a
case, it is possible for a Transport Services System to implement prioritization within a
Connection Group (see and).

Attempts to clone a Connection can result in a CloneError:

A CloneError can also occur later, after Clone was successfully called. In this case, it informs the
application that the Connection that sends the CloneError is no longer a part of any Connection
Group. For example, this can occur when the Transport Services system is unable to implement

[]Connection := Connection.GroupedConnections()

[TCP-COUPLING] [RFC8699]

Connection -> CloneError<reason?>

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 42

entanglement (a Connection Property was changed on a different Connection in the Connection
Group, but this change could not be successfully applied to the Connection that sends the
CloneError).

The connPriority Connection Property operates on Connections in a Connection Group using
the same approach as that used in Section 9.1.3.2: when allocating available network capacity
among Connections in a Connection Group, sends on Connections with numerically lower
priority values will be prioritized over sends on Connections that have numerically higher
priority values. Capacity will be shared among these Connections according to the
connScheduler Property (Section 8.1.5). See Section 9.2.6 for more details.

7.5. Adding and Removing Endpoints on a Connection
Transport protocols that are explicitly multipath-aware are expected to automatically manage
the set of remote endpoints that they are communicating with and the paths to those endpoints.
A PathChange event, described in Section 8.3.2, will be generated when the path changes.

However, in some cases, it is necessary to explicitly indicate to a Connection that a new Remote
Endpoint has become available for use or indicate that a Remote Endpoint is no longer available.
This is most common in the case of peer-to-peer connections using Trickle ICE .

The AddRemote action can be used to add one or more new Remote Endpoints to a Connection:

Endpoints that are already known to the Connection are ignored. A call to AddRemote makes the
new Remote Endpoints available to the Connection, but whether the Connection makes use of
those Endpoints will depend on the underlying transport protocol.

Similarly, the RemoveRemote action can be used to tell a Connection to stop using one or more
Remote Endpoints:

Removing all known Remote Endpoints can have the effect of aborting the connection. The effect
of removing the active Remote Endpoint(s) depends on the underlying transport: multipath-
aware transports might be able to switch to a new path if other reachable Remote Endpoints
exist or the connection might abort.

Similarly, the AddLocal and RemoveLocal actions can be used to add and remove Local
Endpoints to or from a Connection.

[RFC8838]

Connection.AddRemote([]RemoteEndpoint)

Connection.RemoveRemote([]RemoteEndpoint)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 43

8. Managing Connections
During preestablishment and after establishment, Preconnections or Connections can be
configured and queried using Connection Properties, and asynchronous information could be
available about the state of the Connection via SoftError events.

Connection Properties represent the configuration and state of the selected Protocol Stack(s)
backing a Connection. These Connection Properties can be generic (applying regardless of
transport protocol) or specific (applicable to a single implementation of a single transport
Protocol Stack). Generic Connection Properties are defined in Section 8.1.

Protocol-specific Properties are defined in a way that is specific to the transport or
implementation to permit more specialized protocol features to be used. Too much reliance by
an application on Protocol-specific Properties can significantly reduce the flexibility of a
Transport Services System to make appropriate selection and configuration choices. Therefore, it
is that Generic Connection Properties be used for properties common across
different protocols and that Protocol-specific Connection Properties are only used where specific
protocols or properties are necessary.

The application can set and query Connection Properties on a per-Connection basis. Connection
Properties that are not read-only can be set during preestablishment (see Section 6.2), as well as
on Connections directly using the SetProperty action:

If an error is encountered in setting a Property (for example, if the application tries to set a TCP-
specific Property on a Connection that is not using TCP), the application be informed about
this error via the ErrorCode object. Such errors cause the Connection to be
terminated. Note that changing one of the Connection Properties on one Connection in a
Connection Group will also change it for all other Connections of that group; see Section 7.4.

At any point, the application can query Connection Properties.

Depending on the status of the Connection, the queried Connection Properties will include
different information:

The Connection state, which can be one of the following: Establishing, Established,
Closing, or Closed (see Section 8.1.11.1).

RECOMMENDED

ErrorCode := Connection.SetProperty(property, value)

MUST
MUST NOT

ConnectionProperties := Connection.GetProperties()
value := ConnectionProperties.Get(property)
if ConnectionProperties.Has(boolean_or_preference_property) then...

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 44

Whether the Connection can be used to send data (see Section 8.1.11.2). A Connection cannot
be used for sending if the Connection was created with the Selection Property direction set
to Unidirectional receive or if a Message marked as Final was sent over this Connection.
See also Section 9.1.3.5.
Whether the Connection can be used to receive data (see Section 8.1.11.3). A Connection
cannot be used for receiving if the Connection was created with the Selection Property
direction set to Unidirectional send or if a Message marked as Final was received (see
Section 9.3.3.3). The latter is only supported by certain transport protocols, e.g., by TCP as a
half-closed connection.
For Connections that are Established, Closing, or Closed: Connection Properties (Section
8.1) of the actual protocols that were selected and instantiated, and Selection Properties that
the application specified on the Preconnection. Selection Properties of type "Preference" will
be exposed as Boolean values indicating whether or not the Property applies to the selected
transport. Note that the instantiated Protocol Stack might not match all Protocol Selection
Properties that the application specified on the Preconnection.
For Connections that are Established: Transport Services Implementations ought to provide
information concerning the path(s) used by the Protocol Stack. This can be derived from
local PvD information, measurements by the Protocol Stack, or other sources. For example, a
Transport Services System that is configured to receive and process PvD information

 could also provide network configuration information for the chosen path(s).

•

•

•

•

[RFC7556]

8.1. Generic Connection Properties
Generic Connection Properties are defined independently of the chosen Protocol Stack; therefore,
they are available on all Connections.

Many Connection Properties have a corresponding Selection Property that enables applications
to express their preference for protocols providing a supporting transport feature.

Name:

Type:

Default:

8.1.1. Required Minimum Corruption Protection Coverage for Receiving

recvChecksumLen

Integer (non-negative) or Full Coverage

Full Coverage

If this Property is an Integer, it specifies the minimum number of bytes in a received Message
that need to be covered by a checksum. A receiving Endpoint will not forward Messages that
have less coverage to the application. The application is responsible for handling any corruption
within the non-protected part of the Message . A special value of 0 means that a
received packet might also have a zero checksum field, and the enumerated value Full
Coverage means that the entire Message needs to be protected by a checksum. An
implementation is supposed to express Full Coverage in an environment-typical way, e.g., as a
Union type or special value.

[RFC8085]

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 45

Name:

Type:

Default:

8.1.2. Connection Priority

connPriority

Integer (non-negative)

100

This Property is a non-negative Integer representing the priority of this Connection relative to
other Connections in the same Connection Group. A numerically lower value reflects a higher
priority. It has no effect on Connections not part of a Connection Group. As noted in Section 7.4,
this Property is not entangled when Connections are cloned, i.e., changing the priority on one
Connection in a Connection Group does not change it on the other Connections in the same
Connection Group. No guarantees of a specific behavior regarding Connection Priority are given;
a Transport Services System could ignore this Property. See Section 9.2.6 for more details.

Name:

Type:

Default:

8.1.3. Timeout for Aborting Connection

connTimeout

Numeric (positive) or Disabled

Disabled

If this Property is Numeric, it specifies how long to wait before deciding that an active
Connection has failed when trying to reliably deliver data to the Remote Endpoint. Adjustments
to this Property will only take effect if the underlying stack supports reliability. If this Property
has the enumerated value Disabled, it means that no timeout is scheduled. A Transport Services
API could express Disabled in an environment-typical way, e.g., as a Union type or special value.

Name:

Type:

Default:

8.1.4. Timeout for Keep-Alive Packets

keepAliveTimeout

Numeric (positive) or Disabled

Disabled

A Transport Services API can request a protocol that supports sending keep-alive packets (Section
6.2.10). If this Property is Numeric, it specifies the maximum length of time an idle Connection
(one for which no transport packets have been sent) ought to wait before the Local Endpoint
sends a keep-alive packet to the Remote Endpoint. Adjustments to this Property will only take
effect if the underlying stack supports sending keep-alive packets. Guidance on setting this value
for connectionless transports is provided in . A value greater than the Connection
timeout (Section 8.1.3) or the enumerated value Disabled will disable the sending of keep-alive
packets. A Transport Services API could express Disabled in an environment-typical way, e.g., as
a Union type or special value.

[RFC8085]

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 46

Name:

Type:

Default:

8.1.5. Connection Group Transmission Scheduler

connScheduler

Enumeration

Weighted Fair Queueing (see)

This Property specifies which scheduler is used among Connections within a Connection Group
to apportion the available capacity according to Connection priorities (see Sections 7.4 and 8.1.2).
A set of schedulers is described in .

Section 3.6 of [RFC8260]

[RFC8260]

Name:

Type:

Default:

Default:

Scavenger:

Low Latency/Interactive:

8.1.6. Capacity Profile

connCapacityProfile

Enumeration

Default Profile (Best Effort)

This Property specifies the desired network treatment for traffic sent by the application and the
trade-offs the application is prepared to make in path and protocol selection to receive that
desired treatment. When the capacity profile is set to a value other than Default, the Transport
Services System select paths and configure protocols to optimize the trade-off between
delay, delay variation, and efficient use of the available capacity based on the capacity profile
specified. How this is realized is implementation specific. The capacity profile also be used
to set markings on the wire for Protocol Stacks supporting this action. Recommendations for use
with DSCPs are provided below for each profile; note that when a Connection is multiplexed, the
guidelines in apply.

The following values are valid for the capacity profile:

The application provides no information about its expected capacity profile. Transport
Services Systems that map the requested capacity profile to per-connection DSCP signaling

 assign the DSCP Default Forwarding Per Hop Behavior (PHB) .

The application is not interactive. It expects to send and/or receive data without any
urgency. This can, for example, be used to select Protocol Stacks with scavenger transmission
control and/or to assign the traffic to a lower-effort service. Transport Services Systems that
map the requested capacity profile to per-connection DSCP signaling assign the DSCP
"Less than best effort" PHB .

The application is interactive and prefers loss to latency. Response
time be optimized at the expense of delay variation and efficient use of the available
capacity when sending on this Connection. The Low Latency/Interactive value of the
capacity profile can be used by the system to disable the coalescing of multiple small

SHOULD

MAY

Section 6 of [RFC7657]

SHOULD [RFC2474]

SHOULD
[RFC8622]

SHOULD

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 47

https://www.rfc-editor.org/rfc/rfc8260#section-3.6
https://www.rfc-editor.org/rfc/rfc7657#section-6

Low Latency/Non-Interactive:

Constant-Rate Streaming:

Capacity-Seeking:

Messages into larger packets (Nagle algorithm (see)); to prefer
immediate acknowledgement from the peer Endpoint when supported by the underlying
transport; and so on. Transport Services Systems that map the requested capacity profile to
per-connection DSCP signaling without multiplexing assign a DSCP Assured
Forwarding (AF41, AF42, AF43, and AF44) PHB . Inelastic traffic that is expected to
conform to the configured network service rate could be mapped to the DSCP Expedited
Forwarding PHBs or PHBs as discussed in .

