Stream: Internet Engineering Task Force (IETF)

RFC: 9901

Category: Standards Track

Published: November 2025

ISSN: 2070-1721

Authors: D. Fett K. Yasuda B. Campbell

Authlete Keio University Ping Identity

RFC 9901
Selective Disclosure for JSON Web Tokens (SD-JWTs)

Abstract

This specification defines a mechanism for the selective disclosure of individual elements of a
JSON data structure used as the payload of a JSON Web Signature (JWS). The primary use case is
the selective disclosure of JSON Web Token (JWT) claims.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9901.

Copyright Notice

Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Fett, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9901
https://www.rfc-editor.org/info/rfc9901
https://trustee.ietf.org/license-info

RFC 9901 SD-JWT

Table of Contents

1.

Fett, et al.

Introduction
1.1. Feature Summary

1.2. Conventions and Terminology

. Flow Diagram

. Concepts

3.1. SD-JWT and Disclosures
3.2. Disclosing to a Verifier
3.3. Optional Key Binding

3.4. Verification

. SD-JWT and SD-JWT+KB Data Formats

4.1. Issuer-Signed JWT
4.1.1. Hash Function Claim

4.1.2. Key Binding

4.2. Disclosures
4.2.1. Disclosures for Object Properties
4.2.2. Disclosures for Array Elements
4.2.3. Hashing Disclosures
4.2.4. Embedding Disclosure Digests in SD-JWTs
4.2.5. Decoy Digests

4.2.6. Recursive Disclosures
4.3. Key Binding JWT
4.3.1. Binding to an SD-JWT
4.3.2. Validating the Key Binding JWT

. Example SD-JWT

5.1. Issuance

5.2. Presentation

Standards Track

November 2025

[op]

© o 0 o o 3

11
12
12

12
13
14
15
15
16
17
18
19
19
19
20
25

Page 2

RFC 9901 SD-JWT

6. Considerations on Nested Data in SD-JWTs
6.1. Example: Flat SD-JWT
6.2. Example: Structured SD-JWT

6.3. Example: SD-JWT with Recursive Disclosures

7. Verification and Processing
7.1. Verification of the SD-JWT
7.2. Processing by the Holder
7.3. Verification by the Verifier

8. JWS JSON Serialization
8.1. New Unprotected Header Parameters
8.2. Flattened JSON Serialization
8.3. General JSON Serialization

8.4. Verification of the JWS JSON Serialized SD-JWT

9. Security Considerations

9.1. Mandatory Signing of the Issuer-Signed JWT

9.2. Manipulation of Disclosures

9.3. Entropy of the Salt

9.4. Choice of a Hash Algorithm

9.5. Key Binding

9.6. Concealing Claim Names

9.7. Selectively Disclosable Validity Claims

9.8. Distribution and Rotation of Issuer Signature Verification Key

9.9. Forwarding Credentials

9.10. Integrity of SD-JWTs and SD-JWT+KBs

9.11. Explicit Typing

9.12. Key Pair Generation and Lifecycle Management
10. Privacy Considerations

10.1. Unlinkability

10.2. Storage of User Data

10.3. Confidentiality During Transport

Fett, et al. Standards Track

November 2025

27
28
29
30

32
32
34
35

36
36
36
38
39

40
40
40
41
41
42
42
43
43
43
44
44
44
45
45
47
47

Page 3

RFC 9901 SD-JWT November 2025

10.4. Decoy Digests 48
10.5. Issuer Identifier 48
11. IANA Considerations 48
11.1. JSON Web Token Claims Registration 48
11.2. Media Type Registrations 49
11.2.1. SD-JWT Content 49
11.2.2. JWS JSON Serialized SD-JWT Content 50
11.2.3. Key Binding JWT Content 51

11.3. Structured Syntax Suffixes Registration 52
12. References 52
12.1. Normative References 52
12.2. Informative References 53
Appendix A. Additional Examples 54
A.1. Simple Structured SD-JWT 54
A.2. Complex Structured SD-JWT 59
A.3. SD-JWT-Based Verifiable Credentials (SD-JWT VC) 67
A.4. W3C Verifiable Credentials Data Model v2.0 78
A.5. Elliptic Curve Key Used in the Examples 87
Appendix B. Disclosure Format Considerations 88
Acknowledgements 90
Authors' Addresses 90

1. Introduction

The exchange of JSON data between systems is often secured against modification using JSON
Web Signatures (JWSs) [RFC7515]. A popular application of JWS is the JSON Web Token (JWT)
[RFC7519], a format that is often used to represent a user's identity. An ID Token as defined in
OpenID Connect [OpenID.Core], for example, is a JWT containing the user's claims created by the
server for consumption by a relying party. In cases where the JWT is sent immediately from the
server to the relying party, as in OpenID Connect, the server can select at the time of issuance
which user claims to include in the JWT, minimizing the information shared with the relying
party who validates the JWT.

Fett, et al. Standards Track Page 4

RFC 9901 SD-JWT November 2025

Another model is emerging that fully decouples the issuance of a JWT from its presentation. In
this model, a JWT containing many claims is issued to an intermediate party, who holds the JWT
(the Holder). The Holder can then present the JWT to different verifying parties (Verifiers) that
each may only require a subset of the claims in the JWT. For example, the JWT may contain
claims representing both an address and a birthdate. The Holder may elect to disclose only the
address to one Verifier, and only the birthdate to a different Verifier.

Privacy principles of minimal disclosure in conjunction with this model demand a mechanism
enabling selective disclosure of data elements while ensuring that Verifiers can still check the
authenticity of the data provided. This specification defines such a mechanism for JSON
payloads of JWSs, with JWTs as the primary use case.

SD-JWT is based on an approach called "salted hashes": For any data element that should be
selectively disclosable, the Issuer of the SD-JWT does not include the cleartext of the data in the
JSON payload of the JWS structure; instead, a digest of the data takes its place. For presentation
to a Verifier, the Holder sends the signed payload along with the cleartext of those claims it
wants to disclose. The Verifier can then compute the digest of the cleartext data and confirm it is
included in the signed payload. To ensure that Verifiers cannot guess cleartext values of non-
disclosed data elements, an additional salt value is used when creating the digest and sent along
with the cleartext when disclosing it.

To prevent attacks in which an SD-JWT is presented to a Verifier without the Holder's consent,
this specification additionally defines a mechanism for binding the SD-JWT to a key under the
control of the Holder (Key Binding). When Key Binding is enforced, a Holder has to prove
possession of a private key belonging to a public key contained in the SD-JWT itself. It usually
does so by signing over a data structure containing transaction-specific data, herein defined as
the Key Binding JWT. An SD-JWT with a Key Binding JWT is called "SD-JWT+KB" in this
specification.

1.1. Feature Summary

This specification defines two primary data formats:

1. SD-JWT is a composite structure, consisting of a JWS plus optional disclosures, enabling
selective disclosure of portions of the JWS payload. It comprises the following:

> A format for enabling selective disclosure in nested JSON data structures, supporting
selectively disclosable object properties (name/value pairs) and array elements.
o A format for encoding the selectively disclosable data items.

o A format extending the JWS Compact Serialization, allowing for the combined transport of
the Issuer-signed JSON data structure and the disclosable data items.

> An alternate format extending the JWS JSON Serialization, also allowing for transport of
the Issuer-signed JSON data structure and disclosure data.

2. SD-JWT+KB is a composite structure of an SD-JWT and a cryptographic key binding that can
be presented to and verified by the Verifier. It comprises the following:

> A mechanism for associating an SD-JWT with a key pair.

Fett, et al. Standards Track Page 5

RFC 9901 SD-JWT November 2025

o A format for a Key Binding JWT (KB-JWT) that allows proof of possession of the private
key of the associated key pair.

> A format extending the SD-JWT format for the combined transport of the SD-JWT and the
KB-JWT.

1.2. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

Base64url denotes the URL-safe base64 encoding without padding defined in Section 2 of
[REC7515].

Throughout this document, the term "claims" refers generally to object properties (name/value
pairs) as well as array elements.

Selective Disclosure:
Process of a Holder disclosing to a Verifier a subset of claims contained in a JWT issued by an
Issuer.

Selectively Disclosable JWT (SD-JWT):
A composite structure, consisting of an Issuer-signed JWT (JWS; see [RFC7515]) and zero or
more Disclosures, which supports selective disclosure as defined in this document. It can
contain both regular claims and digests of selectively disclosable claims.

Disclosure:
A base64url-encoded string of a JSON array that contains a salt, a claim name (present when
the claim is a name/value pair and absent when the claim is an array element), and a claim
value. The Disclosure is used to calculate a digest for the respective claim. The term
Disclosure refers to the whole base64url-encoded string.

Key Binding:
Ability of the Holder to prove possession of an SD-JWT by proving control over a private key
during the presentation. When utilizing Key Binding, an SD-JWT contains the public key
corresponding to the private key controlled by the Holder (or a reference to this public key).

Key Binding JWT (KB-JWT):
A Key Binding JWT is said to "be tied to" a particular SD-JWT when its payload is signed using
the key included in the SD-JWT payload, and the KB-JWT contains a hash of the SD-JWT in its
sd_hash claim. Its format is defined in Section 4.3.

Selectively Disclosable JWT with Key Binding (SD-JWT+KB):
A composite structure, comprising an SD-JWT and a Key Binding JWT tied to that SD-JWT.

Fett, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc7515#section-2

RFC 9901 SD-JWT November 2025

Processed SD-JWT Payload:
The JSON object resulting from verification and processing of the Issuer-signed SD-JWT, with
digest placeholders replaced by the corresponding values from the Disclosures.

Issuer:
An entity that creates SD-JWTs.

Holder:

An entity that received SD-JWTs from the Issuer and has control over them. In the context of

this document, the term may refer to the actual user, the supporting hardware and software
in their possession, or both.

Verifier:

An entity that requests, checks, and extracts the claims from an SD-JWT with its respective
Disclosures.

2. Flow Diagram

I
Issues SD-JWT
including all Disclosures

|
Presents SD-JWT or SD-JWT+KB
including selected Disclosures

Figure 1: SD-JWT Issuance and Presentation Flow

Fett, et al. Standards Track Page 7

RFC 9901 SD-JWT November 2025

3. Concepts

This section describes SD-JWTs with their respective Disclosures and Key Binding at a
conceptual level, abstracting from the data formats described in Section 4.

3.1. SD-JWT and Disclosures

An SD-JWT, at its core, is a digitally signed JSON document containing digests over the selectively
disclosable claims with the Disclosures outside the document. Disclosures can be omitted
without breaking the signature, and modifications to them can be detected. Selectively
disclosable claims can be individual object properties (name/value pairs) or array elements.

Each digest value ensures the integrity of, and maps to, the respective Disclosure. Digest values
are calculated using a hash function over the Disclosures, each of which contains a
cryptographically secure random salt, the claim name (only when the claim is an object
property), and the claim value. The Disclosures are sent to the Holder with the SD-JWT in the
format defined in Section 4. When presenting an SD-JWT to a Verifier, the Holder only includes
the Disclosures for the claims that it wants to reveal to that Verifier.

An SD-JWT MAY also contain cleartext claims that are always disclosed to the Verifier.

3.2. Disclosing to a Verifier

To disclose to a Verifier a subset of the SD-JWT claim values, a Holder sends only the Disclosures
of those selectively released claims to the Verifier as part of the SD-JWT.

3.3. Optional Key Binding

Key Binding is an optional feature. When Key Binding is required by the use case, the SD-JWT
MUST contain information about the key material controlled by the Holder.

Note: How the public key is included in SD-JWT is described in Section 4.1.2.

When a Verifier requires Key Binding, the Holder presents an SD-JWT+KB, consisting of an SD-
JWT as well as a Key Binding JWT tied to that SD-JWT. The Key Binding JWT encodes a signature
by the Holder's private key over

* a hash of the SD-JWT,
* a nonce to ensure the freshness of the signature, and
» an audience value to indicate the intended Verifier for the document.

Details of the format of Key Binding JWTs are described in Section 4.3.

Fett, et al. Standards Track Page 8

RFC 9901 SD-JWT November 2025

3.4. Verification
At a high level, the Verifier

o receives either an SD-JWT or an SD-JWT+KB from the Holder,

o verifies the signature on the SD-JWT (or the SD-JWT inside the SD-JWT+KB) using the Issuer's
public key,

« verifies the signature on the KB-JWT using the public key included (or referenced) in the SD-
JWT, if the Verifier's policy requires Key Binding, and

» calculates the digests over the Holder-Selected Disclosures and verifies that each digest is
contained in the SD-JWT.

The detailed algorithm is described in Section 7.3.

4. SD-JWT and SD-JWT+KB Data Formats

An SD-JWT is composed of

* an Issuer-signed JWT, and
» zero or more Disclosures.

An SD-JWT+KB is composed of

e an SD-JWT (i.e., an Issuer-signed JWT and zero or more Disclosures), and
* a Key Binding JWT.

The Issuer-signed JWT, Disclosures, and Key Binding JWT are explained in Sections 4.1, 4.2, and
4.3, respectively.

The compact serialized format for the SD-JWT is the concatenation of each part delineated with
a single tilde ('~') character as follows:

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure N>~

The order of the concatenated parts MUST be the Issuer-signed JWT, a tilde character, zero or
more Disclosures each followed by a tilde character, and lastly the optional Key Binding JWT. In
the case that there is no Key Binding JWT, the last element MUST be an empty string and the last
separating tilde character MUST NOT be omitted.

The serialized format for an SD-JWT+KB extends the SD-JWT format by concatenating a Key
Binding JWT.

Fett, et al. Standards Track Page 9

RFC 9901 SD-JWT November 2025

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure N>~<KB-JWT>

The two formats can be distinguished by the final ~ character that is present on an SD-JWT. A
Verifier that expects an SD-JWT MUST verify that the final tilde-separated component is empty. A
Verifier that expects an SD-JWT+KB MUST verify that its final tilde-separated component is a
valid KB-JWT.

The Disclosures are linked to the Issuer-signed JWT through the digest values included therein.
When issuing to a Holder, the Issuer includes all the relevant Disclosures in the SD-JWT.

When presenting to a Verifier, the Holder sends only the selected set of the Disclosures in the SD-
JWT.

The Holder MAY send any subset of the Disclosures to the Verifier, i.e., none, some, or all
Disclosures. For data that the Holder does not want to reveal to the Verifier, the Holder MUST NOT
send Disclosures or reveal the salt values in any other way. A Holder MUST NOT send a

Disclosure that was not included in the issued SD-JWT or send a Disclosure more than once.

To further illustrate the SD-JWT format, the following examples show a few different SD-JWT
permutations, both with and without various constituent parts.

An SD-JWT without Disclosures:

<Issuer-signed JWT>~

An SD-JWT with Disclosures:

<Issuer-signed JWT>~<Disclosure T1>~<Disclosure N>~

An SD-JWT+KB without Disclosures:

<Issuer-signed JWT>~<KB-JWT>

An SD-JWT+KB with Disclosures:

<Issuer-signed JWT>~<Disclosure T1>~<Disclosure N>~<KB-JWT>

Fett, et al. Standards Track Page 10

RFC 9901 SD-JWT November 2025

As an alternative illustration of the SD-JWT format, ABNF [RFC5234] for the SD-JWT, SD-JWT+KB,
and various constituent parts is provided here (for those who celebrate):

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x36-39 ; 0-9

BASE64URL = 1*(ALPHA / DIGIT / "-" / "_")
JWT = BASE64URL "." BASE64URL "." BASE64URL

DISCLOSURE = BASE64URL

SD-JWT = JWT "~" *(DISCLOSURE "~")
KB-JWT = JWT

SD-JWT-KB = SD-JWT KB-JWT

4.1. Issuer-Signed JWT

An SD-JWT has a JWT component that MUST be signed using the Issuer's private key. It MUST NOT
use the none algorithm.

The payload of an SD-JWT is a JSON object according to the following rules:

1. The payload MAY contain the _sd_alg key described in Section 4.1.1.

2. The payload MAY contain one or more digests of Disclosures to enable selective disclosure of
the respective claims, created and formatted as described in Section 4.2.

3. The payload MAY contain one or more decoy digests to obscure the actual number of claims
in the SD-JWT, created and formatted as described in Section 4.2.5.

4. The payload MAY contain one or more permanently disclosed claims.

5. The payload MAY contain the Holder's public key(s) or reference(s) thereto, as explained in
Section 4.1.2.

6. The payload MAY contain further claims such as iss, iat, etc. as defined or required by the
application using SD-JWTs.

7. The payload MUST NOT contain the claims _sd or ... except for the purpose of conveying
digests as described in Sections 4.2.4.1 and 4.2.4.2, respectively.

The same digest value MUST NOT appear more than once in the SD-JWT.
Application and profiles of SD-JWT SHOULD be explicitly typed. See Section 9.11 for more details.

It is the Issuer who decides which claims are selectively disclosable by the Holder and which are
not. Claims MAY be included as plaintext as well, e.g., if hiding the particular claims from the
Verifier is not required in the intended use case. See Section 9.7 for considerations on making
validity-controlling claims such as exp selectively disclosable.

Claims that are not selectively disclosable are included in the SD-JWT in plaintext just as they
would be in any other JSON structure.

Fett, et al. Standards Track Page 11

RFC 9901 SD-JWT November 2025

4.1.1. Hash Function Claim

The claim _sd_alg indicates the hash algorithm used by the Issuer to generate the digests as
described in Section 4.2. When used, this claim MUST appear at the top level of the SD-JWT
payload. It MUST NOT be used in any object nested within the payload. If the _sd_alg claim is not
present at the top level, a default value of sha-256 MUST be used.

This claim value is a case-sensitive string with the hash algorithm identifier. The hash algorithm
identifier MUST be a hash algorithm value from the "Hash Name String" column in the "Named
Information Hash Algorithm Registry" [Hash.Algs] or a value defined in another specification
and/or profile of this specification.

To promote interoperability, implementations MUST support the sha-256 hash algorithm.

See Section 9 for requirements regarding entropy of the salt, minimum length of the salt, and
choice of a hash algorithm.

4.1.2. Key Binding

If the Issuer wants to enable Key Binding, it includes a public key associated with the Holder, or
a reference thereto, using the cnf claim as defined in [RFC7800]. The jwk confirmation method,
as defined in Section 3.2 of [RFC7800], is suggested for doing so, however, other confirmation
methods can be used.

Note that, as was stated in [RFC7800], if an application needs to represent multiple
proof-of-possession keys in the same SD-JWT, one way to achieve this is to use other
claim names, in addition to cnf, to hold the additional proof-of-possession key
information.

It is outside the scope of this document to describe how the Holder key pair is established. For
example, the Holder MAY create a key pair and provide a public key to the Issuer, the Issuer MAY
create the key pair for the Holder, or Holder and Issuer MAY use pre-established key material.

Note: The examples throughout this document use the cnf claim with the jwk
member to include the raw public key by value in SD-JWT.

4.2. Disclosures
Disclosures are created differently depending on whether a claim is an object property (name/

value pair) or an array element.

* For a claim that is an object property, the Issuer creates a Disclosure as described in Section
4.2.1.

o For a claim that is an array element, the Issuer creates a Disclosure as described in Section
4.2.2.