The application prefers loss to latency but is not interactive.
Response time be optimized at the expense of delay variation and efficient use of the
available capacity when sending on this Connection. Transport system implementations that
map the requested capacity profile to per-connection DSCP signaling without multiplexing

 assign a DSCP Assured Forwarding (AF21, AF22, AF23, and AF24) PHB .

The application expects to send/receive data at a constant rate after
Connection establishment. Delay and delay variation be minimized at the expense of
efficient use of the available capacity. This implies that the Connection might fail if the path is
unable to maintain the desired rate. A transport can interpret this capacity profile as
preferring a circuit breaker to a rate-adaptive congestion controller. Transport
system implementations that map the requested capacity profile to per-connection DSCP
signaling without multiplexing assign a DSCP Assured Forwarding (AF31, AF32, AF33,
and AF34) PHB .

The application expects to send/receive data at the maximum rate allowed by
its congestion controller over a relatively long period of time. Transport Services Systems that
map the requested capacity profile to per-connection DSCP signaling without multiplexing

 assign a DSCP Assured Forwarding (AF11, AF12, AF13, and AF14) PHB per
.

The capacity profile for a selected Protocol Stack may be modified on a per-Message basis using
the msgCapacityProfile Message Property; see Section 9.1.3.8.

Section 4.2.3.4 of [RFC1122]

SHOULD
[RFC2597]

[RFC3246] [RFC5865]

SHOULD

SHOULD [RFC2597]

SHOULD

[RFC8084]

SHOULD
[RFC2597]

SHOULD [RFC2597]
Section 4.8 of [RFC4594]

Name:

Type:

Default:

Handover:

8.1.7. Policy for Using Multipath Transports

multipathPolicy

Enumeration

Handover

This Property specifies the local policy for transferring data across multiple paths between the
same end hosts if the multipath Property is not set to Disabled (see Section 6.2.14). Possible
values are as follows:

The Connection ought only to attempt to migrate between different paths when the
original path is lost or becomes unusable. The thresholds used to declare a path unusable are
implementation specific.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 48

https://www.rfc-editor.org/rfc/rfc1122#section-4.2.3.4
https://www.rfc-editor.org/rfc/rfc4594#section-4.8

Interactive:

Aggregate:

The Connection ought only to attempt to minimize the latency for interactive traffic
patterns by transmitting data across multiple paths when this is beneficial. The goal of
minimizing the latency will be balanced against the cost of each of these paths. Depending on
the cost of the lower-latency path, the scheduling might choose to use a higher-latency path.
Traffic can be scheduled such that data may be transmitted on multiple paths in parallel to
achieve a lower latency. The specific scheduling algorithm is implementation specific.

The Connection ought to attempt to use multiple paths in parallel to maximize
available capacity and possibly overcome the capacity limitations of the individual paths. The
actual strategy is implementation specific.

Note that this is a local choice: the Remote Endpoint can choose a different policy.

Name:

Type:

Default:

8.1.8. Bounds on Send or Receive Rate

minSendRate / minRecvRate / maxSendRate / maxRecvRate

Numeric (positive) or Unlimited / Numeric (positive) or Unlimited / Numeric (positive)
or Unlimited / Numeric (positive) or Unlimited

Unlimited / Unlimited / Unlimited / Unlimited

Numeric values of these Properties specify an upper-bound rate that a transfer is not expected to
exceed (even if flow control and congestion control allow higher rates) and/or a lower-bound
application-layer rate below which the application does not deem it will be useful. These rate
values are measured at the application layer, i.e., do not consider the header overhead from
protocols used by the Transport Services System. The values are specified in bits per second and
assumed to be measured over one-second time intervals. For example, specifying a maxSendRate
of X bits per second means that, from the moment at which the Property value is chosen, not
more than X bits will be sent in any following second. The enumerated value Unlimited
indicates that no bound is specified. A Transport Services API could express Unlimited in an
environment-typical way, e.g., as a Union type or special value.

Name:

Type:

Default:

8.1.9. Group Connection Limit

groupConnLimit

Numeric (positive) or Unlimited

Unlimited

If this Property is Numeric, it controls the number of Connections that can be accepted from a
peer as new members of the Connection's group. Similar to SetNewConnectionLimit, this limits
the number of ConnectionReceived events that will occur, but constrained to the group of the
Connection associated with this Property. For a multi-streaming transport, this limits the number
of allowed streams. A Transport Services API could express Unlimited in an environment-typical
way, e.g., as a Union type or special value.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 49

Name:

Type:

Default:

8.1.10. Isolate Session

isolateSession

Boolean

false

When set to true, this Property will initiate new Connections using as little cached information
(such as session tickets or cookies) as possible from previous Connections that are not in the
same Connection Group. Any state generated by this Connection will only be shared with
Connections in the same Connection Group. Cloned Connections will use saved state from within
the Connection Group. This is used for separating Connection Contexts as specified in

.

Note that this does not guarantee that information will not leak because implementations might
not be able to fully isolate all caches (e.g., RTT estimates). Note that this Property could degrade
Connection performance.

Section
4.2.3 of [RFC9621]

8.1.11. Read-Only Connection Properties

The following generic Connection Properties are read-only, i.e., they cannot be changed by an
application.

Name:

Type:

8.1.11.1. Connection State

connState

Enumeration

This Property provides information about the current state of the Connection. Possible values are
Establishing, Established, Closing, or Closed. For more details on Connection state, see
Section 11.

Name:

Type:

8.1.11.2. Can Send Data

canSend

Boolean

This Property can be queried to learn whether the Connection can be used to send data.

Name:

Type:

8.1.11.3. Can Receive Data

canReceive

Boolean

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 50

https://www.rfc-editor.org/rfc/rfc9621#section-4.2.3
https://www.rfc-editor.org/rfc/rfc9621#section-4.2.3

This Property can be queried to learn whether the Connection can be used to receive data.

Name:

Type:

8.1.11.4. Maximum Message Size Before Fragmentation or Segmentation

singularTransmissionMsgMaxLen

Integer (non-negative) or Not applicable

This Property, if applicable, represents the maximum Message size that can be sent without
incurring network-layer fragmentation at the sender. It is specified as a number of bytes and is
less than or equal to the maximum Message Size on Send. It exposes a readable value to the
application based on the Maximum Packet Size (MPS). The value of this Property can change over
time (and can be updated via Datagram Packetization Layer Path MTU Discovery (DPLPMTUD)

). This value allows a sending stack to avoid unwanted fragmentation at the network
layer or segmentation by the transport layer before choosing the Message size and/or after a
SendError occurs indicating an attempt to send a Message that is too large. A Transport Services
API could express Not applicable in an environment-typical way, e.g., as a Union type or special
value (e.g., 0).

[RFC8899]

Name:

Type:

8.1.11.5. Maximum Message Size on Send

sendMsgMaxLen

Integer (non-negative)

This Property represents the maximum Message size that an application can send. It is specified
as the number of bytes. A value of 0 indicates that sending is not possible.

Name:

Type:

8.1.11.6. Maximum Message Size on Receive

recvMsgMaxLen

Integer (non-negative)

This Property represents the maximum Message size that an application can receive. It is
specified as the number of bytes. A value of 0 indicates that receiving is not possible.

8.2. TCP-Specific Properties: User Timeout Option (UTO)
These Properties specify configurations for the TCP User Timeout Option (UTO). This is a TCP-
specific Property that is only used in the case that TCP becomes the chosen transport protocol. It
is useful only if TCP is implemented in the Transport Services System. Protocol-specific options
could also be defined for other transport protocols.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 51

These Properties are included here because the feature Suggest timeout to the peer is part
of the minimal set of Transport Services , where this feature was categorized as
"functional". This means that when a Transport Services System offers this feature, the Transport
Services API has to expose an interface to the application. Otherwise, the implementation might
violate assumptions by the application, which could cause the application to fail.

All of the below Properties are optional (e.g., it is possible to specify tcp.userTimeoutValue as
true but not specify a tcp.userTimeoutValue value; in this case, the TCP default will be used).
These Properties reflect the API extension specified in .

[RFC8923]

Section 3 of [RFC5482]

Name:

Type:

Default:

8.2.1. Advertised User Timeout

tcp.userTimeoutValue

Integer (positive)

the TCP default

This time value is advertised via the TCP User Timeout Option (UTO) to the Remote
Endpoint, which can use it to adapt its own connTimeout (see Section 8.1.3) value.

[RFC5482]

Name:

Type:

Default:

8.2.2. User Timeout Enabled

tcp.userTimeoutEnabled

Boolean

false

This Property controls whether the TCP UTO is enabled for a connection. This applies to both
sending and receiving.

Name:

Type:

Default:

8.2.3. Timeout Changeable

tcp.userTimeoutChangeable

Boolean

true

This Property controls whether the TCP connTimeout (see Section 8.1.3) can be changed based on
a UTO received from the remote peer. This Boolean becomes false when connTimeout (see
Section 8.1.3) is used.

8.3. Connection Lifecycle Events
During the lifetime of a Connection there are events that can occur when configured.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 52

https://www.rfc-editor.org/rfc/rfc5482#section-3

8.3.1. Soft Errors

Asynchronous introspection is also possible, via the SoftError event. This event informs the
application about the receipt and contents of an ICMP error message related to the Connection.
This will only happen if the underlying Protocol Stack supports access to soft errors; however,
even if the underlying stack supports it, there is no guarantee that a soft error will be signaled.

Connection -> SoftError<>

8.3.2. Path Change

This event notifies the application when at least one of the paths underlying a Connection has
changed. Changes occur on a single path when the PMTU changes as well as when multiple paths
are used and paths are added or removed, the set of Local Endpoints changes, or a handover has
been performed.

Connection -> PathChange<>

9. Data Transfer
Data is sent and received as Messages, which allows the application to communicate the
boundaries of the data being transferred.

9.1. Messages and Framers
Each Message has an optional MessageContext, which allows adding Message Properties, to
identify Send events related to a specific Message or to inspect metadata related to the Message
sent. Framers can be used to extend or modify the Message data with additional information that
can be processed at the receiver to detect Message boundaries.

9.1.1. Message Contexts

Using the MessageContext object, the application can set and retrieve metadata of the Message,
including Message Properties (see Section 9.1.3) and framing metadata (see Section 9.1.2.2).
Therefore, a MessageContext object can be passed to the Send action and is returned by each
event related to Send and Receive.

Message Properties can be set and queried using the MessageContext:

These Message Properties can be generic Properties or Protocol-specific Properties.

MessageContext.add(property, value)
PropertyValue := MessageContext.get(property)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 53

For MessageContexts returned by Send events (see Section 9.2.2) and Receive events (see Section
9.3.2), the application can query information about the Local and Remote Endpoint:

RemoteEndpoint := MessageContext.GetRemoteEndpoint()
LocalEndpoint := MessageContext.GetLocalEndpoint()

9.1.2. Message Framers

Although most applications communicate over a network using well-formed Messages, the
boundaries and metadata of the Messages are often not directly communicated by the transport
protocol itself. For example, HTTP applications send and receive HTTP Messages over a byte-
stream transport, requiring that the boundaries of HTTP Messages be parsed from the stream of
bytes.

Message Framers allow extending a Connection's Protocol Stack to define how to encapsulate or
encode outbound Messages and how to decapsulate or decode inbound data into Messages.
Message Framers allow Message boundaries to be preserved when using a Connection object,
even when using byte-stream transports. This is designed based on the fact that many of the
application protocols in use at the time of writing evolved over TCP, which does not provide
Message boundary preservation; because many of these protocols require Message boundaries to
function, each application-layer protocol has defined its own framing.

To use a Message Framer, the application adds it to its Preconnection object. Then, the Message
Framer can intercept all calls to Send or Receive on a Connection to add Message semantics, in
addition to interacting with the setup and teardown of the Connection. A Framer can start
sending data before the application sends data if the framing protocol requires a prefix or
handshake (see for an example of such a framing protocol).[RFC9329]

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 54

Note that while Message Framers add the most value when placed above a protocol that
otherwise does not preserve Message boundaries, they can also be used with datagram- or
message-based protocols. In these cases, they add a transformation to further encode or
encapsulate and can potentially support packing multiple application-layer Messages into
individual transport datagrams.

The API to implement a Message Framer can vary, depending on the implementation; guidance
on implementing Message Framers can be found in .

Figure 1: Protocol Stack Showing a Message Framer

 Initiate() Send() Receive() Close()
 | | ^ |
 | | | |
 +----v----------v---------+----------v-----+
 | Connection |
 +----+----------+---------^----------+-----+
 | | | |
 | +-----------------+ |
 | | Messages | |
 | +-----------------+ |
 | | | |
 +----v----------v---------+----------v-----+
 | Framer(s) |
 +----+----------+---------^----------+-----+
 | | | |
 | +-----------------+ |
 | | Byte-stream | |
 | +-----------------+ |
 | | | |
 +----v----------v---------+----------v-----+
 | Transport Protocol Stack |
 +--+

[RFC9623]

9.1.2.1. Adding Message Framers to Preconnections
The Message Framer object can be added to one or more Preconnections to run on top of
transport protocols. Multiple Framers can be added to a Preconnection; in this case, the Framers
operate as a framing stack, i.e., the last one added runs first when framing outbound Messages,
and last when parsing inbound data.

The following example adds a basic HTTP Message Framer to a Preconnection:

Since Message Framers pass from Preconnection to Listener or Connection, addition of Framers
must happen before any operation that might result in the creation of a Connection.

framer := NewHTTPMessageFramer()
Preconnection.AddFramer(framer)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 55

9.1.2.2. Framing Metadata
When sending Messages, applications can add Framer-specific Properties to a MessageContext
(Section 9.1.1) with the add action. To avoid naming conflicts, the Property names be
prefixed with a Namespace referencing the Framer implementation or the protocol it
implements as described in Section 4.1.

This mechanism can be used, for example, to set the type of a Message for a TLV format. The
Namespace of values is custom for each unique Message Framer.

When an application receives a MessageContext in a Receive event, it can also look to see if a
value was set by a specific Message Framer.

For example, if an HTTP Message Framer is used, the values could correspond to HTTP headers:

SHOULD

messageContext := NewMessageContext()
messageContext.add(framer, key, value)
Connection.Send(messageData, messageContext)

messageContext.get(framer, key) -> value

httpFramer := NewHTTPMessageFramer()
...
messageContext := NewMessageContext()
messageContext.add(httpFramer, "accept", "text/html")

9.1.3. Message Properties

Applications needing to annotate the Messages they send with extra information (for example, to
control how data is scheduled and processed by the transport protocols supporting the
Connection) can include this information in the MessageContext passed to the Send action. For
other uses of the MessageContext, see Section 9.1.1.

Message Properties are per-Message, not per-Send, if partial Messages are sent (Section 9.2.3). All
data blocks associated with a single Message share Properties specified in the MessageContexts.
For example, it would not make sense to have the beginning of a Message expire and then allow
the end of the Message to still be sent.

A MessageContext object contains metadata for the Messages to be sent or received.

messageData := "hello"
messageContext := NewMessageContext()
messageContext.add(parameter, value)
Connection.Send(messageData, messageContext)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 56

The simpler form of Send, which does not take any MessageContext, is equivalent to passing a
default MessageContext without adding any Message Properties.

If an application wants to override Message Properties for a specific Message, it can acquire an
empty MessageContext object and add all desired Message Properties to that object. It can then
reuse the same MessageContext object for sending multiple Messages with the same Properties.

Properties can be added to a MessageContext object only before the context is used for sending.
Once a MessageContext has been used with a Send action, further modifications to the
MessageContext object do not have any effect on this Send action. Message Properties that are not
added to a MessageContext object before using the context for sending will either take a specific
default value or be configured based on Selection or Connection Properties of the Connection
that is associated with the Send action. This initialization behavior is defined per Message
Property below.

The Message Properties could be inconsistent with the properties of the Protocol Stacks
underlying the Connection on which a given Message is sent. For example, a Protocol Stack must
be able to provide ordering if the msgOrdered Property of a Message is enabled. Sending a
Message with Message Properties inconsistent with the Selection Properties of the Connection
yields an error.

If a Message Property contradicts a Connection Property, and if this per-Message behavior can be
supported, it overrides the Connection Property for the specific Message. For example, if
reliability is set to Require and a protocol with configurable per-Message reliability is used,
setting msgReliable to false for a particular Message will allow this Message to be sent without
any reliability guarantees. Changing the msgReliable Message Property is only possible for
Connections that were established enabling the Selection Property perMsgReliability. If the
contradicting Message Property cannot be supported by the Connection (such as requiring
reliability on a Connection that uses an unreliable protocol), the Send action will result in a
SendError event.

The Message Properties in the following subsections are supported.

Name:

Type:

Default:

9.1.3.1. Lifetime

msgLifetime

Numeric (positive)

Infinite

The Lifetime specifies how long a particular Message can wait in the Transport Services System
before it is sent to the Remote Endpoint. After this time, it is irrelevant and no longer needs to be
(re-)transmitted. This is a hint to the Transport Services System -- it is not guaranteed that a
Message will not be sent when its Lifetime has expired.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 57

Setting a Message's Lifetime to Infinite indicates that the application does not wish to apply a
time constraint on the transmission of the Message, but it does not express a need for reliable
delivery; reliability is adjustable per Message via the perMsgReliability Property (see Section
9.1.3.7). The type and units of Lifetime are implementation specific.

Name:

Type:

Default:

9.1.3.2. Priority

msgPriority

Integer (non-negative)

100

This Property specifies the priority of a Message, relative to other Messages sent over the same
Connection. A numerically lower value represents a higher priority.

A Message with priority 2 will yield to a Message with priority 1, which will yield to a Message
with priority 0, and so on. Priorities can be used as a sender-side scheduling construct only or be
used to specify priorities on the wire for Protocol Stacks supporting prioritization.

Note that this Property is not a per-Message override of connPriority; see Section 8.1.2. The
priority Properties might interact, but they can be used independently and be realized by
different mechanisms; see Section 9.2.6.

Name:

Type:

Default:

9.1.3.3. Ordered

msgOrdered

Boolean

the queried Boolean value of the Selection Property preserveOrder (Section 6.2.4)

The order in which Messages were submitted for transmission via the Send action will be
preserved on delivery via Receive events for all Messages on a Connection that have this
Message Property set to true.

If false, the Message is delivered to the receiving application without preserving the ordering.
This Property is used for protocols that support preservation of data ordering (see Section 6.2.4)
but allow out-of-order delivery for certain Messages, e.g., by multiplexing independent Messages
onto different streams.

If it is not configured by the application before sending, this Property's default value will be
based on the Selection Property preserveOrder of the Connection associated with the Send
action.

Name:

9.1.3.4. Safely Replayable

safelyReplayable

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 58

Type:

Default:

Boolean

false

If true, safelyReplayable specifies that a Message is safe to send to the Remote Endpoint more
than once for a single Send action. It marks the data as safe for certain 0-RTT establishment
techniques, where retransmission of the 0-RTT data could cause the remote application to
receive the Message multiple times.

For protocols that do not protect against duplicated Messages, e.g., UDP, all Messages need to be
marked as "safely replayable" by enabling this Property. To enable protocol selection to choose
such a protocol, safelyReplayable needs to be added to the TransportProperties passed to the
Preconnection. If such a protocol was chosen, disabling safelyReplayable on individual
Messages result in a SendError.MUST

Name:

Type:

Default:

9.1.3.5. Final

final

Boolean

false

If true, this indicates a Message is the last that the application will send on a Connection. This
allows underlying protocols to indicate to the Remote Endpoint that the Connection has been
effectively closed in the sending direction. For example, TCP-based Connections can send a FIN
once a Message marked as Final has been completely sent, indicated by marking endOfMessage.
Protocols that do not support signaling the end of a Connection in a given direction will ignore
this Property.

A Final Message must always be sorted to the end of a list of Messages. The final Property
overrides connPriority, msgPriority, and any other Property that would reorder Messages. If
another Message is sent after a Message marked as Final has already been sent on a Connection,
the Send action for the new Message will cause a SendError event.

Name:

Type:

Default:

9.1.3.6. Sending Corruption Protection Length

msgChecksumLen

Integer (non-negative) or Full Coverage

Full Coverage

If this Property is an Integer, it specifies the minimum length of the section of a sent Message,
starting from byte 0, that the application requires to be delivered without corruption due to
lower-layer errors. It is used to specify options for simple integrity protection via checksums. A
value of 0 means that no checksum needs to be calculated, and the enumerated value Full

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 59

Coverage means that the entire Message needs to be protected by a checksum. Only Full
Coverage is guaranteed: any other requests are advisory, which may result in Full Coverage
being applied.

Name:

Type:

Default:

9.1.3.7. Reliable Data Transfer (Message)

msgReliable

Boolean

the queried Boolean value of the Selection Property reliability (Section 6.2.1)

When true, this Property specifies that a Message should be sent in such a way that the transport
protocol ensures that all data is received by the Remote Endpoint. Changing the msgReliable
Property on Messages is only possible for Connections that were established enabling the
Selection Property perMsgReliability. When this is not the case, changing msgReliable will
generate an error.

Disabling this Property indicates that the Transport Services System could disable
retransmissions or other reliability mechanisms for this particular Message, but such disabling is
not guaranteed.

If it is not configured by the application before sending, this Property's default value will be
based on the Selection Property reliability of the Connection associated with the Send action.

Name:

Type:

Default:

9.1.3.8. Message Capacity Profile Override

msgCapacityProfile

Enumeration

inherited from the Connection Property connCapacityProfile (Section 8.1.6)

This enumerated Property specifies the application's preferred trade-offs for sending this
Message; it is a per-Message override of the connCapacityProfile Connection Property (see
Section 8.1.6). If it is not configured by the application before sending, this Property's default
value will be based on the Connection Property connCapacityProfile of the Connection
associated with the Send action.

Name:

Type:

Default:

9.1.3.9. No Network-Layer Fragmentation

noFragmentation

Boolean

false

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 60

This Property specifies that a Message should be sent and received without network-layer
fragmentation, if possible. It can be used to avoid network-layer fragmentation when transport
segmentation is preferred.

This only takes effect when the transport uses a network layer that supports this functionality.
When it does take effect, setting this Property to true will cause the sender to avoid network-
layer source fragmentation. When using IPv4, this will result in the Don't Fragment (DF) bit being
set in the IP header.