Fett, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc7800#section-3.2

RFC 9901 SD-JWT November 2025

4.2.1. Disclosures for Object Properties

For each claim that is an object property and that is to be made selectively disclosable, the Issuer
MUST create a Disclosure as follows:

* Create a JSON array of three elements in the following order:

1. A salt value. MUST be a string. See Section 9.3 for security considerations. To achieve the
recommended entropy of the salt, the Issuer can base64url-encode 128 bits of
cryptographically secure random data, producing a string. The salt value MUST be unique
for each claim that is to be selectively disclosed. The Issuer MUST NOT reveal the salt value
to any party other than the Holder.

2. The claim name, or key, as it would be used in a regular JWT payload. It MUST be a string
and MUST NOT be _sd, .. ., or a claim name existing in the object as a permanently
disclosed claim.

3. The claim value, as it would be used in a regular JWT payload. The value can be of any
type that is allowed in JSON, including numbers, strings, booleans, arrays, null, and
objects.

* base64url-encode the UTF-8 byte sequence of the JSON array. This string is the Disclosure.

Note: The order was decided based on readability considerations: Salts have a
constant length within the SD-JWT, claim names would be around the same length
all the time, and claim values would vary in size, potentially being large objects.

The following example illustrates the steps described above.

The array is created as follows:

["_26bc4LT-ac6q2KI6cBW5es", "family_name", "Mobius"]

The resultant Disclosure is:
WyJfMjZiYzRMVC1hYzZxMktJNmNCVzV1cyIsICJImYW1pbH1fbmFtZSIsICJNw7ZiaXVzIle

Note that variations in whitespace, encoding of Unicode characters, ordering of object
properties, etc., are allowed in the JSON representation and no canonicalization needs to be
performed before base64url encoding because the digest is calculated over the base64url-
encoded value itself. For example, the following strings are all valid and encode the same claim
value "Mobius™:
* A different way to encode the unicode umlaut:
WyJfMjZiYzRMVC1hYzZxMktJNmNCVzV1cyIsICJmYW1pbH1fbmFtZSIsICJNXHUWMGY2Ym1l1cyJd

* No white space:

Fett, et al. Standards Track Page 13

RFC 9901 SD-JWT November 2025

WyJfMjZiYzRMVC1hYzZxMktJNmNCVzV1cyIsImZhbWlseV9uYW11IiwiTcO02Yml1cyJd
* Newline characters between elements:
WwoiXzI2YmMOTFQtYWM2cTJLSTZjQlc1ZXMilLAoiZmFtaWx5X25hbWUilLAoiTc02Ym11cyIKXQ
However, the digest is calculated over the respective base64url-encoded value itself, which

effectively signs the variation chosen by the Issuer and makes it immutable in the context of the
particular SD-JWT.

See Appendix B for some further considerations on the Disclosure format approach.

4.2.2. Disclosures for Array Elements
For each claim that is an array element and that is to be made selectively disclosable, the Issuer
MUST create a Disclosure as follows:

* The array MUST contain two elements in this order:

1. The salt value as described in Section 4.2.1.

2. The array element that is to be hidden. This value can be of any type that is allowed in
JSON, including numbers, strings, booleans, arrays, and objects.

The Disclosure string is created by base64url-encoding the UTF-8 byte sequence of the resultant
JSON array as described in Section 4.2.1. The same considerations regarding variations in the
result of the JSON encoding apply.

For example, a Disclosure for the second element of the nationalities array in the following
JWT Claims Set:

{
"nationalities": ["DE", "FR", "US"]
}

could be created by first creating the following array:

["1k1xF5jMY1GTPUOVMNIVCA", "FR"]

The resultant Disclosure would be:

WyJsa2x4RjVqTV1sRTRQVW92TUSJAkNBIiwgIkZSI10

Note that the size of an array alone can potentially reveal unintended information.
The use of decoys, as described in Section 4.2.5, to consistently pad the size of an
array can help obscure the actual number of elements present in any particular
instance.

Fett, et al. Standards Track Page 14

RFC 9901 SD-JWT November 2025

4.2.3. Hashing Disclosures

For embedding references to the Disclosures in the SD-JWT, each Disclosure is hashed using the
hash algorithm specified in the _sd_alg claim described in Section 4.1.1, or SHA-256 if no
algorithm is specified. The resultant digest is then included in the SD-JWT payload instead of the
original claim value, as described next.

The digest MUST be taken over the US-ASCII bytes of the base64url-encoded value that is the
Disclosure. This follows the convention in JWS [RFC7515] and JWE [RFC7516]. The bytes of the
digest MUST then be base64url encoded.

It is important to note that:

* The input to the hash function MUST be the base64url-encoded Disclosure, not the bytes
encoded by the base64url string.

* The bytes of the output of the hash function MUST be base64url encoded, and are not the
bytes making up the (sometimes used) hex representation of the bytes of the digest.

For example, the base64url-encoded SHA-256 digest of the Disclosure
WyJfMjZiYzRMVC1hYzZxMkt JNmNCVZzV1cyIsICJmYW1pbH1fbmFtZSIsICJUNw7ZiaXVzI10 for the
family_name claim from Section 4.2.1 above is
X9yHOAjrdm10ij4tWso9UzzKJvPoDxwmuEcO3XAdRCO.

4.2.4. Embedding Disclosure Digests in SD-JWTs

For selectively disclosable claims, the digests of the Disclosures are embedded into the Issuer-
signed JWT instead of the claims themselves. The precise way of embedding depends on
whether a claim is an object property (name/value pair) or an array element.

* For a claim that is an object property, the Issuer embeds a Disclosure digest as described in
Section 4.2.4.1.

o For a claim that is an array element, the Issuer creates a Disclosure digest as described in
Section 4.2.4.2.

4.2.4.1. Object Properties

Digests of Disclosures for object properties are added to an array under the new key _sd in the
object. The _sd key MUST refer to an array of strings, each string being a digest of a Disclosure or
a decoy digest as described in Section 4.2.5. An _sd key can be present at any level of the JSON
object hierarchy, including the top-level, nested deeper as described in Section 6, or in recursive
disclosures as described in Section 4.2.6.

The array MAY be empty in case the Issuer decided not to selectively disclose any of the claims at
that level. However, it is RECOMMENDED to omit the _sd key in this case to save space.

Fett, et al. Standards Track Page 15

RFC 9901 SD-JWT November 2025

The Issuer MUST hide the original order of the claims in the array. To ensure this, it is
RECOMMENDED to shuffle the array of hashes, e.g., by sorting it alphanumerically or randomly,
after potentially adding decoy digests as described in Section 4.2.5. The precise method does not
matter as long as it does not depend on the original order of elements.

For example, using the digest of the Disclosure from Section 4.2.3, the Issuer could create the
following SD-JWT payload to make family_name selectively disclosable:

{

"given_name": "Alice",
"_sd": ["X9yHOAjrdm10ij4tWso9UzzKJvPoDxwmuEcO3XAdRCO"]
}

4.2.4.2. Array Elements

Digests of Disclosures for array elements are added to the array in the same position as the
original claim value in the array. For each digest, an object of the form {"...": "<digest>"}is
added to the array. The key MUST always be the string . .. (three dots). The value MUST be the
digest of the Disclosure created as described in Section 4.2.3. There MUST NOT be any other keys
in the object. Note that the string . . . was chosen because the ellipsis character, typically
entered as three period characters, is commonly used in places where content is omitted from
the present context.

For example, using the digest of the array element Disclosure created in Section 4.2.2, the Issuer
could create the following SD-JWT payload to make the second element of the nationalities
array selectively disclosable:

{

"nationalities”:
["DE", {"...":"WOI8EKcdCtUPKGCNUrfwVp2xEgNjtoID10xc9-P10Ohs"}, "US"]

As described in Section 7.3, Verifiers ignore all selectively disclosable array elements for which
they did not receive a Disclosure. In the example above, the verification process would output an

array with only two elements, ["DE", "US"], unless the matching Disclosure for the second
element is received, in which case the output would be a three-element array, ["DE", "FR",
" US n] .

4.2.5. Decoy Digests

An Issuer MAY add additional digests to the SD-JWT payload that are not associated with any
claim. The purpose of such "decoy" digests is to make it more difficult for an adversarial Verifier
to see the original number of claims or array elements contained in the SD-JWT. Decoy digests
MAY be added both to the _sd array for objects as well as in arrays.

Fett, et al. Standards Track Page 16

RFC 9901 SD-JWT November 2025

It is RECOMMENDED to create the decoy digests by hashing over a cryptographically secure
random number. The bytes of the digest MUST then be base64url encoded as above. The same
digest function as for the Disclosures MUST be used.

For decoy digests, no Disclosure is sent to the Holder, i.e., the Holder will see digests that do not
correspond to any Disclosure. See Section 10.4 for additional privacy considerations.

To ensure readability and replicability, the examples in this specification do not contain decoy
digests unless explicitly stated. For an example with decoy digests, see Appendix A.1.

4.2.6. Recursive Disclosures

The algorithms above are compatible with "recursive disclosures"”, in which one selectively
disclosed field reveals the existence of more selectively disclosable fields. For example, consider
the following JSON structure:

“family_name": "Mobius",
"nationalities": ["DE", "FR", "UK"]

When the Holder has multiple nationalities, the Issuer may wish to conceal the presence of any
statement regarding nationalities while also allowing the holder to reveal each of those
nationalities individually. This can be accomplished by first making the entries within the
"nationalities" array selectively disclosable, and then making the whole "nationalities” field
selectively disclosable.

The following shows each of the entries within the "nationalities" array being made selectively
disclosable:

{
"family_name": "Mobius",
"nationalities": |
{"...": "PmnlrRjhLcwf8zTDdK15HVGWHtPYjddvD362WjBLwro" }
{ "...": "r823HFN6Ba_lpSANYtXqqCBAH-TsQlIzfOKOL1RAFLCM" },
{ "...": "nP5GYjwhFm6ES1AeC4NCaIliW4tz0hTrUeoJB31b5TA" }
]
}

Content of Disclosures:

PmnlrRj... = ["16_mAd@GiwaZokU26_0iBh", "DE"]
r823HFN... = ["fn9fNOrD-fFs2n303ZI-0c", "FR"]
NP5GYjw... = ["YIKesqOkXXNzMQtsX_-_1w", "UK"]

Followed by making the whole "nationalities" array selectively disclosable:

Fett, et al. Standards Track Page 17

RFC 9901 SD-JWT November 2025

“family_name": "Mobius",
"_sd": ["5G1srw3RG5W4pVTwSsYxeOWosRBbzd18ZoWKkC-hBL4"]
}

Content of Disclosures:

PmnlrRj... = ["16_mAdeGiwaZokU26_0ieh", "DE"]

r823HFN... = ["fn9fNOrD-fFs2n303ZI-0c", "FR"]

NP5GYjw... = ["YIKesqOkXXNzMQtsX_-_1w", "UK"]

5G1srw3... = ["4drfeTtSUK3aY_-PF12gcX", "nationalities",

[

{"...": "PmnlrRjhLcwf8zTDdK15HVGWHtPYjddvD362WjBLwro" },
{ "...": "r823HFN6Ba_1pSANYtXqqCBAH-TsQ1IzfOK@1RAFLCM" },
{ "...": "nP5GYjwhFm6ES1AeC4NCaIlliW4tzOhTrUeoJB31b5TA" }

With this set of disclosures, the holder could include the disclosure with hash Pmn1rRj. .. to
disclose only the "DE" nationality, or include both Pmn1rRj. .. and r823HFN. . . to disclose both
the "DE" and "FR" nationalities, but hide the "UK" nationality. In either case, the holder would
also need to include the disclosure with hash 5G1srw3. .. to disclose the nationalities field
that contains the respective elements.

Note that making recursive redactions introduces dependencies between the disclosure objects
in an SD-JWT. The r823HFN. . . disclosure cannot be used without the 561srw3. .. disclosure;
since a Verifier would not have a matching hash that would tell it where the content of the
r823HFN. . . disclosure should be inserted. If a disclosure object is included in an SD-JWT, then
the SD-JWT MUST include any other disclosure objects necessary to process the first disclosure
object. In other words, any disclosure object in an SD-JWT must "connect" to the claims in the
issuer-signed JWT, possibly via an intermediate disclosure object. In the above example, it would
be illegal to include any one of the Pmn1rRj. .., r823HFN. .., nP5GYjw. . disclosure objects
without also including the 5G1srw3. . . disclosure object.

4.3. Key Binding JWT
This section defines the Key Binding JWT, which encodes a signature over an SD-JWT by the
Holder's private key.

The Key Binding JWT MUST be a JWT according to [RFC7519], and it MUST contain the following
elements:

¢ in the JOSE header,

° typ: REQUIRED. MUST be kb+jwt, which explicitly types the Key Binding JWT as
recommended in Section 3.11 of [RFC8725].

> alg: REQUIRED. A digital signature algorithm identifier such as per the IANA "JSON Web
Signature and Encryption Algorithms" registry. It MUST NOT be none.

Fett, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc8725#section-3.11

RFC 9901 SD-JWT November 2025

¢ in the JWT payload,
° iat: REQUIRED. The value of this claim MUST be the time at which the Key Binding JWT
was issued using the syntax defined in [RFC7519].

o aud: REQUIRED. The value MUST be a single string that identifies the intended receiver of
the Key Binding JWT. How the value is represented is up to the protocol used and is out of
scope for this specification.

> nonce: REQUIRED. Ensures the freshness of the signature or its binding to the given
transaction. The value type of this claim MUST be a string. How this value is obtained is up
to the protocol used and is out of scope for this specification.

> sd_hash: REQUIRED. The base64url-encoded hash value over the Issuer-signed JWT and
the selected Disclosures as defined below.

The general extensibility model of JWT means that additional claims and header parameters can
be added to the Key Binding JWT. However, unless there is a compelling reason, this SHOULD be
avoided, as it may harm interoperability and burden conceptual integrity.

4.3.1. Binding to an SD-JWT

The hash value in the sd_hash claim binds the KB-JWT to the specific SD-JWT. The sd_hash value
MUST be taken over the US-ASCII bytes of the encoded SD-JWT, i.e., the Issuer-signed JWT, a tilde
character, and zero or more Disclosures selected for presentation to the Verifier, each followed
by a tilde character:

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure N>~

The bytes of the digest MUST then be base64url encoded.

The same hash algorithm as for the Disclosures MUST be used (defined by the _sd_alg element
in the Issuer-signed JWT or the default value, as defined in Section 4.1.1).

4.3.2. Validating the Key Binding JWT

Whether to require Key Binding is up to the Verifier's policy, based on the set of trust
requirements (such as trust frameworks) it belongs to. See Section 9.5 for security considerations.

If the Verifier requires Key Binding, the Verifier MUST ensure that the key with which it validates
the signature on the Key Binding JWT is the key specified in the SD-JWT as the Holder's public
key. For example, if the SD-JWT contains a cnf value with a jwk member, the Verifier would
parse the provided JWK and use it to verify the Key Binding JWT.

Details of the validation process are defined in Section 7.3.

5. Example SD-JWT

In this example, a simple SD-JWT is demonstrated. This example is split into issuance and
presentation.

Fett, et al. Standards Track Page 19

RFC 9901 SD-JWT November 2025

Note: Throughout the examples in this document, line breaks were added to JSON
strings and base64-encoded strings to adhere to the line-length limit in RFCs and for
readability. JSON does not allow line breaks within strings.

5.1. Issuance

The following data about the user comprises the input JWT Claims Set used by the Issuer:

{
"sub": "user_42",
"given_name": "John",
“family_name": "Doe",
"email"”: "johndoe@example.com",

"phone_number": "+1-202-555-0101",
“phone_number_verified": true,
"address": {

"street_address": "123 Main St",

"locality": "Anytown",

"region": "Anystate",

“country": "US"

}
"birthdate": "1940-061-01",
"updated_at": 1570000000,

"nationalities": [
"us",
IIDEII
]
}

In this example, the following decisions were made by the Issuer in constructing the SD-JWT:

* The nationalities array is always visible, but its contents are selectively disclosable.
* The sub element as well as essential verification data (iss, exp, cnf, etc.) are always visible.
o All other claims are selectively disclosable.

* For address, the Issuer is using a flat structure, i.e., all the claims in the address claim can
only be disclosed in full. Other options are discussed in Section 6.

The following payload is used for the SD-JWT:

Fett, et al. Standards Track Page 20

RFC 9901 SD-JWT November 2025

"_sd": [
"CrQe7S5kqBAHt-nMYXgcb6bdt2SH5aTY1sU_M-PgkjPI",
"JzYjH4sv1iHOR3PyEMfeZu6Jt69u5gehZo7F7EPY1SE",
"PorFbpKuVubxymJagvkFsFXAbRoc2JG1AUA2BA407cI",
"TGf4oLbgwd5JQaHyKVQZU9UdGEBwW5rtDsrZzfUaomLo",
"XQ_3kPKt1XyX7KANkgVR6yZ2Va5NrPIvPYbyMvRKBMM" ,
"XzFrzwscM6Gn6CJDc6VvVK8BKMNTG8vOSKfpPIZdAfdE",
"gb0sI4Edq2x2Kw-w5wPEzakob9hV1cRDOATN30QL9JM" ,
"jsu9yVulwQQlhF1M_3J1zMaSFzglhQGODpfayQwLUK4"

])

"iss": "https://issuer.example.com",

"iat": 1683000000,

"exp": 1883000000,

"sub": "user_42",

"nationalities": [

{
“L.0"r "pFndjkZ_VCzmyTabUjlZo3dh-ko8aIKQc9D1GzhaVYo"

’

i
"L "7Cf6JkPudry31lcbwHgeZ8khAv1U10S1lerPOVkBJrize"
}

1,

"_sd_alg": "sha-256",

"enf": {

"Jwk " |

"kty": "EC",
"crv": "P-256",
"x": "TCAER19Zvu30HF4j4W4vfSVoHIP1ILilD1s7vCeGemc",
"y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"

}

The respective Disclosures, created by the Issuer, are listed below. In the text below and in other
locations in this specification, the label "SHA-256 Hash:" is used as a shorthand for the label
"Base64url-Encoded SHA-256 Hash:".
* Claim given_name:
> SHA-256 Hash:
jsu9yVulwQQlhF1M_3J1zMaSFzglhQGeDpfayQwLUK4
> Disclosure:
WyIyROXDNDJzS1F2ZUNmR2ZyeUSSTj13IiwgImdpdmVuX25hbWUiLCAiSm9obiJd
> Contents:

["2GLC42sKQveCTGfryNRNOw", "given_name", "John"]
Claim family_name:

* SHA-256 Hash:

Fett, et al. Standards Track Page 21

RFC 9901 SD-JWT November 2025

TGf4oLbgwd5JQaHyKVQZU9UdGE@wW5rtDsrZzfUaomLo
* Disclosure:
WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgImZhbWlseVOuYW11IiwgIkRvZSJd
 Contents:

["eluv50g3gSNII8EYnsxA_A", "family_name", "Doe"]
Claim email:

* SHA-256 Hash:
JzYjH4sv1iHOR3PyEMfeZu6Jt69u5qehZo7F7EPY1SE
« Disclosure:

WyI2SWo3dEOtYTVpVIBHYMOTNXRtd1ZBIiwgImVtYWlsIiwgImpvaG5kb2VAZXhhbXBsZS5jb20iX
Q

e Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "email", "johndoe@example.com"]
Claim phone_number:

* SHA-256 Hash:
PorFbpKuVué6xymJagvkFsFXAbRoc2JG1AUA2BA407cI
* Disclosure:

WyJ1SThaV205UWSLUHBOUGVOZW5IZGhRIiwgInBob251X251bWJ1ciIsICIrMSOyMDItNTUTLTAXM
DEiXQ

e Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "phone_number", "+1-202-555-08101"]
Claim phone_number_verified:

* SHA-256 Hash:
XQ_3kPKt1XyX7KANkqVR6yZ2Va5NrPIvPYbyMvRKBMM
* Disclosure:
WyJRZT19PNjR6CcUF4ZTQXMmEXMDhpcm9BIiwgInBob251X251bWJ1c192ZXJpZml11ZCIsIHRydWVd
 Contents:

["Qg_064zqgAxe412a188iroA", "phone_number_verified", true]
Claim address:

* SHA-256 Hash:
XzFrzwscM6Gn6CJDc6VvVK8BkMnfG8VOSKfpPIZdATdE

 Disclosure:

Fett, et al. Standards Track Page 22

RFC 9901 SD-JWT November 2025

WyJBSngtMDk1V1BycFROTjRRTU9XUk9BIiwgImFkZHJ1c3MiLCB7INNOcmV1dF9hZGRyZXNzIjogl
JEyMyBNYWIuIFN@IiwgImxvY2FsaXR5IjogIkFueXRvd24il.CAicmVnaW9uIljogIkFueXNOYXR1Ii
wgImNvdW50cnki0iAiVVMifVe

e Contents:

["AJx-B95VPrpTtN4QMOgROA", "address", {"street_address": "123 Main St",
"locality": "Anytown", "region": "Anystate", "country": "US"}]

Claim birthdate:

* SHA-256 Hash:
gb0sI4Edq2x2Kw-w5wPEzakob9hV1cRDOATN30QL9JIM
¢ Disclosure:

WyJQYzMzSk@yTGNoY1VfbEhNZ3ZfdWZRIiwgImJpcnRoZGFOZSISICIXOTQWLTAXLTAXI10

* Contents:

["Pc33JM2LchcU_1Hggv_ufQ", "birthdate", "1940-01-061"]
Claim updated_at:

* SHA-256 Hash:
CrQe7S5kqBAHt-nMYXgc6bdt2SH5aTY1sU_M-PgkjPI
 Disclosure:

Wy JHMDJOU3 JRZmpGWFE3SW8WOXN5YWpBIiwgInVwZGFOZWRTYXQiLCAXNTcwMDAWMDAWXQ
e Contents:

["GB2NSrQf jFXQ7Io09syajA", "updated_at", 1570000000]
Array Entry:

* SHA-256 Hash:
pFndjkzZ_VCzmyTabUjlZo3dh-ko8aIKQc9D1GzhaVYo

* Disclosure:

WyJsa2x4RjVqTV1sR1RQVW92TU5JAkNBIiwgI1VTI10
e Contents:

["1k1xF5jMY1GTPUOVMNIVCA", "US"]
Array Entry:
* SHA-256 Hash:
7Cf6JkPudry3lcbwHgeZ8khAv1U10S1lerPOVkBJrwzeo

 Disclosure:

Wy JuUHVVUWS rUkZxMeJJZUF tNOFUuWEZBIiwgIkRFI10

Fett, et al. Standards Track Page 23

RFC 9901 SD-JWT November 2025

e Contents:

["nPuoQnkRFg3BIeAm7AnXFA", "DE"]

The payload is then signed by the Issuer to create the following Issuer-signed JWT:

eyJhbGciOiAiRVMyNTYiLCAidH1wIjogImV4YW1wbGUrc2Qtand@In®.eyJfc2Qi0iBb
TkNyUWU3UzVrcUJBSHQtbk1ZWGd jNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEkiLCAiSnpZ
akg@c3ZsalgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGNOVQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3ZrRnNGWEFiUm9 jMkpHbEFVQTJCQTRVN2NJIiwgI1RHZ jRvTGJINnd2Q1
S1FhSH1LV1FaVT1VZEdFMHc1cnREc3JaemZVYW9tTG8iLCAiWFFfM2tQS3QxWH1YNOtB
TmtxV1I2eVoyVmE1TnJQSXZQWWJSTXZSSOJINTSIsICJYekZyendzYOO2R242Q0pEYZzZ2
Vks4QmtNbmZHOHZPUBtmcFBJWMRBZmMRFIiwgImdiT3NJNEVKkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxY1JEMEFUT jNvUUW5Sk@iLCAianN10X1WdWx3UVFsaEZsTV8zSmx6TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh@dHBz0i8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE20DMwWMDAWMDASICJ1eHAi0iAxODgzMDAWMDAWLCAic3ViIjog
InVzZXJfNDIiLCAibmF@aW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRmSkamtaX1ZDem15
VGE2VWpsWm8zZGgta284YULLUWM5RGxHemhhV11vIn@sIHsili4uIjogIjdDZjzZKa1B1
ZHJ5M2xjYndIZ2Va0GtoQXYXVTFPU2x1clAwVmtCSnJXWjAifVesICJIfc2RTYWxnIjog
InNoYSOyNTYiLCAiY25mIjogeyJqd2si0iB7Imt@eSI6ICJFQyIsICJjcnYi0iAiUCey
NTYiLCAieCI6ICJUQOFFUjFESWNZTMB9IRjRNFcOAmMZTVMIISVAXxSUxpbERsczd2Q2VH
ZW1jIiwgInki0iAiWnhqaVdXY1pNUUdIV1dLV1EGaGJTSW1lyc1ZmdWVjQeu2dDRqVD1G
MkhaUSJ9fXe .MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-3jTijpMPNbswNzZ87wY2uHz
-CX06R04b7jYrpj9mNRAvVssXouliw

Adding the Disclosures produces the SD-JWT:

Fett, et al. Standards Track Page 24

RFC 9901 SD-JWT November 2025

eyJhbGciOiAiRVMYNTYilLCAidHIwIjogImV4YW1wbGUrc2Qtand@In®.eyJfc2Qi0iBb
TkNyUWU3UzVrcUJBSHQtbk1ZWGd jNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEKiLCAiSnpZ
akg0@c3ZsalgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGNOVQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3Z rRnNGWEFiUm9 jMkpHbEFVQTJCQTRVN2NJIiwgI1RHZ jRvTGJINnd2Q1
S1FhSH1LV1FaVT1VZEdFMHc1cnREc3JaemZVYW9tTG8iLCAiWFFfM2tQS3QxWH1YNOtB
TmtxV1I2eVoyVmE1TnJQSXZQWWJ5TXZSSOINTSIsICJYekZyendzY0OO2R242Q0pEYZzZ2
Vks4QmtNbmZHOHZPUBtmcFBJWMRBZmMRFIiwgImdiT3NJNEVKkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxYT1JEMEFUT jNvUUwW5SkOiLCAianNTOX1WdWx3UVFsaEZsTV8zSmx6 TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh@dHBz0i8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE20DMWMDAWMDASICJ1eHA10iAxODgzMDAWMDAWLCAic3ViIjog
InVzZXJfNDIiLCAibmFOaW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRmS5kamtaX1ZDem15
VGE2VWpsWm8zZGgta284YULLUWM5RGxHemhhV11vIn@sIHsili4uIjogIjdDZjZKa1B1
ZHJ5M2x3YndIZ2Va0GtoQXYXVTFPU2x1c1AwVmtCSnJXWjAifVesICJIfc2RFYWxnIjog
InNoYSOYNTYiLCAiY25mIjogeyJqd2si0iB7ImtBeSI6ICJFQyIsICJjcnYiOiAiUCBY
NTYiLCAieCI6ICJUQOFFUFESWNZT1MO9IRjRGNFcOdmMZTVMIISVAxSUxpbERsczd2Q2VH
ZW1jIiwgInki0iAiWnhqaVdXY1pNUUdIV1dLV1E@aGJTSW1lyc1ZmdWVjQeu2dDRqVD1G
MkhaUSJ9fX0.MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-3jTijpMPNbswNzZ87wY2uHz
-CX06R04b73jYrpj9mNRAvVssXouliw~WyIyROxDNDJzST1F2ZUNmR2ZyeU5STj13TiwgI
mdpdmVuX25hbWUiLCAiSm9obiJd~WyJ1bHVWNUONM2dTTk1JOEVZbnN4QV9BIiwgImZh
bWlseVOuYW11IiwgIkRvZSJd~WyI2SWo3dEOtYTVpVIBHYMOTNXRtd1ZBIiwgImVtYW1
sIiwgImpvaG5kb2VAZXhhbXBsZS5jb20iXQ~WyJ1SThaV205UWS5LUHBOUGVOZWSIZGhR
IiwgInBob251X251bWJ1ciIsICIrMSOYMDItNTUTLTAXMDEiXQ~WyJRZT19PNjR6CUF4Z
TQXMMEXMDhpcm9BIiwgInBob251X251bWJ1¢c192ZXJpZml11ZCIsIHRydWVd~WyJBSngt
MDk1V1BycFROTjRRTU9XxUk9BIiwgImFkZHJ1c3MiLCB7InNOcmV1dF9hZGRyZXNzIjog
IjEyMyBNYWLUIFNOIiwgImxvY2FsaXR5IjogIkFueXRvd24ilLCAicmVnaW9uIjogIkFu
eXNOYXR1IiwgImNvdW50cnkiOiAiVVMifVO~WyJQYzMzSkOyTGNoY1VfbEhNZ3ZfdWZR
TiwgImJpcnRoZGFOZSISICIXOTQWLTAXLTAXI10~WyJHMDJOU3JRZmpGWFE3SW8WOXNS
YWpBIiwgInVwZGFOZWRTYXQiLCAXNTcwMDAWMDAWXQ~WyJsa2x4RjVqTV1sRT1RQVWI2T
U5JdkNBIiwgI1VTI10~WyJuUHVVUWS5rUkZxMOJJZUFtNOFUWEZBIiwgIkRFI10~

5.2. Presentation

The following non-normative example shows an SD-JWT+KB as it would be sent from the Holder
to the Verifier. Note that it consists of six tilde-separated parts, with the Issuer-signed JWT as
shown above in the beginning, four Disclosures (for the claims given_name, family_name,
address, and one of the nationalities) in the middle, and the Key Binding JWT as the last
element.

Fett, et al. Standards Track Page 25

RFC 9901 SD-JWT November 2025

eyJhbGciOiAiRVMYNTYilLCAidHIwIjogImV4YW1wbGUrc2Qtand@In®.eyJfc2Qi0iBb
TkNyUWU3UzVrcUJBSHQtbk1ZWGd jNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEKiLCAiSnpZ
akg0@c3ZsalgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGNOVQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3ZrRNNGWEFiUm9 jMkpHbEFVQTJCQTRVN2NJIiwgI1RHZ jRVTGJNnd2Q1
S1FhSH1LV1FaVT1VZEdFMHc1cnREc3JaemZVYWItTG8iLCAiWFFfM2tQS3QxWHLYNOtB
TmtxV1I2eVoyVmE1TnJQSXZQWWJ5TXZSSOINTSIsICJYekZyendzY0OO2R242Q0pEYZzZ2
Vks4QmtNbmZHOHZPUBtmcFBJWMRBZmMRFIiwgImdiT3NJNEVKkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxY1JEMEFUTjNvUUw5Sk@iLCAianNT10X1WdWx3UVFsaEZsTV8zSmx6 TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh@dHBz0i8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE20DMWMDAWMDASICJ1eHA10iAxODgzMDAWMDAWLCAic3ViIjog
InVzZXJfNDIiLCAibmFOaW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRmS5kamtaX1ZDem15
VGE2VWpsWm8zZGgta284YULLUWM5RGxHemhhV11vIn@sIHsili4uIjogIjdDZjZKa1B1
ZHJ5M2x3YndIZ2Va0GtoQXYXVTFPU2x1c1AwVmtCSnJXWjAifVesICJIfc2RFYWxnIjog
INNoYSOYNTYiLCAiY25mIjogeyJqd2si0iB7Imt0eSI6ICJFQyIsICJjcnYi0iAiUCOyY
NTYiLCAieCI6ICJUQOFFUFESWNZT1MO9IRjRGNFcOdmMZTVMIISVAxSUxpbERsczd2Q2VH
ZW1jIiwgInki0iAiWnhqaVdXY1pNUUdIV1dLV1E@aGJTSW1lyc1ZmdWVjQeu2dDRqVD1G
MkhaUSJ9fX0.MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-3jTijpMPNbswNzZ87wY2uHz
-CX06R04b73jYrpj9mNRAvVssXouliw~WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgI
mZhbWlseVOuYW11IiwgIkRvZSJd~WyJBSngtMDk1V1BycFROTjRRTU9XUk9BIiwgImFk
ZHJ1c3MiLCB7InN@cmV1dF9hZGRYZXNzIjogI jEyMyBNYWIuIFN@IiwgImxvY2FsaXR5
TjogIkFueXRvd24ilCAicmVnaW9uIjogIkFueXNOYXR1IiwgImNvdW50cnki0iAiVVMi
fVO~WyIyROXDNDJzS1F2ZUNmR2ZyeU5STj13IiwgImdpdmVuX25hbWUiLCAiSm9obiJd
~WyJsa2x4RjVqTV1sRTRQVW92TU5JdkNBIiwgI1VTI10~eyJhbGci0iAiRVMyNTYiLCA
idH1wIjogImtiK2p3dCJ9.eyJub25jZSI6ICIXMjMONTY30DkwIiwgImF1ZCI6ICJodH
RwczovL3Z1lcmlmaWVyLmV4YW1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF
90YXNoIjogIjBfQWYtMkItRWhMV1g1eWRoX3cyeHp3bU82aUB2NkJfM1FDRWFUSTRmVV
kifQ.T3SIus20idN141nmVkTZVCKKhOAX97a01dMyHFiYjHm261eLiJ1YiuONFiMN8Ql
CmYzD1BLAdPvrXh52KalLguQ

The following Key Binding JWT payload was created and signed for this presentation by the
Holder:

"nonce": "1234567890",

"aud": "https://verifier.example.org",

"iat": 1748537244,

"sd_hash": "@_Af-2B-EhLWX5ydh_w2xzwm06iM66B_2QCEanI4fUY"

If the Verifier did not require Key Binding, then the Holder could have presented the SD-JWT
with selected Disclosures directly, instead of encapsulating it in an SD-JWT+KB.

After validation, the Verifier will have the following Processed SD-JWT Payload available for
further handling:

Fett, et al. Standards Track Page 26

RFC 9901 SD-JWT November 2025

"iss": "https://issuer.example.com",
"iat": 1683000000,
"exp": 1883000000,
"sub": "user_42",
"nationalities": [
n USII

]l
"enf": {
"Jwk " :
"kty": "EC",
"crv": "P-256",
"x": "TCAER19Zvu30HF4j4W4vfSVoHIP1ILilDls7vCeGemc",
"y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"

}

amily_name":
"address": {
"street_address": "123 Main St",
"locality”: "Anytown",

"region": "Anystate",

“country": "US"

}

Doe",

)
"given_name": "John"

6. Considerations on Nested Data in SD-JWTs

Being JSON, an object in an SD-JWT payload MAY contain name/value pairs where the value is
another object or objects MAY be elements in arrays. In SD-JWT, the Issuer decides for each claim
individually, on each level of the JSON, whether or not the claim should be selectively
disclosable. This choice can be made on each level independent of whether keys higher in the
hierarchy are selectively disclosable.

From this it follows that the _sd key containing digests MAY appear multiple times in an SD-JWT,
and likewise, there MAY be multiple arrays within the hierarchy with each having selectively
disclosable elements. Digests of selectively disclosable claims MAY even appear within other
Disclosures.

The following examples illustrate some of the options an Issuer has. It is up to the Issuer to
decide which structure to use, depending on, for example, the expected use cases for the SD-JWT,
requirements for privacy, size considerations, or operating environment requirements. For
more examples with nested structures, see Appendices A.1 and A.2.

The following input JWT Claims Set is used as an example throughout this section:

Fett, et al. Standards Track Page 27

RFC 9901 SD-JWT November 2025

{
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",

"address": {
"street_address": "Schulstr. 12",
"locality": "Schulpforta”,
"region": "Sachsen-Anhalt",
“country": "DE"

Note: The following examples of the structures are non-normative and are not
intended to represent all possible options. They are also not meant to define or
restrict how address can be represented in an SD-JWT.

6.1. Example: Flat SD-JWT

The Issuer can decide to treat the address claim as a block that can either be disclosed
completely or not at all. The following example shows that in this case, the entire address claim

is treated as an object in the Disclosure.

{
"_sd": |
"fOBUSQvo46yQ0-wRwXBcGqvnbKIueISEL961_Sjd4do”
1,
"iss": "https://issuer.example.com",
"iat": 1683000000,
"exp": 1883000000,
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"_sd_alg": "sha-256"
}

The Issuer would create the following Disclosure referenced by the one hash in the SD-JWT:

Claim address:

* SHA-256 Hash:
fOBUSQvo46yQ0-wRwXBcGqvnbKIueISEL961_Sjd4do

 Disclosure:
WyIyROXDNDJzS1F2ZUNmR2ZyeU5STj13IiwgImFkZHJ1c3MiLCB7InNNOcmV1dF9hZGRyZXNzIjogl
INjaHVsc3RyLiAXxMiIsICJsb2NhbG1eeSI6ICJTY2h1bHBmb3JOYSIsICJyZWdpb24i0iAiU2F jaH
N1bi1BbmhhbHQiLCAiY291bnRyeSI6ICJERSJIIXQ

¢ Contents:

["2GLC42sKQveCfGfryNRNOw", "address", {"street_address": "Schulstr. 12",
"locality": "Schulpforta", "region": "Sachsen-Anhalt", "country": "DE"}]

Fett, et al. Standards Track Page 28

RFC 9901 SD-JWT November 2025

6.2. Example: Structured SD-JWT

The Issuer may instead decide to make the address claim contents selectively disclosable
individually:

"iss": "https://issuer.example.com",

"iat": 1683000000,

"exp": 1883000000,

"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"address": {

"_sd": [
"6vh9obq-zS4GKM_7GpggVbYzzu600GXrmNVGPHP75Ude" ,
"9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",
"KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2Neg88",
"WN9r9dCBJBHTCsS2jKASXTFEYyW5m5x65_Z_2ro2jfXM"

]

Ji s
"_sd_alg": "sha-256"

In this case, the Issuer would use the following data in the Disclosures for the address sub-
claims:

Claim street_address:

* SHA-256 Hash:
9gjVuXtdFROCGRrtNcGUXmF65rdezi_6Er_j76kmYyM

* Disclosure:
WyIyROXDNDJzS1F2ZUNMR2ZyeU5STj13IiwgInNOcmV1dFOhZGRyZXNzIiwgI1NjaHVsc3RyLiAXM
iJd

 Contents:

["2GLC42sKQveCfGfryNRNOw", "street_address", "Schulstr. 12"]
Claim locality:

* SHA-256 Hash:
6vh9obq-zS4GKM_7GpggVbYzzu600GXrmNVGPHP75Ud@
* Disclosure:
WyJ1bHVWNU9NM2dTTKk1JOEVZbnN4QV9BIiwgImxvY2FsaXR5IiwgI1NjaHVscGZvenRhI10
 Contents:

["eluv50g3gSNII8EYnsxA_A", "locality", "Schulpforta"]

Fett, et al. Standards Track Page 29

RFC 9901 SD-JWT November 2025

Claim region:

* SHA-256 Hash:
KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0@g88
* Disclosure:
WyI2SWo3dEQtYTVpV1BHYMOTNXRtd1ZBIiwgInJ1Z21vbiIsICJTYWNoc2VulLUFuaGFsdCJd
 Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "region", "Sachsen-Anhalt"]
Claim country:

* SHA-256 Hash:
WN9r9dCBJ8HTCsS2 jKASXTjEYW5m5x65_7Z_2ro2jfXM
* Disclosure:
WyJ1SThaV205UW5LUHBOUGVOZW5IZGhRIiwgImNvdW50cnkilL.CAiREUiXQ
* Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "country", "DE"]

The Issuer may also make one sub-claim of address permanently disclosed and hide only the
other sub-claims:

"iss": "https://issuer.example.com",

"iat": 1683000000,

"exp": 1883000000,

"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"address": {

"_sd": [
"6vh9bq-zS4GKM_7GpggVbYzzu600GXrmNVGPHP75Ud@ ",
"9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",
"KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N6g88"

]

'ountry”: "DE"

"'_sd_alg": "sha-256"

In this case, there would be no Disclosure for country, since it is provided in the clear.