Attempts to send a Message with this Property that result in a size greater than the transport's
current estimate of its maximum packet size (singularTransmissionMsgMaxLen) can result in
transport segmentation when permitted or in a SendError.

Note: noSegmentation is used when it is desired to send a Message within a single
network packet.

Name:

Type:

Default:

9.1.3.10. No Segmentation

noSegmentation

Boolean

false

When set to true, this Property requests that the transport layer not provide segmentation of
Messages larger than the maximum size permitted by the network layer and that it avoid
network-layer source fragmentation of Messages. When running over IPv4, setting this Property
to true will result in a sending Endpoint setting the Don't Fragment bit in the IPv4 header of
packets generated by the transport layer.

An attempt to send a Message that results in a size greater than the transport's current estimate
of its maximum packet size (singularTransmissionMsgMaxLen) will result in a SendError. This
only takes effect when the transport and network layers support this functionality.

9.2. Sending Data
Once a Connection has been established, it can be used for sending Messages. By default, Send
enqueues a complete Message and takes optional per-Message Properties (see Section 9.2.1). All
Send actions are asynchronous and deliver events (see Section 9.2.2). Sending partial Messages
for streaming large data is also supported (see Section 9.2.3).

Messages are sent on a Connection using the Send action:

Connection.Send(messageData, messageContext?, endOfMessage?)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 61

where messageData is the data object to send and messageContext allows adding Message
Properties, identifying Send events related to a specific Message or inspecting metadata related
to the Message sent (see Section 9.1.1).

The optional endOfMessage parameter supports partial sending and is described in Section 9.2.3.

9.2.1. Basic Sending

The most basic form of sending on a Connection involves enqueuing a single Data block as a
complete Message with default Message Properties.

The interpretation of a Message to be sent is dependent on the implementation and on the
constraints on the Protocol Stacks implied by the Connection's transport properties. For example,
a Message could be the payload of a single datagram for a UDP connection. Another example
would be an HTTP Request for an HTTP Connection.

Some transport protocols can deliver arbitrarily sized Messages, but other protocols constrain
the maximum Message size. Applications can query the Connection Property sendMsgMaxLen
(Section 8.1.11.5) to determine the maximum size allowed for a single Message. If a Message is
too large to fit in the Maximum Message Size for the Connection, the Send will fail with a
SendError event (Section 9.2.2.3). For example, it is invalid to send a Message over a UDP
connection that is larger than the available datagram sending size.

messageData := "hello"
Connection.Send(messageData)

9.2.2. Send Events

Like all actions in the Transport Services API, the Send action is asynchronous. There are several
events that can be delivered in response to sending a Message. Exactly one event (Sent, Expired,
or SendError) will be delivered in response to each call to Send.

Note that, if partial Send calls are used (Section 9.2.3), there will still be exactly one Send event
delivered for each call to Send. For example, if a Message expired while two requests to Send
data for that Message are outstanding, there will be two Expired events delivered.

The Transport Services API should allow the application to correlate a Send event to the
particular call to Send that triggered the event. The manner in which this correlation is indicated
is implementation specific.

9.2.2.1. Sent

The Sent event occurs when a previous Send action has completed, i.e., when the data derived
from the Message has been passed down or through the underlying Protocol Stack and is no
longer the responsibility of the Transport Services API. The exact disposition of the Message (i.e.,

Connection -> Sent<messageContext>

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 62

whether it has actually been transmitted, moved into a buffer on the network interface, moved
into a kernel buffer, and so on) when the Sent event occurs is implementation specific. The Sent
event contains a reference to the Message Context of the Message to which it applies.

Sent events allow an application to obtain an understanding of the amount of buffering it
creates. That is, if an application calls the Send action multiple times without waiting for a Sent
event, it has created more buffer inside the Transport Services System than an application that
always waits for the Sent event before calling the next Send action.

9.2.2.2. Expired

The Expired event occurs when a previous Send action expired before completion, i.e., when the
Message was not sent before its Lifetime (see Section 9.1.3.1) expired. This is separate from
SendError, as it is an expected behavior for partially reliable transports. The Expired event
contains a reference to the MessageContext of the Message to which it applies.

Connection -> Expired<messageContext>

9.2.2.3. SendError

A SendError occurs when a Message was not sent due to an error condition: an attempt to send a
Message that is too large for the system and Protocol Stack to handle, some failure of the
underlying Protocol Stack, or a set of Message Properties not consistent with the Connection's
transport properties. The SendError contains a reference to the MessageContext of the Message
to which it applies.

Connection -> SendError<messageContext, reason?>

9.2.3. Partial Sends

It is not always possible for an application to send all data associated with a Message in a single
Send action. The Message data might be too large for the application to hold in memory at one
time or the length of the Message might be unknown or unbounded.

Partial Message sending is supported by passing an endOfMessage Boolean parameter to the
Send action. This value is always true by default, and the simpler forms of Send are equivalent to
passing true for endOfMessage.

The following example sends a Message in two separate calls to Send:

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 63

All data sent with the same MessageContext object will be treated as belonging to the same
Message and will constitute an in-order series until the endOfMessage is marked.

messageContext := NewMessageContext()
messageContext.add(parameter, value)

messageData := "hel"
endOfMessage := false
Connection.Send(messageData, messageContext, endOfMessage)

messageData := "lo"
endOfMessage := true
Connection.Send(messageData, messageContext, endOfMessage)

9.2.4. Batching Sends

To reduce the overhead of sending multiple small Messages on a Connection, the application
could batch several Send actions together. This provides a hint to the system that the sending of
these Messages ought to be coalesced when possible and that sending any of the batched
Messages can be delayed until the last Message in the batch is enqueued.

The semantics for starting and ending a batch can be implementation specific but need to allow
multiple Send actions to be enqueued.

Connection.StartBatch()
Connection.Send(messageData)
Connection.Send(messageData)
Connection.EndBatch()

9.2.5. Send on Active Open: InitiateWithSend

For application-layer protocols where the Connection initiator also sends the first Message, the
InitiateWithSend action combines Connection initiation with a first Message sent:

Whenever possible, a messageContext should be provided to declare the Message passed to
InitiateWithSend as "safely replayable" using the safelyReplayable Property. This allows the
Transport Services System to make use of 0-RTT establishment in case this is supported by the
available Protocol Stacks. When the selected stack or stacks do not support transmitting data
upon connection establishment, InitiateWithSend is identical to Initiate followed by Send.

Neither partial sends nor send batching are supported by InitiateWithSend.

Connection := Preconnection.InitiateWithSend(messageData,
 messageContext?,
 timeout?)

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 64

The events that are sent after InitiateWithSend are equivalent to those that would be sent by
an invocation of Initiate followed immediately by an invocation of Send, with the caveat that a
send failure that occurs because the Connection could not be established will not result in a
SendError separate from the EstablishmentError signaling the failure of Connection
establishment.

9.2.6. Priority and the Transport Services API

The Transport Services API provides two Properties to allow a sender to signal the relative
priority of data transmission: msgPriority (see Section 9.1.3.2) and connPriority (see Section
8.1.2). These Properties are designed to allow the expression and implementation of a wide
variety of approaches to transmission priority in the transport and application layers, including
those that do not appear on the wire (affecting only sender-side transmission scheduling) as well
as those that do (e.g.,). A Transport Services System gives no guarantees about how its
expression of relative priorities will be realized.

The Transport Services API does order connPriority over msgPriority. In the absence of other
externalities (e.g., transport-layer flow control), a priority 1 Message on a priority 0 Connection
will be sent before a priority 0 Message on a priority 1 Connection in the same group.

[RFC9218]

9.3. Receiving Data
Once a Connection is established, it can be used for receiving data (unless the direction
Property is set to unidirectional send). As with sending, the data is received in Messages.
Receiving is an asynchronous operation in which each call to Receive enqueues a request to
receive new data from the Connection. Once data has been received, or an error is encountered,
an event will be delivered to complete any pending Receive requests (see Section 9.3.2). If
Messages arrive at the Transport Services System before Receive requests are issued, ensuing
Receive requests will first operate on these Messages before awaiting any further Messages.

9.3.1. Enqueuing Receives

Receive takes two parameters to specify the length of data that an application is willing to
receive, both of which are optional and have default values if not specified.

By default, Receive will try to deliver complete Messages in a single event (Section 9.3.2.1).

The application can set a minIncompleteLength value to indicate the smallest partial Message
data size in bytes to be delivered in response to this Receive. By default, this value is Infinite,
which means that only complete Messages should be delivered. See Sections 9.3.2.2 and 9.1.2 for
more information on how this is accomplished. If this value is set to some smaller value, the
associated Receive event will be triggered only:

when at least that many bytes are available,
the Message is complete with fewer bytes, or

Connection.Receive(minIncompleteLength?, maxLength?)

1.
2.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 65

the system needs to free up memory.

Applications always check the length of the data delivered to the Receive event and not
assume it will be as long as minIncompleteLength in the case of shorter complete Messages or
memory issues.

The maxLength argument indicates the maximum size of a Message in bytes that the application
is currently prepared to receive. The default value for maxLength is Infinite. If an incoming
Message is larger than the minimum of this size and the maximum Message size on receive for
the Connection's Protocol Stack, it will be delivered via ReceivedPartial events (Section 9.3.2.2).

Note that maxLength does not guarantee that the application will receive that many bytes if they
are available; the Transport Services API could return ReceivedPartial events with less data
than maxLength according to implementation constraints. Note also that maxLength and
minIncompleteLength are intended only to manage buffering and are not interpreted as a
receiver preference for Message reordering.

3.

SHOULD

9.3.2. Receive Events

Each call to Receive will be paired with a single Receive event. This allows an application to
provide backpressure to the Protocol Stack when it is temporarily not ready to receive Messages.
For example, an application that will later be able to handle multiple Receive events at the same
time can make multiple calls to Receive without waiting for, or processing, any Receive events.
An application that is temporarily unable to process received events for a connection could
refrain from calling Receive or could delay calling it. This would lead to a buildup of unread
data, which, in turn, could result in backpressure to the sender via a transport protocol's flow
control.

The Transport Services API should allow the application to correlate a Receive event to the
particular call to Receive that triggered the event. The manner in which this correlation is
indicated is implementation specific.

9.3.2.1. Received

A Received event indicates the delivery of a complete Message. It contains two objects: the
received bytes as messageData and the metadata and Properties of the received Message as
messageContext.

The messageData value provides access to the bytes that were received for this Message, along
with the length of the byte array. The messageContext value is provided to enable retrieving
metadata about the Message and referring to the Message. The MessageContext object is
described in Section 9.1.1.

See Section 9.1.2 regarding how to handle Message framing in situations where the Protocol
Stack only provides a byte-stream transport.

Connection -> Received<messageData, messageContext>

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 66

9.3.2.2. ReceivedPartial

If a complete Message cannot be delivered in one event, one part of the Message can be delivered
with a ReceivedPartial event. To continue to receive more of the same Message, the application
must invoke Receive again.

Multiple invocations of ReceivedPartial deliver data for the same Message by passing the same
MessageContext until the value of the endOfMessage Property is delivered or a ReceiveError
occurs. All partial blocks of a single Message are delivered in order without gaps. This event does
not support delivering non-contiguous partial Messages. For example, if Message A is divided
into three pieces (A1, A2, and A3), Message B is divided into three pieces (B1, B2, and B3), and
preserveOrder is not Require, the ReceivedPartial could deliver them in a sequence like this:
A1, B1, B2, A2, A3, B3. This is because the MessageContext allows the application to identify the
pieces as belonging to Message A and B, respectively. However, a sequence like A1, A3 will never
occur.

If the minIncompleteLength in the Receive request was set to be Infinite (indicating a request to
receive only complete Messages), the ReceivedPartial event could still be delivered if one of the
following conditions is true:

the underlying Protocol Stack supports Message boundary preservation and the size of the
Message is larger than the buffers available for a single Message;
the underlying Protocol Stack does not support Message boundary preservation and the
Message Framer (see Section 9.1.2) cannot determine the end of the Message using the buffer
space it has available; or
the underlying Protocol Stack does not support Message boundary preservation and no
Message Framer was supplied by the application.

Note that, in the absence of Message boundary preservation or a Message Framer, all bytes
received on the Connection will be represented as one large Message of indeterminate length.

In the following example, an application only wants to receive up to 1000 bytes at a time from a
Connection. If a 1500-byte Message arrives, it would receive the Message in two separate
ReceivedPartial events.

Connection -> ReceivedPartial<messageData, messageContext,
 endOfMessage>

•

•

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 67

Connection.Receive(1, 1000)

// Receive the first 1000 bytes; Message is incomplete
Connection -> ReceivedPartial<messageData(1000 bytes),
 messageContext, false>

Connection.Receive(1, 1000)

// Receive the last 500 bytes; Message is now complete
Connection -> ReceivedPartial<messageData(500 bytes),
 messageContext, true>

9.3.2.3. ReceiveError

A ReceiveError occurs when:

data is received by the underlying Protocol Stack that cannot be fully retrieved or parsed,
and
it is useful for the application to be notified of such errors.

For example, a ReceiveError can indicate that a Message (identified via the messageContext
value) that was being partially received previously, but had not completed, encountered an error
and will not be completed. This can be useful for an application, which might wish to use this
error as a hint to remove previously received Message parts from memory. As another example,
if an incoming Message does not fulfill the recvChecksumLen Property (see Section 8.1.1), an
application can use this error as a hint to inform the peer application to adjust the
msgChecksumLen Property (see Section 9.1.3.6).

In contrast, internal protocol reception errors (e.g., loss causing retransmissions in TCP) are not
signaled by this event. Conditions that irrevocably lead to the termination of the Connection are
signaled using ConnectionError (see Section 10).

Connection -> ReceiveError<messageContext, reason?>

•

•

9.3.3. Receive Message Properties

Each MessageContext could contain metadata from protocols in the Protocol Stack; which
metadata is available is Protocol Stack dependent. These are exposed through additional read-
only Message Properties that can be queried from the MessageContext object (see Section 9.1.1)
passed by the Receive event. The metadata values in the following subsections are supported.

9.3.3.1. Property Specific to UDP and UDP-Lite: ECN
When available, Message metadata carries the value of the Explicit Congestion Notification (ECN)
field. This information can be used for logging and debugging as well as building applications
that need access to information about the transport internals for their own operation. This

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 68

Property is specific to UDP and UDP-Lite, because these protocols do not implement congestion
control; hence, they expose this functionality to the application (see , following the
guidance in).

[RFC8293]
[RFC8085]

9.3.3.2. Early Data
In some cases, it can be valuable to know whether data was read as part of early data transfer
(before Connection establishment has finished). This is useful if applications need to treat early
data separately, e.g., if early data has different security Properties than data sent after
Connection establishment. In the case of TLS 1.3, client early data can be replayed maliciously
(see). Thus, receivers might wish to perform additional checks for early data to ensure
that it is safely replayable. If TLS 1.3 is available and the recipient Message was sent as part of
early data, the corresponding metadata carries a flag indicating as such. If early data is enabled,
applications should check this metadata field for Messages received during Connection
establishment and respond accordingly.

[RFC8446]

9.3.3.3. Receiving Final Messages
The MessageContext can indicate whether or not this Message is the last Message on a
Connection. For any Message that is marked as Final, the application can assume that there will
be no more Messages received on the Connection once the Message has been completely
delivered. This corresponds to the final Property that can be marked on a sent Message; see
Section 9.1.3.5.

Some transport protocols and peers do not support signaling of the final Property. Therefore,
applications rely on receiving a Message marked Final to know that the sending
Endpoint is done sending on a Connection.

Any calls to Receive once the Final Message has been delivered will result in errors.

SHOULD NOT

10. Connection Termination
A Connection can be terminated:

by the Local Endpoint (i.e., the application calls the Close, CloseGroup, Abort, or
AbortGroup action),
by the Remote Endpoint (i.e., the remote application calls the Close, CloseGroup, Abort, or
AbortGroup action), or
because of an error (e.g., a timeout).

A local call of the Close action will cause the Connection to send either a Closed event or a
ConnectionError event; a local call of the CloseGroup action will cause all of the Connections in
the group to send either a Closed event or a ConnectionError event. A local call of the Abort
action will cause the Connection to send a ConnectionError event, indicating local Abort as a
reason; a local call of the AbortGroup action will cause all of the Connections in the group to
send a ConnectionError event, indicating local Abort as a reason.

1.

2.

3.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 69

Remote action calls map to events similar to local calls (e.g., a remote Close causes the
Connection to send either a Closed event or a ConnectionError event), but in contrast to local
action calls, it is not guaranteed that such events will indeed be invoked. When an application
needs to free resources associated with a Connection, it ought not rely on the invocation of such
events due to termination calls from the Remote Endpoint; instead, it should use the local
termination actions.

Close terminates a Connection after satisfying all the requirements that were specified
regarding the delivery of Messages that the application has already given to the Transport
Services System. Upon successfully satisfying all these requirements, the Connection will send
the Closed event. For example, if reliable delivery was requested for a Message handed over
before calling Close, the Closed event will signify that this Message has indeed been delivered.
This action does not affect any other Connection in the same Connection Group.

An application assume that it can receive any further data on a Connection for which
it has called Close, even if such data is already in flight.

The Closed event informs the application that a Close action has successfully completed or that
the Remote Endpoint has closed the Connection. There is no guarantee that a remote Close will
be signaled.

Abort terminates a Connection without delivering any remaining Messages. This action does not
affect any other Connection that is entangled with this one in a Connection Group. When the
Abort action has finished, the Connection will send a ConnectionError event, indicating local
Abort as a reason.

CloseGroup gracefully terminates a Connection and any other Connections in the same
Connection Group. For example, all of the Connections in a group might be streams of a single
session for a multistreaming protocol; closing the entire group will close the underlying session.
See also Section 7.4. All Connections in the group will send a Closed event when the CloseGroup
action was successful. As with Close, any Messages remaining to be processed on a Connection
will be handled prior to closing.

MUST NOT

Connection.Close()

Connection -> Closed<>

Connection.Abort()

Connection.CloseGroup()

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 70

AbortGroup terminates a Connection and any other Connections that are in the same Connection
Group without delivering any remaining Messages. When the AbortGroup action has finished, all
Connections in the group will send a ConnectionError event, indicating local Abort as a reason.

A ConnectionError informs the application that:

data could not be delivered to the peer after a timeout or
the Connection has been aborted (e.g., because the peer has called Abort).

There is no guarantee that an Abort from the peer will be signaled.

Connection.AbortGroup()

1.
2.

Connection -> ConnectionError<reason?>

11. Connection State and Ordering of Operations and Events
This Transport Services API is designed to be independent of an implementation's concurrency
model. The exact details regarding how actions are handled, and how events are dispatched, are
implementation dependent.

Some transitions of Connection states are associated with events:

A Ready event occurs when a Connection created with Initiate or InitiateWithSend
transitions to Established state.
A ConnectionReceived event occurs when a Connection created with Listen transitions to
Established state.
A RendezvousDone event occurs when a Connection created with Rendezvous transitions to
Established state.
A Closed event occurs when a Connection transitions to Closed state without error.
An EstablishmentError event occurs when a Connection created with Initiate transitions
from Establishing state to Closed state due to an error.
A ConnectionError event occurs when a Connection transitions to Closed state due to an
error in all other circumstances.

The following diagram shows the possible states of a Connection and the events that occur upon
a transition from one state to another.

•

•

•

•
•

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 71

The Transport Services API provides the following guarantees about the ordering of operations:

Sent events will occur on a Connection in the order in which the Messages were sent (i.e.,
delivered to the kernel or to the network interface, depending on the implementation).
Received events will never occur on a Connection before it is Established, i.e., before a
Ready event on that Connection or a ConnectionReceived or RendezvousDone event
containing that Connection.
No events will occur on a Connection after it is closed, i.e., after a Closed event, an
EstablishmentError or ConnectionError event will not occur on that Connection. To
ensure this ordering, a Closed event will not occur on a Connection while other events on
the Connection are still locally outstanding (i.e., known to the Transport Services API and
waiting to be dealt with by the application).

Figure 2: Connection State Diagram

 (*) (**)
Establishing -----> Established -----> Closing ------> Closed
 | ^
 | |
 +---+
 EstablishmentError<>

(*) Ready<>, ConnectionReceived<>, RendezvousDone<>
(**) Closed<>, ConnectionError<>

•

•

•

12. IANA Considerations
This document has no IANA actions.

Future works might create IANA registries for generic Transport Property names and Transport
Property Namespaces (see Section 4.1).

13. Privacy and Security Considerations
This document describes a generic API for interacting with a Transport Services System. Part of
this API includes configuration details for transport security protocols, as discussed in Section
6.3. It does not recommend use (or disuse) of specific algorithms or protocols. Any API-
compatible transport security protocol ought to work in a Transport Services System. Security
considerations for these protocols are discussed in the respective specifications.

 provides general security considerations and requirements for any system that
implements the Transport Services Architecture. These include recommendations of relevance to
the API, e.g., regarding the use of keying material.

[RFC9621]

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 72

The described API is used to exchange information between an application and the Transport
Services System. The same authority implementing both systems is not necessarily expected.
However, there is an expectation that the Transport Services Implementation would either:

be provided as a library that is selected by the application from a trusted party or
be part of the operating system that the application also relies on for other tasks.

In either case, the Transport Services API is an internal interface that is used to exchange
information locally between two systems. However, as the Transport Services System is
responsible for network communication, it is in the position to potentially share any information
provided by the application with the network or another communication peer. Most of the
information provided over the Transport Services API is useful to configure and select protocols
and paths and is not necessarily privacy sensitive. Still, some information could be privacy
sensitive because it might reveal usage characteristics and habits of the user of an application.

Of course, any communication over a network reveals usage characteristics, because all packets,
as well as their timing and size, are part of the network-visible wire image . However,
the selection of a protocol and its configuration also impacts which information is visible,
potentially in clear text, and which other entities can access it. How Transport Services Systems
ought to choose protocols -- depending on the security Properties required -- is out of scope for
this specification, as it is limited to transport protocols. The choice of a security protocol can be
informed by the survey provided in .