6.3. Example: SD-JWT with Recursive Disclosures

The Issuer may also decide to make the address claim contents selectively disclosable
recursively, i.e., the address claim is made selectively disclosable as well as its sub-claims:

Fett, et al. Standards Track Page 30

RFC 9901 SD-JWT November 2025

{
"_sd": |
"HvrkKX6fPVOvIK_yCVFBiLFHsMaxcD_114Em6VT8x11g"
|
"iss": "https://issuer.example.com",
"iat": 1683000000,
"exp": 1883000000,
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"_sd_alg": "sha-256"
}

The Issuer first creates Disclosures for the sub-claims and then includes their digests in the
Disclosure for the address claim:

Claim street_address:

* SHA-256 Hash:
9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM

* Disclosure:
WyIyROXDNDJzS1F2ZUNMR2ZyeU5STj13IiwgInNOcmV1dFOhZGRyZXNzIiwgI1NjaHVsc3RyLiAXM
iJd

* Contents:

["2GLC42sKQveCfGfryNRNOw", "street_address", "Schulstr. 12"]
Claim locality:

* SHA-256 Hash:
6vh9bq-zS4GKM_7GpggVbYzzu600GX rmNVGPHP75Ude
* Disclosure:
WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QVI9BIiwgImxvY2FsaXR5IiwgI1NjaHVscGZvenRhI10
 Contents:
["eluv50g3gSNII8EYnsxA_A", "locality", "Schulpforta"]

Claim region:

* SHA-256 Hash:
KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2Neg88
* Disclosure:
WyI2SWo3dEOtYTVpVIBHYMOTNXRtd1ZBIiwgInJ1Z21vbiIsICJTYWNoc2VulLUFuaGFsdCJd
 Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "region", "Sachsen-Anhalt"]

Fett, et al. Standards Track Page 31

RFC 9901 SD-JWT November 2025

Claim country:

* SHA-256 Hash:
WN9r9dCBJ8HTCsS2 jKASXTjEYW5m5x65_7_2ro2jfXM
* Disclosure:
WyJ1SThaV205UW5LUHBOUGVOZW5IZGhRIiwgImNvdW50cnkil CAIREUiXQ
 Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "country", "DE"]
Claim address:

* SHA-256 Hash:
HvrkKX6fPVOvOK_yCVFBiLFHsMaxcD_114Em6VT8x11g
* Disclosure:

WyJRZ19PNjR6cUF4ZTQxMmEXMDhpcm9BIiwgImFkZHJ1c3MiLCB7119zZCI6IFsiNnZoOWJXLXpTN
EdALTV83R3BnZ1ZiWXp6dTZvTOdYcm10VkdQSFA3NVVKMCISICISZ2pWdVhOZEZSTONNUNJOTMNHVV
htRjYT1cmR1em1fNkVyX203NmttWXINIiwgIktVUkRQaDRaQzES5LTNOaXotRGYzOVY4ZW1lkeTFvVjN
hMOgxRGEyTjBnODgilLCAiV@45cj1kQOJKOEhUQ3NTMmMpLQVN4VGpFeVc1bTVANjVIW18ycm8yamzZyY
TSJdfve

e Contents:

["Qg_064zgAxe412a1088iroA", "address", {"_sd": ["6vh9bg-
zS4GKM_7GpggVbYzzu600GXrmNVGPHP75Ude" ,
"9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM", "KURDPh4ZC19-3tiz-
Df39V8eidy1oV3a3H1Da2NBg88", "WNIr9dCBJSHTCsS2jKASXTIEYW5M5x65_7Z_2ro02jfXM"]}]

7. Verification and Processing

7.1. Verification of the SD-JWT

Upon receiving an SD-JWT, either directly or as a component of an SD-JWT+KB, a Holder or
Verifier needs to ensure that:

o the Issuer-signed JWT is valid, and

* all Disclosures are valid and correspond to a respective digest value in the Issuer-signed
JWT (directly in the payload or recursively included in the contents of other Disclosures).

The Holder or the Verifier MUST perform the following checks when receiving an SD-JWT to
validate the SD-JWT and extract the payload:

1. Separate the SD-JWT into the Issuer-signed JWT and the Disclosures (if any).

Fett, et al. Standards Track Page 32

RFC 9901 SD-JWT November 2025

2. Validate the Issuer-signed JWT:
a. Ensure that the used signing algorithm was deemed secure for the application. Refer to
[RFC8725], Sections 3.1 and 3.2 for details. The none algorithm MUST NOT be accepted.
b. Validate the signature over the Issuer-signed JWT per Section 5.2 of [RFC7515].
c. Validate the Issuer and that the signing key belongs to this Issuer.

d. Check that the _sd_alg claim value is understood and the hash algorithm is deemed
secure according to the Holder or Verifier's policy (see Section 4.1.1).

3. Process the Disclosures and embedded digests in the Issuer-signed JWT as follows:
a. For each Disclosure provided:

i. Calculate the digest over the base64url-encoded string as described in Section 4.2.3.

b. (*) Identify all embedded digests in the Issuer-signed JWT as follows:

i. Find all objects having an _sd key that refers to an array of strings.

ii. Find all array elements that are objects with one key, that key being . . . and referring to
a string.

c. (**) For each embedded digest found in the previous step:
i. Compare the value with the digests calculated previously and find the matching
Disclosure. If no such Disclosure can be found, the digest MUST be ignored.
ii. If the digest was found in an object's _sd key:
1. If the contents of the respective Disclosure is not a JSON array of three elements (salt,
claim name, claim value), the SD-JWT MUST be rejected.
2. If the claim name is _sd or . . ., the SD-JWT MUST be rejected.

3. If the claim name already exists at the level of the _sd key, the SD-JWT MUST be
rejected.

4. Insert, at the level of the _sd key, a new claim using the claim name and claim value
from the Disclosure.

5. Recursively process the value using the steps described in (*) and (**).

iii. If the digest was found in an array element:
1. If the contents of the respective Disclosure is not a JSON array of two elements (salt,
value), the SD-JWT MUST be rejected.
2. Replace the array element with the value from the Disclosure.
3. Recursively process the value using the steps described in (*) and (**).

d. Remove all array elements for which the digest was not found in the previous step.

e. Remove all _sd keys and their contents from the Issuer-signed JWT payload. If this results
in an object with no properties, it should be represented as an empty object {}.

f. Remove the claim _sd_alg from the SD-JWT payload.

Fett, et al. Standards Track Page 33

https://www.rfc-editor.org/rfc/rfc8725#section-3.1
https://www.rfc-editor.org/rfc/rfc8725#section-3.2
https://www.rfc-editor.org/rfc/rfc7515#section-5.2

RFC 9901 SD-JWT November 2025

4. If any digest value is encountered more than once in the Issuer-signed JWT payload (directly
or recursively via other Disclosures), the SD-JWT MUST be rejected.

5. If any Disclosure was not referenced by digest value in the Issuer-signed JWT (directly or
recursively via other Disclosures), the SD-JWT MUST be rejected.

6. Check that the SD-JWT is valid using claims such as nbf, exp, and aud in the processed
payload, if present. If a required validity-controlling claim is missing (see Section 9.7), the
SD-JWT MUST be rejected.

If any step fails, the SD-JWT is not valid, and processing MUST be aborted. Otherwise, the J[SON
document resulting from the preceding processing and verification steps, herein referred to as
the "Processed SD-JWT Payload", can be made available to the application to be used for its
intended purpose.

Note that these processing steps do not yield any guarantees to the Holder about
having received a complete set of Disclosures. That is, for some digest values in the
Issuer-signed JWT (which are not decoy digests), there may be no corresponding
Disclosures, for example, if the message from the Issuer was truncated. It is up to
the Holder how to maintain the mapping between the Disclosures and the plaintext
claim values to be able to display them to the user when needed.

7.2. Processing by the Holder

The Issuer provides the Holder with an SD-JWT, not an SD-JWT+KB. If the Holder receives an SD-
JWT+KB, it MUST be rejected.

When receiving an SD-JWT, the Holder MUST do the following:

1. Process the SD-JWT as defined in Section 7.1 to validate it and extract the payload.

2. Ensure that the contents of claims in the payload are acceptable (depending on the
application; for example, check that any values the Holder can check are correct).

For presentation to a Verifier, the Holder MUST perform the following (or equivalent) steps (in
addition to the checks described in Section 7.1 performed after receiving the SD-JWT):

1. Decide which Disclosures to release to the Verifier, obtaining consent if necessary (note that
if and how consent is attained is out of scope for this document).

2. Verify that each selected Disclosure satisfies one of the two following conditions:

a. The hash of the Disclosure is contained in the Issuer-signed JWT claims.
b. The hash of the Disclosure is contained in the claim value of another selected Disclosure.

3. Assemble the SD-JWT, including the Issuer-signed JWT and the selected Disclosures (see
Section 4 for the format).

4. If Key Binding is not required:
a. Send the SD-JWT to the Verifier.

Fett, et al. Standards Track Page 34

RFC 9901 SD-JWT November 2025

5. If Key Binding is required:
a. Create a Key Binding JWT tied to the SD-JWT.
b. Assemble the SD-JWT+KB by concatenating the SD-JWT and the Key Binding JWT.
c. Send the SD-JWT+KB to the Verifier.

7.3. Verification by the Verifier

Upon receiving a presentation from a Holder, in the form of either an SD-JWT or an SD-JWT+KB,
in addition to the checks described in Section 7.1, Verifiers need to ensure that

« if Key Binding is required, then the Holder has provided an SD-JWT+KB, and
* the Key Binding JWT is signed by the Holder and valid.

To this end, Verifiers MUST follow the following steps (or equivalent):

1. Determine if Key Binding is to be checked according to the Verifier's policy for the use case
at hand. This decision MUST NOT be based on whether or not a Key Binding JWT is provided
by the Holder. Refer to Section 9.5 for details.

2. If Key Binding is required and the Holder has provided an SD-JWT (without Key Binding),
the Verifier MUST reject the presentation.

3. If the Holder has provided an SD-JWT+KB, parse it into an SD-JWT and a Key Binding JWT.

4. Process the SD-JWT as defined in Section 7.1 to validate the presentation and extract the
payload.

5. If Key Binding is required:
a. Determine the public key for the Holder from the SD-JWT (see Section 4.1.2).

b. Ensure that a signing algorithm was used that was deemed secure for the application.
Refer to [RFC8725], Sections 3.1 and 3.2 for details. The none algorithm MUST NOT be
accepted.

c. Validate the signature over the Key Binding JWT per Section 5.2 of [RFEC7515].
d. Check that the typ of the Key Binding JWT is kb+jwt (see Section 4.3).

e. Check that the creation time of the Key Binding JWT, as determined by the iat claim, is
within an acceptable window.

f. Determine that the Key Binding JWT is bound to the current transaction and was created
for this Verifier (replay detection) by validating nonce and aud claims.

g. Calculate the digest over the Issuer-signed JWT and Disclosures as defined in Section 4.3.1
and verify that it matches the value of the sd_hash claim in the Key Binding JWT.

h. Check that the Key Binding JWT is a valid JWT in all other respects, per [REC7519] and
[RFC8725].

If any step fails, the presentation is not valid and processing MUST be aborted.

Otherwise, the Processed SD-JWT Payload can be passed to the application to be used for the
intended purpose.

Fett, et al. Standards Track Page 35

https://www.rfc-editor.org/rfc/rfc8725#section-3.1
https://www.rfc-editor.org/rfc/rfc8725#section-3.2
https://www.rfc-editor.org/rfc/rfc7515#section-5.2

RFC 9901 SD-JWT November 2025

8. JWS JSON Serialization

This section describes an alternative format for SD-JWTs and SD-JWT+KBs using the JWS JSON
Serialization from [RFC7515]. Supporting this format is OPTIONAL.

8.1. New Unprotected Header Parameters

For both the General and Flattened JSON Serialization, the SD-JWT or SD-JWT+KB is represented
as a JSON object according to Section 7.2 of [RFC7515]. The following new unprotected header
parameters are defined:

disclosures: An array of strings where each element is an individual Disclosure as described
in Section 4.2.

kb_jwt: Present only in an SD-JWT+KB, the Key Binding JWT as described in Section 4.3.

In an SD-JWT+KB, kb_jwt MUST be present when using the JWS JSON Serialization, and the
digest in the sd_hash claim MUST be taken over the SD-JWT as described in Section 4.3.1. This
means that even when using the JWS JSON Serialization, the representation as a regular SD-JWT
Compact Serialization MUST be created temporarily to calculate the digest. In detail, the SD-JWT
Compact Serialization part is built by concatenating the protected header, the payload, and the
signature of the JWS JSON serialized SD-JWT using a . character as a separator, and using the
Disclosures from the disclosures member of the unprotected header.

Unprotected headers other than disclosures are not covered by the digest, and therefore, as
usual, are not protected against tampering.

8.2. Flattened JSON Serialization

In the case of Flattened JSON Serialization, there is only one unprotected header.

The following is a non-normative example of a JWS JSON serialized SD-JWT as issued using the
Flattened JSON Serialization:

Fett, et al. Standards Track Page 36

https://www.rfc-editor.org/rfc/rfc7515#section-7.2

RFC 9901

SD-JWT

"header": {

"disclosures": [
"WyIyROXDNDJzSTF2ZUNmR2ZyeU5STj13IiwgInN1YiIsICJgb2huX2RvZV86M
iJd",
"WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiSm90b
iJd",
"WyI2SWo3dEOtYTVpVIBHYMOTNXRtd1ZBIiwgImZhbWlseVOuYW11IiwgIkRvZ
SJd",
"WyJ1SThaV205UW5LUHBOUGVOZW5IZGhRIiwgImJpcnRoZGFOZSIsICIXOTQwL
TAxXLTAxI1e"
]

3,
"payload": "eyJfc2QiOiBbIjRIQm42YU1ZM1d@dUdHVI1R4LXFVajZjZGs2VaJwin

1nbHRKkRMF2UGE3TFkiLCAiOHNtMVFDZ jAyMXBObkhBQBk1c1ABbTRLWmd5TkIPQV
1jVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeF10bEpmYWNhQ2FhN3VQOVJDUjUwVk
UTUjRMQVE5aXFVIiwgImpNQ1hWei@tOWI4eDM3WWNVRGZYUWluencxd1pjY2NmR1
JCQOZHCcWRHMmM8iXSwgImlzcyI6ICJodHRweczovL21zc3V1ci51leGFtecGx1LmNvbS
IsICJpYXQi0iAxNjgzMDAwWMDAWLCAiZXhwIjogMTg4MzAwWMDAWMCwgI19zZF9hbG
ci0iAic2hhLTITNiIsICJjbmYi0iB7Imp3ayIl6IHsia3R5IjogIkVDIiwgImNydi
I6ICJQLTIINIISICJ4IjogI1RDQUVSMT1adnUzTOhGNGoOVZzR2Z1NWbOhJUDFJTG
1sRGxzN3ZDZUd1bWMiLCAieSI6ICJaeGppV1diWkTRROhWVOtWUTRoY1INJaXJzVm
Z1ZWNDRTZBONGpUOUYyYSFpRIN19fQ",

"protected":

"eyJhbGciO0iAiRVMyNTYiLCAidHIwIjogImV4YWTwbGUrc2Qtand@In®e",

"signature”: "300tvPxU3QdDWUmfGexVB5rWyON2f1atg5rL825bvvD1g7ywjKDK

y2UHqHoH2QS4FA99JbG5gn1gFaGXFChfiQ"

The following is an SD-JWT+KB with two Disclosures:

Fett, et al.

Standards Track

November 2025

Page 37

RFC 9901

SD-JWT

"header": {

"disclosures": [
"WyI2SWo3dEOtYTVpVIBHYMOTNXRtd1ZBIiwgImZhbWlseVOuYW11IiwgIkRvZ
SJd",
"WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiSm90ob
iJd"
]I
"kb_jwt": "eyJhbGciOiAiRVMyNTYiLCAidHIwIjogImtiK2p3dCJ9.eyJub25j
ZSI6ICIXMjMONTY30DkwIiwgImF1ZCI6ICJodHRwczovL3Z1cmlmaWVyLmV4YW
TwbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF90YXNoIjogIlZqdFBz
Z1pwUVRSeEtKdkRwUBotb1hsWktFOVo5TGdENEZ5Q3d3bO5NUNcifQ.GrDvJ2 j
hYNmUvqdwVEIrxeTFEuI5qKSM7I6P95JmA6Wko-FBB5vPGQnOwvmdgjLCE2iDR
h1r82zchjmABQ3V8w"

Ji o
"payload": "eyJfc2QiOiBbIjRIQm42YU1ZM1d@dUdHV1R4LXFVajZjZGs2VeJwWn

1nbHRKRMF2UGE3TFkiLCAiOHNtMVFDZ jAyMXBObkhBQBk1c1ABbTRLWmd5STkIPQV
1jVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeF10bEpmYWNhQ2FhN3VQOVJDUjUwVk
UTUjRMQVE5aXFVIiwgImpNQ1hWei®tOWI4eDM3WWNVRGZYUWluencxd1pjY2NmR1
JCQOZHcWRHMmM8iXSwgImlzcyI6ICJodHRweczovL21zc3V1ci51leGFtcGx1LmNvbS
IsICJpYXQi0iAxNjgzMDAwWMDAWLCAiZXhwIjogMTg4MzAWMDAWMCwgI19zZF9hbG
ci10iAic2hhLTITNiIsICJjbmYi0iB7Imp3ayI6IHsia3R5IjogIkVDIiwgImNydi
I6ICJQLTITNiISsICJ4IjogI1RDQUVSMT1adnUzTOhGNGoBYZzR2ZINWbOhJUDFJTG
1sRGxzN3ZDZUd1bWMilLCAieSI6ICJaeGppV1diWkTRROhWVOtWUTRoY1NJaXJzVm
Z1ZWNDRTZONGpUOUYYSFpRIN19fQ",

"protected":

"eyJhbGci0iAiRVMyNTYiLCAidH1wIjogImV4YW1wbGUrc2QtandoIne",

"signature": "300tvPxU3QdDWUmfGexVB5rWyON2f1atg5rL825bvvD1g7ywjKDK

y2UHgHoH2QS4FA99JbG5gn1qgFaGXFChfjQ"

8.3. General JSON Serialization

November 2025

In the case of General JSON Serialization, there are multiple unprotected headers (one per
signature). If present, disclosures and kb_jwt MUST be included in the first unprotected
header and MUST NOT be present in any following unprotected headers.