In most cases, information provided for protocol and path selection does not directly translate to
information that can be observed by network devices on the path. However, there might be
specific configuration information that is intended for path exposure, e.g., a Diffserv codepoint
setting that is either provided directly by the application or indirectly configured for a traffic
profile.

Applications should be aware that a single communication attempt can lead to more than one
connection establishment procedure. For example, this is the case when:

the Transport Services System also executes name resolution,
support mechanisms such as TURN or ICE are used to establish connectivity if protocols or
paths are raced or if a path fails and fallback or re-establishment is supported in the
Transport Services System.

Applications should take special care when using 0-RTT session resumption (see Section 6.2.5), as
early data sent across multiple paths during Connection establishment could reveal information
that can be used to correlate Endpoints on these paths.

Applications should also take care to not assume that all data received using the Transport
Services API is always complete or well-formed. Specifically, Messages that are received partially
(see Section 9.3.2.2) could be a source of truncation attacks if applications do not distinguish
between partial Messages and complete Messages.

•
•

[RFC8546]

[RFC8922]

•
•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 73

14. References

The Transport Services API explicitly does not require the application to resolve names, though
there is a trade-off between early and late binding of addresses to names. Early binding allows
the Transport Services Implementation to reduce Connection setup latency. This is at the cost of
potentially limited scope for alternate path discovery during Connection establishment as well as
potential additional information leakage about application interest when used with a resolution
method (such as DNS without TLS) that does not protect query confidentiality. Names used with
the Transport Services API be FQDNs; not providing an FQDN will result in the
Transport Services Implementation needing to use DNS search domains for name resolution,
which might lead to inconsistent or unpredictable behavior.

These communication activities are not different from what is used at the time of writing.
However, the goal of a Transport Services System is to support such mechanisms as a generic
service within the transport layer. This enables applications to more dynamically benefit from
innovations and new protocols in the transport, although it reduces transparency of the
underlying communication actions to the application itself. The Transport Services API is
designed such that protocol and path selection can be limited to a small and controlled set if
required by the application to perform a function or to provide security. Further, introspection
on the Properties of Connection objects allows an application to determine which protocol(s) and
path(s) are in use. A Transport Services System provide a facility logging the
communication events of each Connection.

SHOULD

SHOULD

[ALPN]

[RFC2119]

[RFC8174]

[RFC9621]

14.1. Normative References

, , , and ,
, ,

, July 2014, .

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

, , , , and ,
, ,

, January 2025, .

Friedl, S. Popov, A. Langley, A. E. Stephan "Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension" RFC 7301 DOI 10.17487/
RFC7301 <https://www.rfc-editor.org/info/rfc7301>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Pauly, T., Ed. Trammell, B., Ed. Brunstrom, A. Fairhurst, G. C. S. Perkins
"Architecture and Requirements for Transport Services" RFC 9621 DOI
10.17487/RFC9621 <https://www.rfc-editor.org/info/RFC9621>

[RFC1122]

14.2. Informative References

, ,
, , , October 1989,

.

Braden, R., Ed. "Requirements for Internet Hosts - Communication Layers" STD
3 RFC 1122 DOI 10.17487/RFC1122 <https://www.rfc-editor.org/
info/rfc1122>

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 74

https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/RFC9621
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122

[RFC2474]

[RFC2597]

[RFC2914]

[RFC3246]

[RFC3261]

[RFC4291]

[RFC4594]

[RFC5280]

[RFC5482]

[RFC5865]

[RFC7478]

[RFC7556]

[RFC7657]

, , , and ,
, ,

, December 1998, .

, , , and ,
, , , June 1999,

.

, , , ,
, September 2000, .

, , , , , ,
, , and ,

, , , March 2002,
.

, , , , , ,
, and , , ,

, June 2002, .

 and , , ,
, February 2006, .

, , and ,
, , , August 2006,

.

, , , , , and ,

, , , May 2008,
.

 and , , ,
, March 2009, .

, , and ,
, , , May 2010,

.

, , and ,
, , , March 2015,

.

, , ,
, June 2015, .

 and ,
, , , November 2015,

.

Nichols, K. Blake, S. Baker, F. D. Black "Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers" RFC 2474 DOI 10.17487/
RFC2474 <https://www.rfc-editor.org/info/rfc2474>

Heinanen, J. Baker, F. Weiss, W. J. Wroclawski "Assured Forwarding PHB
Group" RFC 2597 DOI 10.17487/RFC2597 <https://www.rfc-
editor.org/info/rfc2597>

Floyd, S. "Congestion Control Principles" BCP 41 RFC 2914 DOI 10.17487/
RFC2914 <https://www.rfc-editor.org/info/rfc2914>

Davie, B. Charny, A. Bennet, J.C.R. Benson, K. Le Boudec, J.Y. Courtney, W.
Davari, S. Firoiu, V. D. Stiliadis "An Expedited Forwarding PHB (Per-Hop
Behavior)" RFC 3246 DOI 10.17487/RFC3246 <https://www.rfc-
editor.org/info/rfc3246>

Rosenberg, J. Schulzrinne, H. Camarillo, G. Johnston, A. Peterson, J. Sparks, R.
Handley, M. E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI
10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Hinden, R. S. Deering "IP Version 6 Addressing Architecture" RFC 4291 DOI
10.17487/RFC4291 <https://www.rfc-editor.org/info/rfc4291>

Babiarz, J. Chan, K. F. Baker "Configuration Guidelines for DiffServ Service
Classes" RFC 4594 DOI 10.17487/RFC4594 <https://www.rfc-
editor.org/info/rfc4594>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Eggert, L. F. Gont "TCP User Timeout Option" RFC 5482 DOI 10.17487/
RFC5482 <https://www.rfc-editor.org/info/rfc5482>

Baker, F. Polk, J. M. Dolly "A Differentiated Services Code Point (DSCP) for
Capacity-Admitted Traffic" RFC 5865 DOI 10.17487/RFC5865 <https://
www.rfc-editor.org/info/rfc5865>

Holmberg, C. Hakansson, S. G. Eriksson "Web Real-Time Communication
Use Cases and Requirements" RFC 7478 DOI 10.17487/RFC7478
<https://www.rfc-editor.org/info/rfc7478>

Anipko, D., Ed. "Multiple Provisioning Domain Architecture" RFC 7556 DOI
10.17487/RFC7556 <https://www.rfc-editor.org/info/rfc7556>

Black, D., Ed. P. Jones "Differentiated Services (Diffserv) and Real-Time
Communication" RFC 7657 DOI 10.17487/RFC7657 <https://
www.rfc-editor.org/info/rfc7657>

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 75

https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc2597
https://www.rfc-editor.org/info/rfc2597
https://www.rfc-editor.org/info/rfc2914
https://www.rfc-editor.org/info/rfc3246
https://www.rfc-editor.org/info/rfc3246
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc4594
https://www.rfc-editor.org/info/rfc4594
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5482
https://www.rfc-editor.org/info/rfc5865
https://www.rfc-editor.org/info/rfc5865
https://www.rfc-editor.org/info/rfc7478
https://www.rfc-editor.org/info/rfc7556
https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc7657

[RFC791]

[RFC8084]

[RFC8085]

[RFC8095]

[RFC8126]

[RFC8260]

[RFC8293]

[RFC8303]

[RFC8445]

[RFC8446]

[RFC8489]

[RFC8546]

[RFC8622]

, , , , , September
1981, .

, , , ,
, March 2017, .

, , and , , ,
, , March 2017,

.

, , and ,
, ,

, March 2017, .

, , and ,
, , , , June

2017, .

, , , and ,
,

, , November 2017,
.

, , , , and ,
, ,

, January 2018, .

, , and ,
, , ,

February 2018, .

, , and ,

, , , July 2018,
.

, , ,
, August 2018, .

, , , , , and
, , ,

, February 2020, .

 and , ,
, , April 2019,

.

,
, , , June 2019,

.

Postel, J. "Internet Protocol" STD 5 RFC 791 DOI 10.17487/RFC0791
<https://www.rfc-editor.org/info/rfc791>

Fairhurst, G. "Network Transport Circuit Breakers" BCP 208 RFC 8084 DOI
10.17487/RFC8084 <https://www.rfc-editor.org/info/rfc8084>

Eggert, L. Fairhurst, G. G. Shepherd "UDP Usage Guidelines" BCP 145 RFC
8085 DOI 10.17487/RFC8085 <https://www.rfc-editor.org/info/
rfc8085>

Fairhurst, G., Ed. Trammell, B., Ed. M. Kuehlewind, Ed. "Services Provided
by IETF Transport Protocols and Congestion Control Mechanisms" RFC 8095
DOI 10.17487/RFC8095 <https://www.rfc-editor.org/info/rfc8095>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Stewart, R. Tuexen, M. Loreto, S. R. Seggelmann "Stream Schedulers and
User Message Interleaving for the Stream Control Transmission Protocol" RFC
8260 DOI 10.17487/RFC8260 <https://www.rfc-editor.org/info/
rfc8260>

Ghanwani, A. Dunbar, L. McBride, M. Bannai, V. R. Krishnan "A
Framework for Multicast in Network Virtualization over Layer 3" RFC 8293 DOI
10.17487/RFC8293 <https://www.rfc-editor.org/info/rfc8293>

Welzl, M. Tuexen, M. N. Khademi "On the Usage of Transport Features
Provided by IETF Transport Protocols" RFC 8303 DOI 10.17487/RFC8303

<https://www.rfc-editor.org/info/rfc8303>

Keranen, A. Holmberg, C. J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Petit-Huguenin, M. Salgueiro, G. Rosenberg, J. Wing, D. Mahy, R. P.
Matthews "Session Traversal Utilities for NAT (STUN)" RFC 8489 DOI 10.17487/
RFC8489 <https://www.rfc-editor.org/info/rfc8489>

Trammell, B. M. Kuehlewind "The Wire Image of a Network Protocol" RFC
8546 DOI 10.17487/RFC8546 <https://www.rfc-editor.org/info/
rfc8546>

Bless, R. "A Lower-Effort Per-Hop Behavior (LE PHB) for Differentiated
Services" RFC 8622 DOI 10.17487/RFC8622 <https://www.rfc-
editor.org/info/rfc8622>

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 76

https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc8084
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8095
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8260
https://www.rfc-editor.org/info/rfc8293
https://www.rfc-editor.org/info/rfc8303
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8489
https://www.rfc-editor.org/info/rfc8546
https://www.rfc-editor.org/info/rfc8546
https://www.rfc-editor.org/info/rfc8622
https://www.rfc-editor.org/info/rfc8622

[RFC8656]

[RFC8699]

[RFC8801]

[RFC8838]

[RFC8899]

[RFC8922]

[RFC8923]

[RFC8981]

[RFC9218]

[RFC9329]

[RFC9623]

[TCP-COUPLING]

, , , and ,

, , , February 2020,
.

, , and , ,
, , January 2020,
.

, , , , and ,
, , , July

2020, .

, , and ,
,

, , January 2021,
.

, , , , and ,
, ,

, September 2020, .

, , , , and ,
, ,

, October 2020, .

 and , ,
, , October 2020,
.

, , , and ,
, ,

, February 2021, .

 and , , ,
, June 2022, .

 and ,
, , , November 2022,

.

, , , , and ,
, ,

, January 2025, .

, , , , , and ,

,
,

, 2018, .

Reddy, T., Ed. Johnston, A., Ed. Matthews, P. J. Rosenberg "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for
NAT (STUN)" RFC 8656 DOI 10.17487/RFC8656 <https://www.rfc-
editor.org/info/rfc8656>

Islam, S. Welzl, M. S. Gjessing "Coupled Congestion Control for RTP Media"
RFC 8699 DOI 10.17487/RFC8699 <https://www.rfc-editor.org/info/
rfc8699>

Pfister, P. Vyncke, É. Pauly, T. Schinazi, D. W. Shao "Discovering
Provisioning Domain Names and Data" RFC 8801 DOI 10.17487/RFC8801

<https://www.rfc-editor.org/info/rfc8801>

Ivov, E. Uberti, J. P. Saint-Andre "Trickle ICE: Incremental Provisioning of
Candidates for the Interactive Connectivity Establishment (ICE) Protocol" RFC
8838 DOI 10.17487/RFC8838 <https://www.rfc-editor.org/info/
rfc8838>

Fairhurst, G. Jones, T. Tüxen, M. Rüngeler, I. T. Völker "Packetization
Layer Path MTU Discovery for Datagram Transports" RFC 8899 DOI 10.17487/
RFC8899 <https://www.rfc-editor.org/info/rfc8899>

Enghardt, T. Pauly, T. Perkins, C. Rose, K. C. Wood "A Survey of the
Interaction between Security Protocols and Transport Services" RFC 8922 DOI
10.17487/RFC8922 <https://www.rfc-editor.org/info/rfc8922>

Welzl, M. S. Gjessing "A Minimal Set of Transport Services for End Systems"
RFC 8923 DOI 10.17487/RFC8923 <https://www.rfc-editor.org/info/
rfc8923>

Gont, F. Krishnan, S. Narten, T. R. Draves "Temporary Address Extensions
for Stateless Address Autoconfiguration in IPv6" RFC 8981 DOI 10.17487/
RFC8981 <https://www.rfc-editor.org/info/rfc8981>

Oku, K. L. Pardue "Extensible Prioritization Scheme for HTTP" RFC 9218
DOI 10.17487/RFC9218 <https://www.rfc-editor.org/info/rfc9218>

Pauly, T. V. Smyslov "TCP Encapsulation of Internet Key Exchange Protocol
(IKE) and IPsec Packets" RFC 9329 DOI 10.17487/RFC9329
<https://www.rfc-editor.org/info/rfc9329>

Brunstrom, A., Ed. Pauly, T., Ed. Enghardt, R. Tiesel, P. S. M. Welzl
"Implementing Interfaces to Transport Services" RFC 9623 DOI 10.17487/
RFC9623 <https://www.rfc-editor.org/info/rfc9623>

Islam, S. Welzl, M. Hiorth, K. Hayes, D. Armitage, G. S. Gjessing
"ctrlTCP: Reducing latency through coupled, heterogeneous multi-flow TCP
congestion control" IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS) DOI 10.1109/INFCOMW.
2018.8406887 <https://ieeexplore.ieee.org/document/8406887>

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 77

https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8656
https://www.rfc-editor.org/info/rfc8699
https://www.rfc-editor.org/info/rfc8699
https://www.rfc-editor.org/info/rfc8801
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8838
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc8922
https://www.rfc-editor.org/info/rfc8923
https://www.rfc-editor.org/info/rfc8923
https://www.rfc-editor.org/info/rfc8981
https://www.rfc-editor.org/info/rfc9218
https://www.rfc-editor.org/info/rfc9329
https://www.rfc-editor.org/info/rfc9623
https://ieeexplore.ieee.org/document/8406887

Appendix A. Implementation Mapping
The way the concepts from this abstract API map to concrete APIs in a given language on a given
platform largely depends on the features and norms of the language and the platform. Actions
could be implemented as either functions or method calls. For instance, actions could be
implemented via event queues, handler functions or classes, communicating sequential
processes, or other asynchronous calling conventions.

A.1. Types
The basic types mentioned in Section 1.1 typically have natural correspondences in practical
programming languages, perhaps constrained by implementation-specific limitations. For
example:

Typically, an Integer can be represented in C by an int or long; this is subject to the
underlying platform's ranges for each.
In C, a Tuple may be represented as a struct with one member for each of the value types in
the ordered grouping. However, in Python, a Tuple may be represented as a tuple, which is
a sequence of dynamically typed elements.
A Set may be represented as a std::set in C++ or as a set in Python. In C, it may be
represented as an array or as a higher-level data structure with appropriate accessors
defined.

The objects described in Section 1.1 can also be represented in different ways, depending on
which programming language is used. Objects like Preconnections, Connections, and Listeners
can be long-lived and benefit from using object-oriented constructs. Note that, in C, these objects
may need to provide a way to release or free their underlying memory when the application is
done using them. For example, since a Preconnection can be used to initiate multiple
Connections, it is the responsibility of the application to clean up the Preconnection memory if
necessary.

•

•

•

A.2. Events and Errors
This specification treats events and errors similarly. Errors, just as any other events, may occur
asynchronously in network applications. However, implementations of this API may report
errors synchronously. This is done according to the error-handling idioms of the implementation
platform, where they can be immediately detected. An example of this is to generate an
exception when attempting to initiate a Connection with inconsistent Transport Properties. An
error can provide an optional reason to the application with further details about why the error
occurred.

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 78

A.3. Time Duration
Time duration types are implementation specific. For instance, it could be a number of seconds, a
number of milliseconds, or a struct timeval in C; in C++, it could be a user-defined Duration
class.

Appendix B. Convenience Functions

B.1. Adding Preference Properties
TransportProperties will frequently need to set Selection Properties of type "Preference";
therefore, implementations can provide special actions for adding each preference level, i.e.,
TransportProperties.Set(some_property, avoid) is equivalent to
TransportProperties.Avoid(some_property):

TransportProperties.Require(property)
TransportProperties.Prefer(property)
TransportProperties.NoPreference(property)
TransportProperties.Avoid(property)
TransportProperties.Prohibit(property)

B.2. Transport Property Profiles
To ease the use of the Transport Services API, implementations can provide a mechanism to
create Transport Property objects (see Section 6.2) that are preconfigured with frequently used
sets of Properties; the following subsections list those that are in common use in applications at
the time of writing.

B.2.1. reliable-inorder-stream

This profile provides reliable, in-order transport service with congestion control. TCP is an
example of a protocol that provides this service. It should consist of the following Properties:

Property Value

reliability Require

preserveOrder Require

congestionControl Require

preserveMsgBoundaries No Preference

Table 2: reliable-inorder-stream Preferences

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 79

B.2.2. reliable-message

This profile provides Message-preserving, reliable, in-order transport service with congestion
control. SCTP is an example of a protocol that provides this service. It should consist of the
following Properties:

Property Value

reliability Require

preserveOrder Require

congestionControl Require

preserveMsgBoundaries Require

Table 3: reliable-message Preferences

B.2.3. unreliable-datagram

This profile provides a datagram transport service without any reliability guarantee. An example
of a protocol that provides this service is UDP. It consists of the following Properties:

Applications that choose this Transport Property Profile would avoid the additional latency that
could be introduced by retransmission or reordering in a transport protocol.

Applications that choose this Transport Property Profile to reduce latency should also consider
setting an appropriate capacity profile Property (see Section 8.1.6) and might benefit from
controlling checksum coverage (see Sections 6.2.7 and 6.2.8).

Property Value

reliability Avoid

preserveOrder Avoid

congestionControl No Preference

preserveMsgBoundaries Require

safelyReplayable true

Table 4: unreliable-datagram Preferences

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 80

Appendix C. Relationship to the Minimal Set of Transport
Services for End Systems

 identifies a minimal set of Transport Services that end systems should offer. These
services make all non-security-related transport features of TCP, Multipath TCP (MPTCP), UDP,
UDP-Lite, SCTP, and Low Extra Delay Background Transport (LEDBAT) available that:

require interaction with the application and
do not get in the way of a possible implementation over TCP (or, with limitations, UDP).

The following text explains how this minimal set is reflected in the present API. For brevity, it is
based on the list in and updated according to the discussion in

. The present API covers all elements of this section. This list is a subset of the
transport features in , which refers to the primitives in "pass 2". See

 for 1) further details on the implementation with TCP, MPTCP, UDP, UDP-
Lite, SCTP, and LEDBAT and 2) how to facilitate finding the specifications for implementing the
services listed below with these protocols.

Connect: Initiate action (Section 7.1).
Listen: Listen action (Section 7.2).
Specify number of attempts and/or timeout for the first establishment Message: timeout
parameter of Initiate (Section 7.1) or InitiateWithSend action (Section 9.2.5).
Disable MPTCP: multipath Property (Section 6.2.14).
Hand over a Message to reliably transfer (possibly multiple times) before Connection
establishment: InitiateWithSend action (Section 9.2.5).
Change timeout for aborting connection (using retransmit limit or time value): connTimeout
Property, using a time value (Section 8.1.3).
Timeout event when data could not be delivered for too long: ConnectionError event
(Section 10).
Suggest timeout to the peer: See "TCP-Specific Properties: User Timeout Option
(UTO)" (Section 8.2).
Notification of ICMP error message arrival: softErrorNotify (Section 6.2.17) and SoftError
event (Section 8.3.1).
Choose a scheduler to operate between streams of an association: connScheduler Property
(Section 8.1.5).
Configure priority or weight for a scheduler: connPriority Property (Section 8.1.2).
"Specify checksum coverage used by the sender" and "Disable checksum when sending":
msgChecksumLen Property (Section 9.1.3.6) and fullChecksumSend Property (Section 6.2.7).
"Specify minimum checksum coverage required by receiver" and "Disable checksum
requirement when receiving": recvChecksumLen Property (Section 8.1.1) and
fullChecksumRecv Property (Section 6.2.8).
Specify DF field: noFragmentation Property (Section 9.1.3.9).

[RFC8923]

1.
2.