The following is a non-normative example of a presentation of a JWS JSON serialized SD-JWT,
including a Key Binding JWT using the General JSON Serialization:

Fett, et al.

Standards Track

Page 38

RFC 9901 SD-JWT

"payload”: "eyJfc2QiOiBbIjRIQm42YU1ZM1d@dUdHV1R4LXFVajZjZGs2VeJwWn
1nbHRKRMF2UGE3TFkiLCAiOHNtMVFDZ jAyMXBObkhBQOk1c1ABbTRLWmd5Tk9PQV
1jVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeF10bEpmYWNhQ2FhN3VQOVJDUjUwVk
UTUjRMQVE5aXFVIiwgImpNQ1hWei@tOWI4eDM3WWNVRGZYUWluencxd1pjY2NmR1
JCQOZHcWRHMmM8iXSwgImlzcyI6ICJodHRweczovL21zc3V1ci51leGFtcGx1LmNvbS
IsICJpYXQi0iAxNjgzMDAwWMDAWLCAiZXhwIjogMTg4MzAwWMDAWMCwgI19zZF9hbG
ci0iAic2hhLTITNiIsICJjbmYi0iB7Imp3ayIl6IHsia3R5IjogIkVDIiwgImNydi
I6ICJQLTIINIISICJ4IjogI1RDQUVSMT1adnUzTOhGNGoBVZzR2Z1INWbOhJUDFJTG
1sRGxzN3ZDZUd1bWMiLCAieSI6ICJaeGppV1diWkTRROhWVOtWUTRoY1NJaXJzVm
Z1ZWNDRTZONGpUOUYyYSFpRIN19fQ",

"signatures": [

"header": {
"disclosures": [
"WyI2SWo3dEOtYTVpVIBHYMOTNXRtd1ZBIiwgImZhbWlseVOuYW11IiwgI
kRvZSJd",
"WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCALS
m9obiJd"
]I
"kid": "issuer-key-1",

"kb_jwt": "eyJhbGciOiAiRVMyNTYilLCAidHlwIjogImtikK2p3dCJ9.eyJu
b25jZSI6ICIXMjMONTY30DkwIiwgImF1ZCI6ICJodHRwczovL3Z1cmlmaW
VyLmV4YWTwbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF90YXNo
IjogInFieUlXUDNwaFZneEVzRFJpd2R30Vc2QkozZHhpUEXxT1bWNZcFBidT
RFYjgifQ.VyZgxaVHh1XE6M-kuax_7Laq42uFDrx171LG2jluyKgy_PqC8
5z4DVpISdMZDASANGs-0zN2N7xnM-E1Pg@sOw"

"protected":
"eyJhbGciOiAiRVMyNTYiLCAidHIwIjogImV4YW1wbGUrc2Qtand@Ine"”,
"signature": "dz1N3uvhVHJjldyXwppmBLieTjOvuBMbzLO6rnrLIuxEQb9B

HoIOwWGrWh-UadW4orRpEiEtjf7xyHDONMJ6tBW"

"header": {
"kid": "issuer-key-2"

"protected":
"eyJhbGci0iAiRVMYNTYiLCAidH1wIjogImV4YWTwbGUrc2Qtand@Ing",
"signature": "kuXio_U88RH_-fihAPET4AFUjj0BpxsToyddMFIr6pfHKtAe

OFO0JNWQxU42rfnORUNQNTgGsT2A8LjEba5inNg”

8.4. Verification of the JWS JSON Serialized SD-JWT

November 2025

Verification of the JWS JSON serialized SD-JWT follows the rules defined in Section 3.4, except for

the following aspects:

* The SD-JWT or SD-JWT+KB does not need to be split into component parts and the

Disclosures can be found in the disclosures member of the unprotected header.

Fett, et al. Standards Track

Page 39

RFC 9901 SD-JWT November 2025

* To verify the digest in sd_hash in the Key Binding JWT of an SD-JWT+KB, the Verifier MUST
assemble the string to be hashed as described in Section 8.1.

9. Security Considerations

The security considerations help achieve the following properties:

Selective Disclosure:
An adversary in the role of the Verifier cannot obtain information from an SD-JWT about any
claim name or claim value that was not explicitly disclosed by the Holder unless that
information can be derived from other disclosed claims or sources other than the presented
SD-JWT.

Integrity:
A malicious Holder cannot modify names or values of selectively disclosable claims without
detection by the Verifier.

Additionally, as described in Section 9.5, the application of Key Binding can ensure that the
presenter of an SD-JWT credential is the Holder of the credential.

9.1. Mandatory Signing of the Issuer-Signed JWT

The JWT MUST be signed by the Issuer to protect the integrity of the issued claims. An attacker
can modify or add claims if this JWT is not signed (e.g., change the "email" attribute to take over
the victim's account or add an attribute indicating a fake academic qualification).

The Verifier MUST always check the signature of the Issuer-signed JWT to ensure that it has not
been tampered with since its issuance. The Issuer-signed JWT MUST be rejected if the signature
cannot be verified.

The security of the Issuer-signed JWT depends on the security of the signature algorithm. Per the
last paragraph of Section 5.2 of [RFC7515], it is an application-specific decision to choose the
appropriate JWS algorithm from [JWS.Algs], including post-quantum algorithms, when they are
ready.

9.2. Manipulation of Disclosures

Holders can manipulate the Disclosures by changing the values of the claims before sending
them to the Verifier. The Verifier MUST check the Disclosures to ensure that the values of the
claims are correct, i.e., the digests of the Disclosures are actually present in the signed SD-JWT.

A naive Verifier that extracts all claim values from the Disclosures (without checking the hashes)
and inserts them into the SD-JWT payload is vulnerable to this attack. However, in a structured
SD-JWT, without comparing the digests of the Disclosures, such an implementation could not
determine the correct place in a nested object where a claim needs to be inserted. Therefore, the
naive implementation would not only be insecure, but also incorrect.

Fett, et al. Standards Track Page 40

https://www.rfc-editor.org/rfc/rfc7515#section-5.2

RFC 9901 SD-JWT November 2025

The steps described in Section 7.3 ensure that the Verifier checks the Disclosures correctly.

9.3. Entropy of the Salt

The security model that conceals the plaintext claims relies on the high entropy random data of
the salt as additional input to the hash function. The randomness ensures that the same
plaintext claim value does not produce the same digest value. It also makes it infeasible to guess
the preimage of the digest (thereby learning the plaintext claim value) by enumerating the
potential value space for a claim into the hash function to search for a matching digest value. It
is therefore vitally important that unrevealed salts cannot be learned or guessed, even if other
salts have been revealed. As such, each salt MUST be created in such a manner that it is
cryptographically random, sufficiently long, and has high enough entropy that it is infeasible to
guess. A new salt MUST be chosen for each claim independently of other salts. See "Randomness
Requirements for Security" [RFC4086] for considerations on generating random values.

The RECOMMENDED minimum length of the randomly generated portion of the salt is 128 bits.

The Issuer MUST ensure that a new salt value is chosen for each claim, including when the same
claim name occurs at different places in the structure of the SD-JWT. This can be seen in the
example in Appendix A.2, where multiple claims with the name type appear, but each of them
has a different salt.

9.4. Choice of a Hash Algorithm

To ensure privacy of claims that are selectively disclosable but are not being disclosed in a given
presentation, the hash function MUST ensure that it is infeasible to calculate any portion of the
three elements (salt, claim name, claim value) from a particular digest. This implies the hash
function MUST be preimage resistant, but should also not allow an observer to infer any partial
information about the undisclosed content. In the terminology of cryptographic commitment
schemes, the hash function needs to be computationally hiding.

To ensure the integrity of selectively disclosable claims, the hash function MUST be second-
preimage resistant. That is, for any combination of salt, claim name, and claim value, it is
infeasible to find a different combination of salt, claim name, and claim value that results in the
same digest.

The hash function SHOULD also be collision resistant. Although not essential to the anticipated
uses of SD-JWT, without collision resistance an Issuer may be able to find multiple disclosures
that have the same hash value. In which case, the signature over the SD-JWT would not then
commit the Issuer to the contents of the JWT. The collision resistance of the hash function used
to generate digests SHOULD match the collision resistance of the hash function used by the
signature scheme. For example, use of the ES512 signature algorithm would require a disclosure
hash function with at least 256-bit collision resistance, such as SHA-512.

Inclusion in the "Named Information Hash Algorithm Registry" [Hash.Algs] alone does not
indicate a hash algorithm's suitability for use in SD-JWT (it contains several heavily truncated
digests, such as sha-256-32 and sha-256-64, which are unfit for security applications).

Fett, et al. Standards Track Page 41

RFC 9901 SD-JWT November 2025

9.5. Key Binding

Key Binding aims to ensure that the presenter of an SD-JWT credential is actually the Holder of
the credential. An SD-JWT compatible with Key Binding contains a public key, or a reference to a
public key, that corresponds to a private key possessed by the Holder. The Verifier requires that
the Holder prove possession of that private key when presenting the SD-JWT credential.

Without Key Binding, a Verifier only gets the proof that the credential was issued by a particular
Issuer, but the credential itself can be replayed by anyone who gets access to it. This means that,
for example, after the credential was leaked to an attacker, the attacker can present the
credential to any Verifier that does not require a binding. Also, a malicious Verifier to which the
Holder presented the credential can present the credential to another Verifier if that other
Verifier does not require Key Binding.

Verifiers MUST decide whether Key Binding is required for a particular use case before verifying
a credential. This decision can be informed by various factors including but not limited to the
following: business requirements, the use case, the type of binding between a Holder and its
credential that is required for a use case, the sensitivity of the use case, the expected properties
of a credential, the type and contents of other credentials expected to be presented at the same
time, etc.

It is important that a Verifier not make its security policy decisions based on data that can be
influenced by an attacker. For this reason, when deciding whether or not Key Binding is
required, Verifiers MUST NOT take into account whether the Holder has provided an SD-JWT+KB
or a bare SD-JWT; otherwise, an attacker could strip the KB-JWT from an SD-JWT+KB and
present the resultant SD-JWT.

Furthermore, Verifiers should be aware that Key Binding information may have been added to
an SD-JWT in a format that they do not recognize and therefore may not be able to tell whether
or not the SD-JWT supports Key Binding.

If a Verifier determines that Key Binding is required for a particular use case and the Holder
presents either a bare SD-JWT or an SD-JWT+KB with an invalid Key Binding JWT, then the
Verifier will reject the presentation when following the verification steps described in Section
7.3.

9.6. Concealing Claim Names

SD-JWT ensures that names of claims that are selectively disclosable are always concealed
unless the claim's value is disclosed. This prevents an attacker from learning the names of such
claims. However, the names of the claims that are permanently disclosed are not hidden. This
includes the keys of objects that themselves are not concealed, but contain concealed claims.
This limitation needs to be taken into account by Issuers when creating the structure of the SD-
JWT.

Fett, et al. Standards Track Page 42

RFC 9901 SD-JWT November 2025

9.7. Selectively Disclosable Validity Claims

An Issuer MUST NOT allow any content to be selectively disclosable that is critical for evaluating
the SD-JWT's authenticity or validity. The exact list of such content will depend on the
application and SHOULD be listed by any application-specific profiles of SD-JWT. The following is
a list of registered JWT claim names that SHOULD be considered as security critical:

* iss (Issuer)

* aud (Audience), although issuers MAY allow individual entries in the array to be selectively
disclosable

* exp (Expiration Time)
* nbf (Not Before)
* cnf (Confirmation Key)

Issuers will typically include claims controlling the validity of the SD-JWT in plaintext in the SD-
JWT payload, but there is no guarantee they will do so. Therefore, Verifiers cannot reliably
depend on that and need to operate as though security-critical claims might be selectively
disclosable.

Verifiers therefore MUST ensure that all claims they deem necessary for checking the validity of
an SD-JWT in the given context are present (or disclosed, respectively) during validation of the
SD-JWT. This is implemented in the last step of the verification defined in Section 7.1.

The precise set of required validity claims will typically be defined by operating environment
rules, an application-specific profile, or the credential format, and MAY include claims other
than those listed herein.

9.8. Distribution and Rotation of Issuer Signature Verification Key

This specification does not define how signature verification keys of Issuers are distributed to
Verifiers. However, it is RECOMMENDED that Issuers publish their keys in a way that allows for
efficient and secure key rotation and revocation, for example, by publishing keys at a predefined
location using the JSON Web Key Set JWKS) format [RFC7517]. Verifiers need to ensure that they
are not using expired or revoked keys for signature verification using reasonable and
appropriate means for the given key-distribution method.

9.9. Forwarding Credentials

Any entity in possession of an SD-JWT (including an SD-JWT extracted from an SD-JWT+KB) can
forward it to any third party that does not enforce Key Binding. When doing so, that entity may
remove Disclosures such that the receiver learns only a subset of the claims contained in the
original SD-JWT.

Fett, et al. Standards Track Page 43

RFC 9901 SD-JWT November 2025

For example, a device manufacturer might produce an SD-JWT containing information about
upstream and downstream supply chain contributors. Each supply chain party can verify only
the claims that were selectively disclosed to them by an upstream party, and they can choose to
further reduce the disclosed claims when presenting to a downstream party.

In some scenarios, this behavior could be desirable; if it is not, Issuers need to support and
Verifiers need to enforce Key Binding.

9.10. Integrity of SD-JWTs and SD-JWT+KBs

With an SD-JWT, the Issuer-signed JWT is integrity protected by the Issuer's signature, and the
values of the Disclosures are integrity protected by the digests included therein. The specific set
of Disclosures, however, is not integrity protected; the SD-JWT can be modified by adding or
removing Disclosures and still be valid.

With an SD-JWT+KB, the set of selected Disclosures is integrity protected. The signature in the
Key Binding JWT covers a specific SD-JWT, with a specific Issuer-signed JWT and a specific set of
Disclosures. Thus, the signature on the Key Binding JWT, in addition to proving Key Binding, also
assures the authenticity and integrity of the set of Disclosures the Holder disclosed. The set of
Disclosures in an SD-JWT+KB is the set that the Holder intended to send; no intermediate party
has added, removed, or modified the list of Disclosures.

9.11. Explicit Typing

Section 3.11 of [RFC8725] describes the use of explicit typing as one mechanism to prevent
confusion attacks (described in Section 2.8 of [RFC8725]) in which one kind of JWT is mistaken
for another. SD-JWTs are also potentially subject to such confusion attacks, so in the absence of
other techniques, it is RECOMMENDED that application profiles of SD-JWT specify an explicit type
by including the typ header parameter when the SD-JWT is issued, and that Verifiers check this
value.

When explicit typing using the typ header is employed for an SD-JWT, it is RECOMMENDED that a
media type name of the format "application/example+sd-jwt" be used, where "example" is
replaced by the identifier for the specific kind of SD-JWT. The definition of typ in Section 4.1.9 of
[RFC7515] recommends that the "application/" prefix be omitted, so "example+sd-jwt" would be
the value of the typ header parameter.

Use of the cty content type header parameter to indicate the content type of the SD-JWT payload
can also be used to distinguish different types of JSON objects or different kinds of JWT Claim
Sets.

9.12. Key Pair Generation and Lifecycle Management

Implementations of SD-JWT rely on asymmetric cryptographic keys and must therefore ensure
that key pair generation, handling, storage, and lifecycle management are performed securely.

Fett, et al. Standards Track Page 44

https://www.rfc-editor.org/rfc/rfc8725#section-3.11
https://www.rfc-editor.org/rfc/rfc8725#section-2.8
https://www.rfc-editor.org/rfc/rfc7515#section-4.1.9

RFC 9901 SD-JWT November 2025

While the specific mechanisms for secure key management are out of scope for this document,
implementers should follow established best practices, such as those outlined in NIST SP 800-57
Part 1 [NIST.SP.800-57pt1r5]. This includes:

* Secure Generation: Using cryptographically secure methods and random number generators.
* Secure Storage: Protecting private keys from unauthorized access.
* Lifecycle Management: Ensuring secure key rotation, revocation, and disposal as needed.

Appropriate key management is essential, as any compromise can lead to unauthorized
disclosure or forgery of SD-JWTs.

10. Privacy Considerations

10.1. Unlinkability

Unlinkability is a property whereby adversaries are prevented from correlating credential
presentations of the same user beyond the user's consent. Without unlinkability, an adversary
might be able to learn more about the user than the user intended to disclose, for example:

* Cooperating Verifiers might want to track users across services to build advertising profiles.
* Issuers might want to track where users present their credentials to enable surveillance.

* After a data breach at multiple Verifiers, publicly available information might allow linking
identifiable information presented to Verifier A with originally anonymous information
presented to Verifier B, therefore revealing the identities of users of Verifier B.

The following types of unlinkability are discussed below:

* Presentation Unlinkability: A Verifier should not be able to link two presentations of the
same credential.

» Verifier/Verifier Unlinkability: The presentations made to two different Verifiers should not
reveal that the same credential was presented (e.g., if the two Verifiers collude, or if they are
forced by a third party to reveal the presentations made to them, or data leaks from one
Verifier to the other).

* Issuer/Verifier Unlinkability (Honest Verifier): An Issuer of a credential should not be able to
know that a user presented this credential unless the Verifier is sharing presentation data
with the Issuer accidentally, deliberately, or because it is forced to do so.

* Issuer/Verifier Unlinkability (Careless/Colluding/Compromised/Coerced Verifier): >An Issuer
of a credential should under no circumstances be able to tell that a user presented this
credential to a certain Verifier. In particular, this includes cases when the Verifier
accidentally or deliberately shares presentation data with the Issuer or is forced to do so.

In all cases, unlinkability is limited to cases where the disclosed claims do not contain
information that directly or indirectly identifies the user. For example, when a taxpayer
identification number is contained in the disclosed claims, the Issuer and Verifier can easily link

Fett, et al. Standards Track Page 45

RFC 9901 SD-JWT November 2025

the user's transactions. However, when the user only discloses a birthdate to one Verifier and a
postal code to another Verifier, the two Verifiers should not be able to determine that they were
interacting with the same user.

Issuer/Verifier unlinkability with a careless, colluding, compromised, or coerced Verifier cannot
be achieved in salted hash-based selective disclosure approaches, such as SD-JWT, as the issued

credential with the Issuer's signature is directly presented to the Verifier, who can forward it to

the Issuer. To reduce the risk of revealing the data later on, Section 10.2 defines requirements to
reduce the amount of data stored.

In considering Issuer/Verifier unlinkability, it is important to note the potential for an
asymmetric power dynamic between Issuers and Verifiers. This dynamic can compel an
otherwise Honest Verifier into collusion. For example, a governmental Issuer might have the
authority to mandate that a Verifier report back information about the credentials presented to
it. Legal requirements could further enforce this, explicitly undermining Issuer/Verifier
unlinkability. Similarly, a large service provider issuing credentials might implicitly pressure
Verifiers into collusion by incentivizing participation in their larger operating environment.
Deployers of SD-JWT must be aware of these potential power dynamics, mitigate them as much
as possible, and/or make the risks transparent to the user.

Contrary to that, Issuer/Verifier unlinkability with an Honest Verifier can generally be achieved.
However, a callback from the Verifier to the Issuer, such as a revocation check, could potentially
disclose information about the credential's usage to the Issuer. Where such callbacks are
necessary, they need to be executed in a manner that preserves privacy and does not disclose
details about the credential to the Issuer (the mechanism described in [TSL] is an example of an
approach that discloses minimal information towards the Issuer). It is important to note that the
timing of such requests could potentially serve as a side channel.

Verifier/Verifier unlinkability and presentation unlinkability can be achieved using batch
issuance: A batch of credentials based on the same claims is issued to the Holder instead of just a
single credential. The Holder can then use a different credential for each Verifier or even for
each session with a Verifier. New key binding keys and salts MUST be used for each credential in
the batch to ensure that the Verifiers cannot link the credentials using these values. Likewise,
claims carrying time information, like iat, exp, and nbf, MUST either be randomized within a
time period considered appropriate (e.g., randomize iat within the last 24 hours and calculate
exp accordingly) or rounded (e.g., rounded down to the beginning of the day).

SD-JWT only conceals the value of claims that are not revealed. It does not meet the security
properties for anonymous credentials [CLO1]. In particular, colluding Verifiers and Issuers can
know when they have seen the same credential no matter what fields have been disclosed, even
when none have been disclosed. This behavior may not align with what users naturally
anticipate or are guided to expect from user-interface interactions, potentially causing them to
make decisions they might not otherwise make. Workarounds such as batch issuance, as
described above, help with keeping Verifiers from linking different presentations, but cannot
work for Issuer/Verifier unlinkability. This issue applies to all salted hash-based approaches,
including mDL/mDoc [ISO.18013-5] and SD-CWT [SD-CWT].

Fett, et al. Standards Track Page 46

RFC 9901 SD-JWT November 2025

10.2. Storage of User Data

Wherever user data is stored, it represents a potential target for an attacker. This target can be
of particularly high value when the data is signed by a trusted authority like an official national
identity service. For example, in OpenID Connect [OpenID.Core], signed ID Tokens can be stored
by Relying Parties. In the case of SD-JWT, Holders have to store SD-JWTs, and Issuers and
Verifiers may decide to do so as well.

Not surprisingly, a leak of such data risks revealing private data of users to third parties. Signed
user data, the authenticity of which can be easily verified by third parties, further exacerbates
the risk. As discussed in Section 9.5, leaked SD-JWTs may also allow attackers to impersonate
Holders unless Key Binding is enforced and the attacker does not have access to the Holder's
cryptographic keys.

Due to these risks, and the risks described in Section 10.1, systems implementing SD-JWT
SHOULD be designed to minimize the amount of data that is stored. All involved parties SHOULD
NOT store SD-JWTs longer than strictly necessary, including in log files.

After Issuance, Issuers SHOULD NOT store the Issuer-signed JWT or the respective Disclosures.

Holders SHOULD store SD-JWTs only in encrypted form, and, wherever possible, use hardware-
backed encryption in particular for the private Key Binding key. Decentralized storage of data,
e.g., on user devices, SHOULD be preferred for user credentials over centralized storage. Expired
SD-JWTs SHOULD be deleted as soon as possible.

After Verification, Verifiers SHOULD NOT store the Issuer-signed JWT or the respective
Disclosures. It may be sufficient to store the result of the verification and any user data that is
needed for the application.

Exceptions from the rules above can be made if there are strong requirements to do so (e.g.,
functional requirements or legal audit requirements), secure storage can be ensured, and the
privacy impact has been assessed.

10.3. Confidentiality During Transport

If an SD-JWT or SD-JWT+KB is transmitted over an insecure channel during issuance or
presentation, an adversary may be able to intercept and read the user's personal data or
correlate the information with previous uses.

Usually, transport protocols for issuance and presentation of credentials are designed to protect
the confidentiality of the transmitted data, for example, by requiring the use of TLS.

This specification therefore considers the confidentiality of the data to be provided by the
transport protocol and does not specify any encryption mechanism.

Implementers MUST ensure that the transport protocol provides confidentiality if the privacy of
user data or correlation attacks by passive observers are a concern.

Fett, et al. Standards Track Page 47

RFC 9901 SD-JWT November 2025

To encrypt an SD-JWT or SD-JWT+KB during transit over potentially insecure or leakage-prone
channels, implementers MAY use JSON Web Encryption (JWE) [RFC7516], encapsulating the SD-
JWT or SD-JWT+KB as the plaintext payload of the JWE. Especially, when an SD-JWT is
transmitted via a URL and information may be stored/cached in the browser or end up in web
server logs, the SD-JWT SHOULD be encrypted using JWE.

10.4. Decoy Digests

The use of decoy digests is RECOMMENDED when the number of claims (or the existence of
particular claims) can be a side channel disclosing information about otherwise undisclosed
claims. In particular, if a claim in an SD-JWT is present only if a certain condition is met (e.g., a
membership number is only contained if the user is a member of a group), the Issuer SHOULD
add decoy digests when the condition is not met.

Decoy digests increase the size of the SD-JWT. The number of decoy digests (or whether to use
them at all) is a trade-off between the size of the SD-JWT and the privacy of the user's data.

10.5. Issuer Identifier

An Issuer issuing only one type of SD-JWT might have privacy implications, because if the
Holder has an SD-JWT issued by that Issuer, its type and claim names can be determined.

For example, if a cancer research institute only issued SD-JWTs with cancer registry
information, it is possible to deduce that the Holder owning its SD-JWT is a cancer patient.

Moreover, the Issuer identifier alone may reveal information about the user.

For example, when a military organization or a drug rehabilitation center issues a vaccine
credential, Verifiers can deduce that the holder is a military member or may have a substance
use disorder.

To mitigate this issue, a group of issuers may elect to use a common Issuer identifier. A group
signature scheme outside the scope of this specification may also be used, instead of an
individual signature.

11. TANA Considerations

11.1. JSON Web Token Claims Registration

IANA has registered the following Claims in the "JSON Web Token Claims" registry [JWT.Claims]
established by [RFC7519].

Claim Name: _sd

Claim Description: Digests of Disclosures for object properties
Change Controller: IETF

Specification Document(s): Section 4.2.4.1 of RFC 9901

Fett, et al. Standards Track Page 48

RFC 9901 SD-JWT November 2025

Claim Name:

Claim Description: Digest of the Disclosure for an array element
Change Controller: IETF

Specification Document(s): Section 4.2.4.2 of RFC 9901

Claim Name: _sd_alg

Claim Description: Hash algorithm used to generate Disclosure digests and digest over
presentation

Change Controller: IETF

Specification Document(s): Section 4.1.1 of RFC 9901

Claim Name: sd_hash

Claim Description: Digest of the SD-JWT to which the KB-JWT is tied
Change Controller: IETF

Specification Document(s): Section 4.3 of RFC 9901

11.2. Media Type Registrations

IANA has registered the following media types [RFC2046] in the "Media Types" registry
[MediaTypes] in the manner described in [RFC6838].

Note: For the media type value used in the typ header in the Issuer-signed JWT
itself, see Section 9.11.

11.2.1. SD-JWT Content
To indicate that the content is an SD-JWT:

Type name: application
Subtype name: sd-jwt
Required parameters: n/a
Optional parameters: n/a

Encoding considerations: binary; application/sd-jwt values are a series of base64url-encoded
values (some of which may be the empty string) separated by period ('.") and tilde ('~")
characters.

Security considerations: See the Security Considerations sections of RFC 9901, [RFC7519], and
[RFC8725].

Interoperability considerations: n/a

Published specification: RFC 9901

Fett, et al. Standards Track Page 49

RFC 9901 SD-JWT November 2025

Applications that use this media type: Applications requiring selective disclosure of integrity-
protected content.

Fragment identifier considerations: n/a

Additional information:

Magic number(s): n/a
File extension(s): n/a
Macintosh file type code(s): n/a

Person & email address to contact for further information: Daniel Fett, mail@danielfett.de
Intended usage: COMMON

Restrictions on usage: none

Author: Daniel Fett, mail@danielfett.de

Change Controller: IETF

11.2.2. JWS JSON Serialized SD-JWT Content
To indicate that the content is a JWS JSON serialized SD-JWT:

Type name: application
Subtype name: sd-jwt+json
Required parameters: n/a
Optional parameters: n/a

Encoding considerations: binary; application/sd-jwt+json values are represented as a JSON
Object.

Security considerations: See the Security Considerations sections of RFC 9901 and [RFC7515].
Interoperability considerations: n/a
Published specification: RFC 9901

Applications that use this media type: Applications requiring selective disclosure of content
protected by ETSI JAdES compliant signatures.

Fragment identifier considerations: n/a

Additional information:

Magic number(s): n/a
File extension(s): n/a
Macintosh file type code(s): n/a

Person & email address to contact for further information: Daniel Fett, mail@danielfett.de

Fett, et al. Standards Track Page 50

RFC 9901 SD-JWT November 2025

Intended usage: COMMON
Restrictions on usage: none

Author: Daniel Fett, mail@danielfett.de
Change Controller: IETF

11.2.3. Key Binding JWT Content
To indicate that the content is a Key Binding JWT:

Type name: application
Subtype name: kb+jwt
Required parameters: n/a
Optional parameters: n/a

Encoding considerations: binary; A Key Binding JWT is a JWT; JWT values are encoded as a
series of base64url-encoded values separated by period ('.") characters.

Security considerations: See the Security Considerations sections of RFC 9901, [RFC7519], and
[RFC8725].

Interoperability considerations: n/a
Published specification: RFC 9901

Applications that use this media type: Applications utilizing a JWT-based proof-of-possession
mechanism.

Fragment identifier considerations: n/a

Additional information:

Magic number(s): n/a
File extension(s): n/a
Macintosh file type code(s): n/a

Person & email address to contact for further information: Daniel Fett, mail@danielfett.de
Intended usage: COMMON

Restrictions on usage: none

Author: Daniel Fett, mail@danielfett.de

Change Controller: IETF

Fett, et al. Standards Track Page 51

RFC 9901 SD-JWT November 2025

11.3. Structured Syntax Suffixes Registration

IANA has registered "+sd-jwt" in the "Structured Syntax Suffixes" registry [StructuredSuffix] in
the manner described in [RFC6838], which can be used to indicate that the media type is
encoded as an SD-JWT.

Name: SD-JWT

+suffix: +sd-jwt

References: RFC 9901

Encoding considerations: binary; SD-JWT values are a series of base64url-encoded values
(some of which may be the empty string) separated by period ('.") or tilde ('~') characters.

Interoperability considerations: n/a

Fragment identifier considerations: n/a

Security considerations: See the Security Considerations sections of RFC 9901, [RFC7519], and
[RFC8725].

Contact: Daniel Fett, mail@danielfett.de

Author/Change controller: IETF

12. References

12.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications:
ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, January 2008, <https://
www.rfc-editor.org/info/rfc5234>.

[RFC6838] Freed, N., Klensin, ., and T. Hansen, "Media Type Specifications and
Registration Procedures"”, BCP 13, RFC 6838, DOI 10.17487/RFC6838, January
2013, <https://www.rfc-editor.org/info/rfc6838>.

[RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515,
DOI 10.17487/RFC7515, May 2015, <https://www.rfc-editor.org/info/rfc7515>.

[REC7516]]Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI
10.17487/RFC7516, May 2015, <https://www.rfc-editor.org/info/rfc7516>.

[RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI
10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>.

[RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-Possession Key Semantics for
JSON Web Tokens (JWTs)", REC 7800, DOI 10.17487/RFC7800, April 2016, <https://
www.rfc-editor.org/info/rfc7800>.

Fett, et al. Standards Track Page 52

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800

RFC 9901

[RFC8174]

[RFC8725]

SD-JWT November 2025

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

Sheffer, Y., Hardt, D., and M. Jones, "JSON Web Token Best Current Practices",
BCP 225, RFC 8725, DOI 10.17487/RFC8725, February 2020, <https://www.rfc-
editor.org/info/rfc8725>.

12.2. Informative References

[CLO1]

[EUDIW.ARF]

[Hash.Algs]

[1S0.18013-5]

[JWS.Algs]

[JWT.Claims]

[MediaTypes]

Camenisch, J. and A. Lysyanskaya, "An Efficient System for Non-Transferable
Anonymous Credentials with Optional Anonymity Revocation”, Cryptology
ePrint Archive, Paper 2001/019, 2001, <https://eprint.iacr.org/2001/019.pdf>.

European Commission, "The European Digital Identity Wallet Architecture and
Reference Framework", <https://eu-digital-identity-wallet.github.io/eudi-doc-
architecture-and-reference-framework>.

IANA, "Named Information Hash Algorithm Registry", <https://www.iana.org/
assignments/named-information>.

ISO/IEC, "Personal identification - ISO-compliant driving license — Part 5:
Mobile driving license (mDL) application”, ISO/IEC 18013-5:2021, September
2021, <https://www.iso.org/standard/69084.html>.

TIANA, "JSON Web Signature and Encryption Algorithms", <https://www.iana.org/
assignments/jose>.

IANA, "JSON Web Token Claims", <https://www.iana.org/assignments/jwt>.

IANA, "Media Types", <https://www.iana.org/assignments/media-types>.

[NIST.SP.800-57ptlr5] Barker, E., "Recommendation for Key Management: Part 1 - General",

[OIDC.IDA]

[OpenID.Core]

[RFC2046]

Fett, et al.

NIST SP 800-57ptir5, DOI 10.6028/NIST.SP.800-57pt1r5, May 2020, <https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf>.

Lodderstedt, T., Fett, D., Haine, M., Pulido, A., Lehmann, K., and K. Koiwai,
"OpenID Connect for Identity Assurance 1.0", 1 October 2024, <https://
openid.net/specs/openid-connect-4-identity-assurance-1_0.html>.

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and C. Mortimore, "OpenID
Connect Core 1.0 incorporating errata set 2", 15 December 2023, <https://
openid.net/specs/openid-connect-core-1_0.html>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types", RFC 2046, DOI 10.17487/RFC2046, November 1996,
<https://www.rfc-editor.org/info/rfc2046>.

Standards Track Page 53

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://eprint.iacr.org/2001/019.pdf
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework
https://eu-digital-identity-wallet.github.io/eudi-doc-architecture-and-reference-framework
https://www.iana.org/assignments/named-information
https://www.iana.org/assignments/named-information
https://www.iso.org/standard/69084.html
https://www.iana.org/assignments/jose
https://www.iana.org/assignments/jose
https://www.iana.org/assignments/jwt
https://www.iana.org/assignments/media-types
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc2046

RFC 9901 SD-JWT November 2025

[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker, "Randomness Requirements for
Security", BCP 106, RFC 4086, DOI 10.17487/RFC4086, June 2005, <https://
www.rfc-editor.org/info/rfc4086>.

[RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/RFC7517, May 2015,
<https://www.rfc-editor.org/info/rfc7517>.

[RFC8785] Rundgren, A., Jordan, B., and S. Erdtman, "JSON Canonicalization Scheme (JCS)",
RFC 8785, DOI 10.17487/RFC8785, June 2020, <https://www.rfc-editor.org/info/
rfc8785>.

[SD-CWT] Prorock, M, Steele, O., Birkholz, H., and R. Mahy, "Selective Disclosure CBOR
Web Tokens (SD-CWT)", Work in Progress, Internet-Draft, draft-ietf-spice-sd-
cwt-05, 20 October 2025, <https://datatracker.ietf.org/doc/html/draft-ietf-spice-sd-
cwt-05>.

[SD-JWT-VC] Terbu, O, Fett, D., and B. Campbell, "SD-JWT-based Verifiable Credentials (SD-
JWT VC)", Work in Progress, Internet-Draft, draft-ietf-oauth-sd-jwt-vec-13, 6
November 2025, <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-
ve-13>.

[StructuredSuffix] IANA, "Structured Syntax Suffixes", <https://www.iana.org/assignments/
media-type-structured-suffix>.

[TSL] Looker, T., Bastian, P, and C. Bormann, "Token Status List (TSL)", Work in
Progress, Internet-Draft, draft-ietf-oauth-status-list-13, 20 October 2025, <https://
datatracker.ietf.org/doc/html/draft-ietf-oauth-status-list-13>.

[VC_DATA_v2.0] Sporny, M., Ed., Thiboeau, T, Ed., Jones, M. B, Ed., Cohen, G., Ed., and L.
Herman, Ed., "Verifiable Credentials Data Model 2.0", W3C Recommendation,
May 2025, <https://www.w3.org/TR/vc-data-model-2.0/>.

Appendix A. Additional Examples

The following examples are not normative and are provided for illustrative purposes only. In
particular, neither the structure of the claims nor the selection of selectively disclosable claims is
normative.

Line breaks have been added for readability.

A.1. Simple Structured SD-JWT

In this example, in contrast to Section 5, the Issuer decided to create a structured object for the
address claim, allowing individual members of the claim to be disclosed separately.

The following data about the user comprises the input JWT Claims Set used by the Issuer:

Fett, et al. Standards Track Page 54

https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc8785
https://www.rfc-editor.org/info/rfc8785
https://datatracker.ietf.org/doc/html/draft-ietf-spice-sd-cwt-05
https://datatracker.ietf.org/doc/html/draft-ietf-spice-sd-cwt-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc-13
https://www.iana.org/assignments/media-type-structured-suffix
https://www.iana.org/assignments/media-type-structured-suffix
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-status-list-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-status-list-13
https://www.w3.org/TR/vc-data-model-2.0/

RFC 9901 SD-JWT November 2025

{
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"given_name": "KHB",
"family_name": "LJH",
"email": "\"unusual email address\"@example.jp",
“phone_number": "+81-80-1234-5678",
"address": {
"street_address": "HEHEEXZAE4TH2-8",
"locality": "BEHL",
"region": "WERX",
“country": "JP"
}l
"birthdate": "1940-061-01"
}

The Issuer also decided to add decoy digests to prevent the Verifier from deducing the true
number of claims.