Section 4.1 of [RFC8923] Section 5
of [RFC8923]

Appendix A of [RFC8923]
Section 4 of [RFC8303]

•
•
•

•
•

•

•

•

•

•

•
•

•

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 81

https://www.rfc-editor.org/rfc/rfc8923#section-4.1
https://www.rfc-editor.org/rfc/rfc8923#section-5
https://www.rfc-editor.org/rfc/rfc8923#appendix-A
https://www.rfc-editor.org/rfc/rfc8303#section-4

Get maximum transport-message size that may be sent using a non-fragmented IP packet
from the configured interface: singularTransmissionMsgMaxLen Property (Section 8.1.11.4).
Get maximum transport-message size that may be received from the configured interface:
recvMsgMaxLen Property (Section 8.1.11.6).
Obtain ECN field: This is a read-only Message Property of the MessageContext object (see
"Property Specific to UDP and UDP-Lite: ECN" (Section 9.3.3.1)).
"Specify DSCP field", "Disable Nagle algorithm", and "Enable and configure a Low Extra
Delay Background Transfer": as suggested in , these transport
features are collectively offered via the connCapacityProfile Property (Section 8.1.6). Per-
Message control ("Request not to bundle messages") is offered via the msgCapacityProfile
Property (Section 9.1.3.8).
Close after reliably delivering all remaining data, causing an event informing the application
on the other side: this is offered by the Close action with slightly changed semantics in line
with the discussion in (see also Section 10).
"Abort without delivering remaining data, causing an event informing the application on the
other side" and "Abort without delivering remaining data, not causing an event informing
the application on the other side": these are offered by the Abort action without promising
that these are signaled to the other side. If they are, a ConnectionError event will be
invoked at the peer (Section 10).
"Reliably transfer data, with congestion control", "Reliably transfer a message, with
congestion control", and "Unreliably transfer a message": data is transferred via the Send
action (Section 9.2). Reliability is controlled via the reliability (Section 6.2.1) Property and
the msgReliable Message Property (Section 9.1.3.7). Transmitting data as a Message or
without delimiters is controlled via Message Framers (Section 9.1.2). The choice of congestion
control is provided via the congestionControl Property (Section 6.2.9).
Configurable Message Reliability: the msgLifetime Message Property implements a time-
based way to configure Message reliability (Section 9.1.3.1).
"Ordered message delivery (potentially slower than unordered)" and "Unordered message
delivery (potentially faster than ordered)": these two transport features are controlled via
the Message Property msgOrdered (Section 9.1.3.3).
Request not to delay the acknowledgement (SACK) of a message: should the protocol support
it, this is one of the transport features the Transport Services System can apply when an
application uses the connCapacityProfile Property (Section 8.1.6) or the
msgCapacityProfile Message Property (Section 9.1.3.8) with value Low Latency/
Interactive.
Receive data (with no message delimiting): Receive action (Section 9.3.1) and Received
event (Section 9.3.2.1).
Receive a message: Receive action (Section 9.3.1) and Received event (Section 9.3.2.1) using
Message Framers (Section 9.1.2).
Information about partial message arrival: Receive action (Section 9.3.1) and
ReceivedPartial event (Section 9.3.2.2).
Notification of send failures: Expired event (Section 9.2.2.2) and SendError event (Section
9.2.2.3).

•

•

•

•
Section 5.5 of [RFC8923]

•

Section 5.2 of [RFC8923]
•

•

•

•

•

•

•

•

•

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 82

https://www.rfc-editor.org/rfc/rfc8923#section-5.5
https://www.rfc-editor.org/rfc/rfc8923#section-5.2

Notification that the stack has no more user data to send: applications can obtain this
information via the Sent event (Section 9.2.2.1).
Notification to a receiver that a partial message delivery has been aborted: ReceiveError
event (Section 9.3.2.3).
Notification of Excessive Retransmissions (early warning below abortion threshold):
SoftError event (Section 8.3.1).

•

•

•

Acknowledgements
This work has received funding from the European Union's Horizon 2020 research and
innovation programme under grant agreements No. 644334 (NEAT) and No. 688421 (MAMI).

This work has been supported by:

Leibniz Prize project funds from the DFG - German Research Foundation: Gottfried Wilhelm
Leibniz-Preis 2011 (FKZ FE 570/4-1).
the UK Engineering and Physical Sciences Research Council under grant EP/R04144X/1.
the Research Council of Norway under its "Toppforsk" programme through the "OCARINA"
project.

Thanks to , , , and for their
implementation and design efforts, including Happy Eyeballs, that heavily influenced this work.
Thanks to and for initial work on the Post Sockets interface, from which
this work has evolved. Thanks to for asking good questions based on
implementation experience and for contributing text, e.g., on multicast.

•

•
•

Stuart Cheshire Josh Graessley David Schinazi Eric Kinnear

Laurent Chuat Jason Lee
Maximilian Franke

Authors' Addresses
Brian Trammell ()editor
Google Switzerland GmbH
Gustav-Gull-Platz 1
CH-8004 Zurich
Switzerland

ietf@trammell.chEmail:

Michael Welzl ()editor
University of Oslo
PO Box 1080 Blindern
0316 Oslo
Norway

michawe@ifi.uio.noEmail:

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 83

mailto:ietf@trammell.ch
mailto:michawe@ifi.uio.no

Reese Enghardt
Netflix
121 Albright Way

, Los Gatos CA 95032
United States of America

ietf@tenghardt.netEmail:

Godred Fairhurst
University of Aberdeen
Fraser Noble Building
Aberdeen, AB24 3UE
United Kingdom

gorry@erg.abdn.ac.ukEmail:
https://erg.abdn.ac.uk/URI:

Mirja Kühlewind
Ericsson
Ericsson-Allee 1
Herzogenrath
Germany

mirja.kuehlewind@ericsson.comEmail:

Colin S. Perkins
University of Glasgow
School of Computing Science
Glasgow
G12 8QQ
United Kingdom

csp@csperkins.orgEmail:

Philipp S. Tiesel
SAP SE
George-Stephenson-Straße 7-13
10557 Berlin
Germany

philipp@tiesel.netEmail:

Tommy Pauly
Apple Inc.
One Apple Park Way

, Cupertino CA 95014
United States of America

tpauly@apple.comEmail:

RFC 9622 Transport Services API January 2025

Trammell, et al. Standards Track Page 84

mailto:ietf@tenghardt.net
mailto:gorry@erg.abdn.ac.uk
https://erg.abdn.ac.uk/
mailto:mirja.kuehlewind@ericsson.com
mailto:csp@csperkins.org
mailto:philipp@tiesel.net
mailto:tpauly@apple.com

	RFC 9622
	An Abstract Application Programming Interface (API) for Transport Services
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology and Notation
	1.2. Specification of Requirements

	2. Overview of the API Design
	3. API Summary
	3.1. Usage Examples
	3.1.1. Server Example
	3.1.2. Client Example
	3.1.3. Peer Example

	4. Transport Properties
	4.1. Transport Property Names
	4.2. Transport Property Types

	5. Scope of the API Definition
	6. Preestablishment Phase
	6.1. Specifying Endpoints
	6.1.1. Using Multicast Endpoints
	6.1.2. Constraining Interfaces for Endpoints
	6.1.3. Protocol-Specific Endpoints
	6.1.4. Endpoint Examples
	6.1.5. Multicast Examples

	6.2. Specifying Transport Properties
	6.2.1. Reliable Data Transfer (Connection)
	6.2.2. Preservation of Message Boundaries
	6.2.3. Configure Per-Message Reliability
	6.2.4. Preservation of Data Ordering
	6.2.5. Use 0-RTT Session Establishment with a Safely Replayable Message
	6.2.6. Multistream Connections in a Group
	6.2.7. Full Checksum Coverage on Sending
	6.2.8. Full Checksum Coverage on Receiving
	6.2.9. Congestion Control
	6.2.10. Keep-Alive Packets
	6.2.11. Interface Instance or Type
	6.2.12. Provisioning Domain Instance or Type
	6.2.13. Use Temporary Local Address
	6.2.14. Multipath Transport
	6.2.15. Advertisement of Alternative Addresses
	6.2.16. Direction of Communication
	6.2.17. Notification of ICMP Soft Error Message Arrival
	6.2.18. Initiating Side Is Not the First to Write

	6.3. Specifying Security Parameters and Callbacks
	6.3.1. Allowed Security Protocols
	6.3.2. Certificate Bundles
	6.3.3. Pinned Server Certificate
	6.3.4. Application-Layer Protocol Negotiation
	6.3.5. Groups, Ciphersuites, and Signature Algorithms
	6.3.6. Session Cache Options
	6.3.7. Pre-Shared Key
	6.3.8. Connection Establishment Callbacks

	7. Establishing Connections
	7.1. Active Open: Initiate
	7.2. Passive Open: Listen
	7.3. Peer-to-Peer Establishment: Rendezvous
	7.4. Connection Groups
	7.5. Adding and Removing Endpoints on a Connection

	8. Managing Connections
	8.1. Generic Connection Properties
	8.1.1. Required Minimum Corruption Protection Coverage for Receiving
	8.1.2. Connection Priority
	8.1.3. Timeout for Aborting Connection
	8.1.4. Timeout for Keep-Alive Packets
	8.1.5. Connection Group Transmission Scheduler
	8.1.6. Capacity Profile
	8.1.7. Policy for Using Multipath Transports
	8.1.8. Bounds on Send or Receive Rate
	8.1.9. Group Connection Limit
	8.1.10. Isolate Session
	8.1.11. Read-Only Connection Properties
	8.1.11.1. Connection State
	8.1.11.2. Can Send Data
	8.1.11.3. Can Receive Data
	8.1.11.4. Maximum Message Size Before Fragmentation or Segmentation
	8.1.11.5. Maximum Message Size on Send
	8.1.11.6. Maximum Message Size on Receive

	8.2. TCP-Specific Properties: User Timeout Option (UTO)
	8.2.1. Advertised User Timeout
	8.2.2. User Timeout Enabled
	8.2.3. Timeout Changeable

	8.3. Connection Lifecycle Events
	8.3.1. Soft Errors
	8.3.2. Path Change

	9. Data Transfer
	9.1. Messages and Framers
	9.1.1. Message Contexts
	9.1.2. Message Framers
	9.1.2.1. Adding Message Framers to Preconnections
	9.1.2.2. Framing Metadata

	9.1.3. Message Properties
	9.1.3.1. Lifetime
	9.1.3.2. Priority
	9.1.3.3. Ordered
	9.1.3.4. Safely Replayable
	9.1.3.5. Final
	9.1.3.6. Sending Corruption Protection Length
	9.1.3.7. Reliable Data Transfer (Message)
	9.1.3.8. Message Capacity Profile Override
	9.1.3.9. No Network-Layer Fragmentation
	9.1.3.10. No Segmentation

	9.2. Sending Data
	9.2.1. Basic Sending
	9.2.2. Send Events
	9.2.2.1. Sent
	9.2.2.2. Expired
	9.2.2.3. SendError

	9.2.3. Partial Sends
	9.2.4. Batching Sends
	9.2.5. Send on Active Open: InitiateWithSend
	9.2.6. Priority and the Transport Services API

	9.3. Receiving Data
	9.3.1. Enqueuing Receives
	9.3.2. Receive Events
	9.3.2.1. Received
	9.3.2.2. ReceivedPartial
	9.3.2.3. ReceiveError

	9.3.3. Receive Message Properties
	9.3.3.1. Property Specific to UDP and UDP-Lite: ECN
	9.3.3.2. Early Data
	9.3.3.3. Receiving Final Messages

	10. Connection Termination
	11. Connection State and Ordering of Operations and Events
	12. IANA Considerations
	13. Privacy and Security Considerations
	14. References
	14.1. Normative References
	14.2. Informative References

	Appendix A. Implementation Mapping
	A.1. Types
	A.2. Events and Errors
	A.3. Time Duration

	Appendix B. Convenience Functions
	B.1. Adding Preference Properties
	B.2. Transport Property Profiles
	B.2.1. reliable-inorder-stream
	B.2.2. reliable-message
	B.2.3. unreliable-datagram

	Appendix C. Relationship to the Minimal Set of Transport Services for End Systems
	Acknowledgements
	Authors' Addresses