The following payload is used for the SD-JWT:

"_sd":
"C9inp6YoRaEXR427zYJP7Qrk1WH_8bdwOA_YUrunGQu",
"Kuet1yAa@HIQvYnOVd59hcVi09Ug6J2kSTqYRBeowvE",
"MM1dOFFzB2d@umlmpTIaGerhWdU_PpYfLvKhh_f_9aY",
"X6ZAYOII2VvPN4OV7XExZwVwz7yRmLNcVwt5DL8RLv4g",
"Y34zmIoBQLLOtdMpXGwjBgLvr17yEhhYTOFGofR-aIE",
"fyGpOWTwwPv2JDQ1ln11SiaeobZsMWA10bQ5989-9DTs",
"ommFAicVT8LGHCBOuywx7fYuo3MHYKO15cz-RZEYM5Q",
"sBBKYsLWxQQeU8tV11tM7MKsIRTrEIa1PkJmgxBBf5U"

]

iss": "https://issuer.example.com",

"iat": 1683000000,

"exp": 1883000000,

"address": {

"_sd": [
"6aUhzYhZ7SJ1kVmagQAO3u2ETN2CC1aHheZpKnaFe_E",
"AzL1FobkJ2xiaupREPyoJz-9-NS1dB6Cgjr7fUyoHzg",
"PzzcVuBgbMuBGSjulfewzkesD9zutOExn5EWNwkrQ-k",
"b2DkwBjcIF9rGg8_PF8ZcvncW7zwZj5ryBWvXfrpzek",
"cPYJHIZ8Vu-f9CCyVub2UfgEk8jvvXezwK1p_JneeXQ",
"glT3hrSU7fSWgwF5UDZmWwBTw32gnU1dIhi8hGVCaVv4",
"rvJd6iq6T5e jmsBMoGWUNXh9qAAFATAci400idEeVsA”,
"uNHoWYhXsZhVJCNE2Dqy-zqt7t69gJKy5QaFv7GrMx4"

]

)i o
"_sd_alg": "sha-256"
}

The digests in the SD-JWT payload reference the following Disclosures:

Fett, et al. Standards Track Page 55

RFC 9901 SD-JWT November 2025

Claim sub:

* SHA-256 Hash:
X6ZAYOII2vPN4OV7XExZwVwz7yRmLNcVwt5DL8RLV4g
* Disclosure:

WyIyROXDNDJzST1F2ZUNmR2ZyeU5STj13IiwgInN1YiIsICI2YzVjMGEOOST1iNTg5LTQzMWQtYmF1N
yOyMTkxMjJhOWVjMmMiXQ

e Contents:

["2GLC42sKQveCTGfryNRNOw", "sub", "6c5c0a49-b589-431d-bae7-219122a9%ec2c"]
Claim given_name:

* SHA-256 Hash:
ommFAicVT8LGHCBOuywx7fYuo3MHYKO15cz-RZEYM5Q
* Disclosure:
WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiXHUT0TJhXHU5MGN1I10
 Contents:

["eluVv50g3gSNII8EYnsxA_A", "given_name", "\u592a\u9@ce"]
Claim family_name:

* SHA-256 Hash:
C9inp6YoRaEXR427zYJP7Qrk 1TWH_8bdwOA_YUrUnGQU
* Disclosure:
WyI2SWo3dEOtYTVpV1BHYMOTNXRtd1ZBIiwgImZhbWlseVOuYW11IiwgI1x1NWM3MVx1NzUzMCJd
* Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "family_name", "\u5c71\u7530"]
Claim email:

* SHA-256 Hash:
Kuet1yAaBHIQvYnOVd59hcVi09Ug6J2kSfqYRBeowvE
* Disclosure:

WyJ1SThaV205UWSLUHBOUGVOZWS5IZGhRIiwgImVtYWlsIiwgI1lwidW51¢c3VhbCB1bWFpbCBhZGRyZ
XNzXCJAZXhhbXBsZS5qcCJd

e Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "email", "\"unusual email address\"@example.jp"]

Fett, et al. Standards Track Page 56

RFC 9901 SD-JWT November 2025

Claim phone_number:

* SHA-256 Hash:
sOBKYsLWxQQeU8tV11tM7MKsIRTrEIa1PkJmgxBBf5U

* Disclosure:

WyJRZT19PNjR6CcUF4ZTQXMmEXMDhpcm9BIiwgInBob251X251bWJ1ciIsICIrODEtODATMTIZNCOTN
jc41le

e Contents:

["Qg_064zgAxe412a188iroA", "phone_number", "+81-80-1234-5678"]
Claim street_address:

* SHA-256 Hash:
6aUhzYhZ7SJ1kVmagQAO3u2ETN2CC1aHheZpKnaFo_E

 Disclosure:

WyJBSngtMDk1V1BycFROTjRRTU9IXUk9BIiwgInNOcmV1dF9hZGRYZXNzIiwgI1xT1Njc3MVxTNGVhY

1x10TBMZFxTNmUyZ1xTNTMzYVxTODISZFXTNTE2Y1xTNTcxM1x1ZmYXNFXxTNGUWMVX1NzZ1ZVXx1Zm
YxM1x1MjIxM1x1ZmYx0CJd

e Contents:

["AJx-0B95VPrpTtN4QMOqROA", "street_address",

"\u6771\udeac\u90fd\ube2f\u533a\u829d\u516c\u5712\uff14\uded1\u76ee\uff12\u22
12\uff18"]

Claim locality:

* SHA-256 Hash:
rvJd6iq6T5ejmsBMoGwuNXh9qAAFATAci400idEeVsA

 Disclosure:

WyJQYzMzSk@yTGNoY1VfbEhNnZ3ZfdWZRIiwgImxvY2FsaXR5IiwgI1x1Njc3MVxTNGVhY1x10TBmZ
CcJd

* Contents:
["Pc33JM2LchcU_1Hggv_ufQ", "locality", "\u6771\udeac\ud9efd"]

Claim region:

* SHA-256 Hash:
PzzcVu@gbMuBGSjulfewzkesD9zutOExn5EWNwk rQ-k

 Disclosure:

Wy JHMDJOU3JRZmpGWFE3SW8WOXN5YWpBIiwgInJ1Z21vbiIsICJcdTZ1MmZcdTUZM2EiXQ
* Contents:

Fett, et al. Standards Track Page 57

RFC 9901 SD-JWT November 2025

["GO2NSrQf jFXQ7Io@9syajA", "region", "\u6e2f\u533a"]
Claim country:

* SHA-256 Hash:
UNHoWYhXsZhVJCNE2Dqy-zqt7t69gJKy5QaFv7GrMX4
* Disclosure:
WyJsa2x4RjVqTV1sRTRQVWI2TUSJAKNBIiwgImNvdW50cnkiLCAiS1AiXQ
 Contents:

["1k1xF5jMY1GTPUOVMNIVCA", "country", "JP"]
Claim birthdate:

* SHA-256 Hash:

MM1dOFFzB2d@umlmpTIaGerhWdU_PpYfLvKhh_f_9aY
* Disclosure:

WyJ5eXRWYmRBUEd jZ2wyckk®Qz1HU29nIiwgImJpcnRoZGFOZSISICIXOTQWLTAXLTAXI1O
 Contents:

["yytVbdAPGcgl2rI4C9GSog", "birthdate", "1940-01-01"]

The following decoy digests are added:

* AzL1FobkJ2xiaupREPyoJz-9-NS1dB6Cgjr7fUyoHzg
* cPYJHIZ8Vu-f9CCyVub2UfgEk8jvvXezwK1p_JneeXQ
* glT3hrSU7fSWgwF5UDZmWwBTw32gnU1dIhi8hGVCaV4
* b2Dkw@jcIF9rGg8_PF8ZcvncW7zwZj5ryBWvXfrpzek
* fyGpOWTwwPv2JDQ1n11SiaeobZsMWA10bQ5989-9DTs
*Y34zmIo0QLLOtdMpXGwjBgLvr17yEhhYTOFGofR-alE

The following is a presentation of the SD-JWT that discloses only region and country of the
address property:

Fett, et al. Standards Track Page 58

RFC 9901 SD-JWT November 2025

eyJhbGciOiAiRVMYNTYilLCAidHIwIjogImV4YW1wbGUrc2Qtand@In®.eyJfc2Qi0iBb
TkM5aW5wN11vUmFFWFIOMjd6WUpQN1FyazFXSF84YmR3TOF fWVVyVW5HUVUiLCAiS3V1
dDF5QWEWSE1Rd11uT1ZkNT1oY1ZpTz1VZzZKMmtTZnFZUkJ1b3d2RSISICINTWxkTOZG
ekIyZDB1bWxtcFRJYUdlcmhXZFVTUHBZZkx2S2hoX2ZfOWFZIiwgI1lg2WkFZTO1JMNnZQ
TjQwVjd4RXhad1Z23ejd5UmTMTmMNWd3Q1REW4UKkXx2NGciLCAIWTMBem1JbzBRTEXPAGRN
cFhHd2pCZBx2cjE3eUVoaF IUMEZHb2ZSLWFJRSIsICJmeUdwMFdUd3dQdjJKRFFsbjFs
U21hZW9iWnNNVOEXMGJRNTKk40SO5RFRzIiwgIm9tbUZBaWNWVDhMROhDQjB1eXd4N2ZZ
dW8zTUhZSO8xXNWN6LVJaRVINNVEiLCAiczBCS11zTFd4UVF1VThOVmxsdEG3TUtzSVJU
ckVJYTFQa@ptcXhCQmY1VSJdLCAiaXNzIjogImh@dHBz0i8vaXNzdWVyLmV4YW1wbGUu
Y¥29tIiwgImlhdCI6IDE20DMWMDAWMDASICJ1eHA10iAx0ODgzMDAWMDAWLCAiYWRkcmVz
cyI6IHsiX3NkIjogWyI2YVVoelloWjdTSjFrVm1hZ1FBTzN1MkVUT jJDQzFhSGh1WnBL
bmFGMFIFIiwgIkF6TGXxGb2JrSjJ4aWF1cFJFUH1vSnot0S10U2xkQjZDZ2pyN2ZVeW9I
emcilCAiUHp6Y1Z1MHFiTXVCRINqdWxmZXd6a2VzRD16dXRPRXhuNUVXTndrclEtayIs
ICJiMkRrdzBqY01GOXJHZzhfUEY4WmN2bmNXN3p3Wmo1cnlCV3ZYZnJwemVrIiwgImNQ
WUpISVo4VnUtZj1DQ31WdWIyVWZnRWs4anZ2WGV6dOsxcFI9KbmVIWFEiLCAiZ2xUM2hy
UTU3Z1INXZ3dGNVVEWmM1XdeJUdzMyZ25VbGRJaGk4aEdWQ2FWNCIsICJydkpkNm1xN1Q1
ZWptcBOJINbOd3dU5YaD1xQUFGQVRBY2kBMG9pZEV1VNNBIiwgInVOSGOXWWhYc1poVkpD
TkUyRHF5LXpxdDd@ONj1nSkt5NVFhRNY3R3JNWDQiXX0sICJfc2RfYWxnIjogInNoYSOy
NTYifQ.EO0Za2YqK8j4i7cqBDkfPcTMaFsgPwcx3aYJkFoMfvV46LxL-PPqrWsIyNukB4
x8Y2LT31eIHDc4Wg4XNzaquiw~Wy JHMDJOU3JRZmpGWFE3SWBWOXN5YWpBIiwgInJ1Z2
1vbiIsICJcdTZ1MmZcdTUzM2EiXQ~WyJsa2x4RjVqTV1sRTRQVWI2TUS5JdkNBIiwgImN
vdW50cnkilLCAiS1AiXQ~

After validation, the Verifier will have the following Processed SD-JWT Payload available for
further handling:

"iss": "https://issuer.example.com",
"iat": 1683000000,
"exp": 1883000000,
"address": {
”region": ”?%B:",
“country": "JP"

}
}

A.2. Complex Structured SD-JWT

In this example, an SD-JWT with a complex object is represented. The data structures defined in
OpenlID Connect for Identity Assurance [OIDC.IDA] are used.

The Issuer is using the following user data as the input JWT Claims Set:

Fett, et al. Standards Track Page 59

RFC 9901 SD-JWT

"verified_claims": {

"verification": {
"trust_framework": "de_aml",
“time": "2012-04-23T18:25Z",

"verification_process": "f24c6f-6d3f-4ec5-973e-b0d8506f3bc7",

"evidence": [
{
“type": "document",
"method": "pipp",
"time": "2012-04-22T11:30Z2",
"document”: {
"type": "idcard",
"issuer": {
"name": "Stadt Augsburg",
“country": "DE"
}I
"number": "53554554",
"date_of_issuance": "2010-03-23",
"date_of_expiry": "2020-03-22"
}
}
]

"claims": {
"given_name": "Max",
"family_name": "Miller",
"nationalities": |
"DE"
]

"birthdate": "1956-01-28",
"place_of_birth": {

“country": "IS",

"locality": "bykkvabajarklaustur"
}l
"address": {
"locality": "Maxstadt",
"postal_code": "12344",
“country": "DE",

"street_address": "Weidenstrale 22"
}
}
},
"birth_middle_name": "Timotheus",
"salutation”: "Dr.",
"msisdn": "49123456789"

The following payload is used for the SD-JWT:

Fett, et al. Standards Track

November 2025

Page 60

RFC 9901 SD-JWT

"_sd": [
"-aSznId9mWM8ocuQolCl1lsxVggql-vHW40tnhUtVmiw",
"IKbrYNn3vA7WEFrysvbdBJjDDU_EvQIreW18vTRpUSg",
"otkxuT14nBiwzNJ3MPa0it019pVnX0aEHal_xkyNfKI"

]l

"iss": "https://issuer.example.com",

"iat": 1683000000,

"exp": 1883000000,

"verified_claims": {

"verification": {

"_sd":
"7h4UE9qScvDKodXVCuoKfKBJpVBfXMF_TmAGVaZe3Sc",
"vTwe3raHIFYgFA3xaUD2aMxFz50D081Bu@5gK10g9Lw"

]l

"trust_framework": "de_aml",

"evidence": [

{ " "
}
]

laims": {

"_sd": |
"Ri10iCn6_w57ZHaadkQMrcQJfBJte5RwurRs54231DT1o0",
"S_498bbpKzB6Eanftss@xc7cOaoneRr3pKr7NdRmsMo ",
"WNA-UNK7F_zhsAb9syW06IIQ1uH1TmOU8r8CvJOcIMKk",
"Wxh_sV3iRH9bgrTBJi-aYHNCLt-vjhX1sd-igOf_91k",
"_0-wJiH3enSB4ROHNtToQT8JmLtz-mh02f1c89XoerQ"”,
"hvDXhwmGcJQsBCA20t juLAcwAMpDsaUBnkovcKOgWNE"

1

"tYJOTDucyZZCRMbROG4qROS5vkPSFRxFhUELc18CS13k"

}

}

Ji o
"_sd_alg": "sha-256"
}

The digests in the SD-JWT payload reference the following Disclosures:
Claim time:

* SHA-256 Hash:
vTwe3raHIFYgFA3xaUD2aMxFz50D08iBuB5gK10g9Lw

* Disclosure:

November 2025

WyIyROXDNDJzS1F2ZUNmR2ZyeU5STj13IiwgInRpbWUiLCA1MjAxMiOWNCOYM1Qx0DoyNVoiXQ

* Contents:

["2GLC42sKQveCfGfryNRNOw", "time", "2012-04-23T18:257"]
Claim verification_process

* SHA-256 Hash:

Fett, et al. Standards Track

Page 61

RFC 9901 SD-JWT November 2025

7h4UE9qScvDKodXVCuoKfKBJpVBfXMF_TmAGVaZe3Sc
* Disclosure:

WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgInZlcmlmaWNhdGlvb19wem9jZXNzIiwgImYyNGM2Z
102ZDNmLTR1YzUtO0TczZS1iMGQ4NTA2ZjNiYzciXQ

 Contents:
["eluVv50g3gSNII8EYnsxA_A", "verification_process", "f24c6f-6d3f-4ec5-973e-
b0d8506f3bc7"]
Claim type:

* SHA-256 Hash:
G5EnNhOAO0U9X_6QMNvzFXjpEA_Rc-AEtmTbG_wcaKIk
* Disclosure:
WyI2SWo3dE@tYTVpVIBHYMOTNXRtd1ZBIiwgInR5cGUiLCAiZG9jdW11bnQiXQ
 Contents:
["6Ij7tM-a5iVPGboS5tmvVA", "type", "document"]

Claim method:

* SHA-256 Hash:
WpxQ4HSoEtcTmCCKOeDs1B_emucYLz20080HNr1bEVQ
* Disclosure:
WyJ1SThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm11dGhvZCIsICJwaXBwI1l0
 Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "method", "pipp"]
Claim time:

* SHA-256 Hash:
9wp jVPWuD7PKBnsQDL8BB61mdgV3LVybhHydQpTNyLI
* Disclosure:
WyJRZT19PNjR6CcUF4ZTQXMmEXMDhpcm9BIiwgInRpbWUiLCAiMjAXxMiOwNCOYM1QxMTozMFoiXQ
* Contents:

["Qg_064zqAxe412a188iroA", "time", "2012-04-22T11:30Z"]
Claim document:

* SHA-256 Hash:
ThwFrWUB63RcZq9yvgZOXPc7Gowh302kgXeBIswg1B4

 Disclosure:

Fett, et al. Standards Track Page 62

RFC 9901 SD-JWT November 2025

WyJBSngtMDk1V1BycFROTjRRTUIXUk9BIiwgImRvY3VtZW50IiwgeyJOeXB1lIjogImlkY2FyZCIsI
CJpc3N1ZXIi0iB7Im5hbWUi0iAiU3RhZHQQQXVnc2J1cmcilCA1Y291bnRyeSI6ICJERSJILCALbN

VtYmVyIjogIjUzNTUBNTUBIiwgImRhdGVfb2ZfaXNzdWFuY2Ui0iAiMjAXMCOWMy@yMyIsICJKYXR
1X29mX2V4cGlyeSI6ICTIyMDIWLTAZLTIyIn1d

e Contents:

["AJx-B95VPrpTtN4QMOgROA", "document", {"type": "idcard", "issuer": {"name":
"Stadt Augsburg", "country": "DE"}, "number": "53554554",
"date_of_issuance": "2010-03-23", "date_of_expiry": "2020-03-22"}]

Array Entry:

* SHA-256 Hash:

tYJOTDucyZZCRMbROG4qRO5vkPSFRXFhUELc18CS13k
 Disclosure:

WyJQYzMzSk@OyTGNoY1VfbEhnZ3ZfdWZRIiwgeyJfc2Qi0iBbIj13cGpWUFd1RDAQSzBuc1FETDhCM
DZsbWRnVjNMVnliaEh5ZFFwVE55TEKiLCAiRZVFbmhPQUOVVT1YXzZRTU52ekZYanBFQVI9SYy1BRX
RtMWJHX3djYUtJayIsICJJaHdGecldVQjYzUmNacT1l5dmdaMFhQYzdHb3doMB8ya3FYZUJJc3dnMUI
0IiwgIldweFEBGSFNVRXRjVG1DQOtPZURzbEJFZW11Y11MejJvTzhvSESyMWJFVIEiXX1d

e Contents:

["Pc33JM2LchcU_1Hggv_ufQ", {"_sd":

["9wpjVPWuD7PKOnsQDL8BO61mdgV3LVybhHydQpTNyLI",
"G5EnhOAO0U9X_6QMNvzFXjpEA_Rc-AEtm1bG_wcaKIk",
"ThwFrWUB63RcZq9yvgZOXPc7Gowh302kqXeBIswg1B4",
"WpxQ4HSoEtcTmCCKOeDs1B_emucYLz20080HNr1bEVQ"]}1]

Claim given_name:

* SHA-256 Hash:

S_498bbpKzB6Eanftss@xc7cO0aoneRr3pKr7NdRmsMo
* Disclosure:

Wy JHMDJOU3JRZmpGWFE3SW8WOXN5YWpBIiwgImdpdmVuX25hbWUiLCAiTWF4I10
¢ Contents:

["GO2NSrQf jFXQ7Io@9syajA", "given_name", "Max"]

Claim family_name:

* SHA-256 Hash:
Wxh_sV3iRH9bgrTBJi-aYHNCLt-vjhX1sd-igOf_91k

* Disclosure:

WyJsa2x4RjVqTV1sRTRQVWI2TU5JAKNBIiwgImZhbWlseVOuYW11IiwgIk1cdTAwZmNsbGVyIl0
e Contents:

Fett, et al. Standards Track Page 63

RFC 9901 SD-JWT November 2025

["1k1xF5jMY1GTPUOVMNIVCA", "family_name", "M\u@@fcller"]
Claim nationalities:

* SHA-256 Hash:

hvDXhwmGcJQsBCA20t juLAcwAMpDsaU@nkovcKOqWNE
* Disclosure:

Wy JuUHVVUWS rUkZxMeJJZUFtNOFUWEZBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIKRFI11d
 Contents:

["nPuoQnkRFq3BIeAm7AnXFA", "nationalities", ["DE"]]
Claim birthdate:

* SHA-256 Hash:
WNA-UNK7F _zhsAb9syWO06IIQTuH1TmOU8r8CvJacIMk
* Disclosure:
WyI1Y1BzMU1xdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoZGFOZSISICIXOTU2LTAXLTIATI10
 Contents:
["5bPs1IquZNaBhkaFzzzZNw", "birthdate", "1956-01-28"]

Claim place_of_birth:

* SHA-256 Hash:
Ri0iCn6_w5ZHaadkQMrcQJfoJte5RwurRs54231DT1o
e Disclosure:

WyI1YTJXMF90cmxFWnpmcW1rXzdQcS13IiwgInBsYWN1IX29mX2JpcnRoIiwgeyJjb3VudHJS5Ijogl
k1TIiwgImxvY2FsaXR5IjogI1xT1MDBkZX1ra3ZhY1x1MDBINmphcmtsYXVzdHVyInid

e Contents:
["5a2WO_NrlEZzfqgmk_7Pg-w", "place_of_birth", {"country": "IS", "locality":
"\u@edeykkvab\u@@ebjarklaustur"}]

Claim address:

* SHA-256 Hash:
_0-wJiH3enSB4ROHNtToQT8JmLtz-mh02f1c89XoerQ
* Disclosure:

Wy J5SMXNWVTV3ZGZKYWhWZGd3UGATNTJRIiwgImFkZHJ1c3MiLCB7ImxvY2FsaXR5IjogIk1heHNOY
WROIiwgInBvc3RhbF9jb2R1TjogIjEyMzQOIiwgImNvdW50cnki0iAiREUiLCAic3RyZWVOX2FkZH
J1c3Mi0iAiV2VpZGVuc3RyYVxTMDBkZmUgMjIifVe

* Contents:

Fett, et al. Standards Track Page 64

RFC 9901 SD-JWT November 2025

["y1sVU5SwdfJahVdgwPgS7RQ", "address", {"locality": "Maxstadt",
"postal_code": "12344", "country": "DE", "street_address":
"Weidenstra\ue@dfe 22"}]

Claim birth_middle_name:

* SHA-256 Hash:
otkxuT14nBiwzNJ3MPa0it019pVnX0aEHal_xkyNfKI
* Disclosure:

WyJIY1EOWDhzc1lZXM1FEeG5JSmRxeU9BIiwgImJpcnRoX21pZGRsZVOuYW11IiwgI1RpbW90aGVic
yJd

* Contents:

["HbQ4X8srVW3QDxnIJdqyOA", "birth_middle_name", "Timotheus"]
Claim salutation:

* SHA-256 Hash:

-aSznId9mWM8ocuQolCllsxVggql-vHW40tnhUtVmWw
* Disclosure:

WyJDOUdTb3VqdmlKcXVFZ11mb2pDY jFBIiwgInNhbHVOYXRpb24ilLCAiRHIuIle
 Contents:

["C9GSoujviJquEgYfojCb1A", "salutation", "Dr."]

Claim msisdn:

* SHA-256 Hash:
IKbrYNn3vA7WEFrysvbdBJjDDU_EvQIr@W18vTRpUSg
* Disclosure:
WyJreDVrRjE3Vi14MEptd1V40XZndnR3IiwgIm1zaXNkbiIsICIBOTEYMzQ1Njc40SJd
 Contents:
["kx5kF17V-x0JmwUx9vgvtw", "msisdn", "49123456789"]

The following is a presentation of the SD-JWT:

Fett, et al. Standards Track Page 65

RFC 9901 SD-JWT November 2025

eyJhbGciOiAiRVMYNTYilLCAidHIwIjogImV4YW1wbGUrc2Qtand@In®.eyJfc2Qi0iBb
Ii1hU3puSWQ5bVdNOG9 jdVFVbENsbHN4Vmdnc TEtdkhXNE9ObmhVdFZtV3cilCAiSUt1
c110bjN2QTdXRUZyeXN2YmRCSmpERFV{RXZRSXIwVzE4d1RScFVTZyIsICJvdGt4dVQx
NG5CaXd6TkozTVBhT210T2w5cFZUuWE9hRUhhbF94a310ZktJI10sICJpc3MiOiAiaHRO
cHM6LY9pc3N1ZXIuzZXhhbXBsZS5jb20iLCAiaWFOI jogMTY4MzAWMDAWMCWgImV4cCI6
IDE4ODMwMDAWMDASICJ2ZXJpZm11ZF9jbGFpbXMi0iB7InZ1lcmlmaWNhdGlvbiI6IHsi
X3NkIjogWyI3aDRVRT1XxU2N2REtvZFhWQ3VvS2ZLQkpwVkJmWETGXTRtQUAWYVpI1MINj
TiwgInZUd2UzcmFISUZZZ0ZBM3hhVUQyYUT14Rno1bORVOGLCATATcUtsT2¢c5THeciXSwg
InRydXNOX2ZyYW11d29yayI6ICJkZVOhbWwilCAiZXZpZGVuY2UiOiBbeyIulLi4i0iAi
dF1KMFREdWN5W1pDUk1iUk9HNHFSTZzV2a1BTR1J4RmhVRUxjMThDU2wzayJ9XX0sICJj
bGFpbXMi0iB7I119zZCI6IFsiUm1PaUNuN193NVpIYWFka1FNcmNRSmYwSnRINVJ3dXJS
czUBMjMxRFRsbyIsICJTXzQ50GJicEt6QjZFYW5mdHNzMHhjN2NPYW9uzZVJyM3BLcjdO
ZFJtcB1vIiwgI1d0QS1VTks3R196aHNBY jlzeVdPNk1JUTF1SGxUbU9VOHI4Q3ZKMGNJ
TWsiLCA1V3hoX3NWM21SSD11iZ3JUQkppLWFZSES5DTHQtdmpoWDFzZC1pZ0B9mXzlsayIls
ICJfTy13Sm1IM2VuUBIBUKk9IbnRUbT1FUOEptTHR6LW10TZzJmMWMA0VhvZXJRIiwgImh2
RFhod21HY@pRcOJDQTJPAGp1TEF jdOFNcERzYVUwbmtvdmNLT3FXTkUiXXT9LCAiX3Nk
X2FsZyI6ICJzaGEtMjU2In0.QoWYWtikm-AtjmPnNVshbGXQl5raEz15PByTmZwfTQg9
W2030R6j2tMmysTZZawdo6mNLR_PsZSI25qrUpiNTg~WyIyROxDNDJzS1F2ZUNmR2Zye
U5STj13IiwgInRpbWUiLCAiMjAXxMiOwNCOYM1Qx0DoyNVoiXQ~WyJQYzMzSkOyTGNoY1
VfbEhnZ3ZfdWZRIiwgeyJfc2Qi0iBbIj13cGpWUFdT1RDAQSzBuc1FETDhCMDZsbWRNV j
NMVnliaEh5ZFFwVES5TEKiLCAiRzVFbmhPQUOVVT1YXzZRTU52ekZYanBFQVISYy1BRX
RtMWJHX3djYUtJayIsICJJaHdGcldVQjYzUmNacT1l5dmdaMFhQYzdHb3doMB8ya3FYZU
JJc3dnMUIBIiwgIldweFEBSFNVRXRjVG1DQOtPZURZBEJFZW11Y11MejJvTzhvSESyMW
JFV1EiXX1d~WyJ1SThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm11dGhvZCIsICJwaXBwI
10~WyJHMDJOU3JRZmpGWFE3SWBWOXN5YWpBIiwgImdpdmVuX25hbWUiLCAiTWF4I10~W
yJsa2x4RjVvVqTV1sRTRQVWI2TUSJAkNBIiwgImZhbWlseVOuYW11IiwgIk1cdTAwZmNsb
GVyI1o~WyJ5MXNWVTV3ZGZKYWhWZGd3UGATNTJRIiwgImFkZHJ1c3MiLCB7ImxvY2Fsa
XR5IjogIk1heHNOYWROIiwgInBvc3RhbF9jb2R1IjogIjEyMzQOIiwgImNvdW50cnkiO
iAiREUiLCAic3RyZWVOX2FkZHJ1c3Mi0iAiV2VpZGVuc3RyYVx1MDBKkZmUgMjIifVe~

The Verifier will have this Processed SD-JWT Payload available after validation:

Fett, et al. Standards Track Page 66

RFC 9901 SD-JWT November 2025

{
"iss": "https://issuer.example.com",
"iat": 1683000000,
"exp": 1883000000,
"verified_claims": {
"verification": {
"trust_framework": "de_aml",
"evidence": [
"method": "pipp"
] }
"time": "2012-04-23T18:25Z"
"claims": {
"given_name": "Max",
"family_name": "Muller",
"address": {
"locality": "Maxstadt",
"postal_code": "12344",
“country": "DE",
"street_address": "WeidenstraBe 22"
}
}
}
}

A.3. SD-JWT-Based Verifiable Credentials (SD-JWT VC)

This example shows how the artifacts defined in this specification could be used in the context
of SD-JWT-based Verifiable Credentials (SD-JWT VC) [SD-JWT-VC] to represent the concept of a
Person Identification Data (PID) as defined in the "PID Rulebook" in [EUDIW.ARF]. This example
uses fictional data of a German citizen.

Key Binding is applied using the Holder's public key passed in a cnf claim in the SD-JWT.

The following citizen data is the input JWT Claims Set:

Fett, et al. Standards Track Page 67

RFC 9901 SD-JWT November 2025

{
"vet": "urn:eudi:pid:de:1",
"iss": "https://pid-issuer.bund.de.example”,
"given_name": "Erika",
“family_name": "Mustermann"”,
"birthdate": "1963-08-12",
"address": {
"street_address": "Heidestralle 17",
"locality": "Koln",
"postal_code": "51147",
“country": "DE"
s
"nationalities": |
"DE"
]l
"sex": 2,

"birth_family_name": "Gabler",

"place_of_birth": {
"locality": "Berlin",
“country": "DE"

”ége_equal_or_over”: {

"12": true,
"14" : true,
"16" : true,
"18": true,
"21": true,
"65": false

)i

"age_in_years": 62,
"age_birth_year": 1963,
"issuance_date": "2020-03-11",
"expiry_date": "2030-03-12",
"issuing_authority": "DE",
"issuing_country": "DE"

The following is the issued SD-JWT:

eyJhbGci0iAiRVMYNTYiLCAidHIWI jogImRjK3NKLWp3dCJ9.eyJfc2Qi0iBbIjBIWMI
uU81Qe jMzN2tTV2U3QzMBbCOtODhnekppLWVCSjJWel9ISndBVGCil CAiMUNYbjAZV21
VZVJXcDR6d1B2dkNLWGW5SWmFRcC1jZFFWX2dIZGFHU1dvdyIsICIycjAwOWR6dkh1Vnd
Xc1JYVDVrSk1tSG5xRUhIb1d1METMV1p30FBBVEI4IiwgIjZaTk1TRHNON|J5bWxyTOF
rYWRQZEQ1WnVsVDVBMjk5Sjc4UBxoTVOfT3MiLCAiNzhqZzc3LUdZQmVYOE1RZmOFTFB
5TDBEWVBkbWZabzBKZ1ZpVjBfbEtDTSIsICISMENUOEFhQ1BibjVYOG5SWGt1lc2p 1MWk
wQnFoV3FaM3dxRDRGRi1xREdrIiwgIkkwMGZ jR1VVRFhDAWNWNX15MnVqcVBzcORWR2F
XTm1VbG10el9hdeQwz2MilCAiS2pBWGABQT10NVAIRURBUK 1oNHUTTWAXWnNXaXhoaFd
BaVgtQTRRaXdnQSIsICJIMYWk2SVU2ZDdHUWFnWF I3QXZHVHJUWGdTbGQze jhFSWdfZnY
zZk9aMVdnIiwgIkxlemphY1lJxaVpPWHpFWW1WWmY4Uk1pOXhBa2QzX08xTFo4VTdFNHM
zdTQiLCA1U1R6M3FUbUZOSGJWV3JyTO1aUzQxRjQ3NGtGcVJ2M3ZJUHF8aDZQVIWhs TSI
sICJXMTRYSGJVZmZ6dVcOSUZNanBTVGIxbWVsV3hVV2YBT19vMmxka2tJcWMATiwgIld
UcEk3UmNNM2d4WnJ1UnBYemV6U2JrYk9yOTNQVkZ2V3g4d29KM20xYOUiLCAIX290S1Z
JUU1Cc1UBAXBKT1MBX3c0S2IXxTUNXSjBMOXFMR3NOV3E2S1hReyIsICJ5SNTBjemMwSVN
DaH1fYnNiYTFKTWOVAUFPUTVBTW1PU2ZHbOV10DF2MUZVI10sICJIpc3MiOiAiaHROCHM

Fett, et al. Standards Track Page 68

RFC 9901 SD-JWT November 2025

6Ly9waWQtaXNzdWVyLmJ1bmQuZGUuZXhhbXBsZSIsICJpYXQi0iAxNjgzMDAwWMDAwWLCA
iZXhwIjogMTg4MzAwMDAWMCwgINZjdCI6ICJ1cm46ZXVkaTpwaWQ6ZGU6MSISICJIfc2R
fYWxnIjogInNoYSOYNTYiLCAiY25mIjogeyJqd2si0iB7Imt0eSI6ICJFQyIsICJjcnY
i0iAiUCOyNTYiLCAieCI6ICJUQOFFUFESWNZTMO9IRjRgNFcOdmZTVmMIISVAXSUXpbER
sczd2Q2VHZW1jIiwgInki0iAiWnhqaVdXY1pNUUdIV1dLV1E®aGJTSW1lyc1ZmdWVjQeu
2dDRqVD1GMkhaUSJ9fXe.Z0ZQTgmg8X1mCyFXiBwbV8xjctX1A1lEa5TkdnkKOyWvLfW4
0XDb50j9tzkgwff5s44IDnrfAdgLtmTcojs97_Q~WyIyROxDNDJzST1F2ZUNmR2ZyeU5S
Tj13IiwgImdpdmVuX25hbWUiLCAiRXJpa2EiXQ~WyJ1bHVWNU9NM2dTTk1JOEVZbnN4Q
VOBIiwgImZhbWlseVOuYW11IiwgIk11c3R1lcmThbm4iXQ~WyI2SWo3dEGtYTVpV1BHYm
9TNXRtd1ZBIiwgImJpcnRoZGFOZSISICIXOTYzLTAALTEyI10~WyJ1SThaV205UW5LUH
BOUGVOZW5IZGhRIiwgInNOcmV1dF9hZGRyZXNzIiwgIkhlaWR1c3RyYVx1MDBKZmUgMT
ciXQ~WyJRZ19PNjR6CUF4ZTQXMMEXMDhpcm9BIiwgImxvY2FsaXR5IiwgIktcdTAwWZjZ
sbiJd~WyJBSngtMDk1V1BycFROTjRRTUIXUk9BIiwgInBvc3RhbF9jb2R1TIiwgIjUxMT
Q3I10~WyJQYzMzSk@yTGNoY1VfbEhnZ3ZfdWZRIiwgImNvdW50cnkiLCAiREUiXQ~WyJ
HMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImFkZHJ1c3MiLCB7119zZCI6IFsiQUxaRVJ
zU241VBe5pRVhkQ2tzVzhJNXFRdzNTfTnBBb1lJXxcFNBWkR1ZGd30CISICJEXT19XX3VZY3Z
SejNOd1VuSUp2QkRIaVRjNONTX3FIZDB4Tkt3SXNfdz1lrIiwgImVCcENYVTFKNWRoSDJ
nNHQ4UV10VzVFeFM5QXhVVmJsVWIkbBxZb1BobzAiLCAieE9QeTk tZOpBTES2VWJIXSOZ
MUjg1Y@9CeVVEMOFiTndGZzNJM11mUUVESSJdfVe~WyJsa2x4RjVqTV1IsRTRQVWI2TUS
JAKNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIKRFI11d~WyJuUHVVUWSrUkZxMOJJZUFtNe
FUWEZBIiwgInNleCIsIDJd~WyI1Y1BzMUlxdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoX
2ZhbWlseVOuYW11IiwgIkdhYmx1lciJd~WyI1YTJIXMF90cmxFWnpmcW1rXzdQcS13Iiwg
ImxvY2FsaXR5IiwgIkJlcemxpbiJd~WyJSMXNWVTV3ZGZKYWhWZGA3UGATNTJRIiwgImN
vdW50cnkil CAiREUiXQ~WyJIY1EOWDhzc1ZXM1FEeG5JSmRxeU9BIiwgInBsYWN1X29m
X2JpcnRoIiwgeyJfc2Qi0iBbIktVVmlhYUxuWTVqUOTMOTBHMj1PTOXFT1BiY1lhmaFNq
U1BNalphR2t4QUUiLCAiWWJzVDBTNzZWcVhDVnNKMWpVU2x3S1BEZ21BTGVCMXVaY2xG
SFhmLVVTUSJdfVO~WyJDOUdTb3VqdmlKcXVFZ11mb2pDYjFBIiwgIjEyIiwgdHJ1ZVO~
WyJreDVrRjE3Vi14MEptd1V40XZndnR3IiwgIjEOIiwgdHJ1ZVO~WyJIM28xdXN3UDc2
MEZpMn11R2RWQOVRIiwgIjE2IiwgdHJ1ZVO~WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpB
TiwgIjE4TiwgdHJ1ZVO~WyJNMEpiNTdONDF1YnJrU3V5ckRUM3hBIiwgIjIxIiwgdHJ1
ZVO~WyJEc210S05ncFYBZEFIcGpyY2FvcOF3IiwgIjY1IiwgZmFsc2Vd~WyJ1SzVvNXB
IZmd1cFBwbHRgMXFoQUp3IiwgImFnZV91lcXVhbF9vcl9vdmVyIiwgeyJfc2Qi0iBbIjF
ORW15e1BSWU9Lc2Y3U3NZROT1nUFpLcOOUMWXRW1J4SFhBMHI1X0J3a2siLCAiQ1ZLbmx
5NVASMH1KczNFd3R4UW1PdFVjemFYQ110QTRJY3pSYW9ockT1EZyIsICJhNDQtZzJHcjh
fMOFtSncyWFo4a0kxeTBRel96ZT1pT2NXM1czUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajB
oczJaTnd4Y3FPbGY4bXUyLWtDRTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKdOM5ZVR
6YUZDVWN1SVFBYUlkaHJxVVhRTKNXYmZaSSIsICJSNINGc1ZGUn1xNTBJY1JKdm1UWNF
xalFXejBOTG11Q21NZU8wS3FhekdJI119XQ~WyJgNOFEZGIwWVVZiMExpMGNpUGNQMGV3
TiwgImFnZV9pbl95ZWFycyIsIDYyXQ~WyJXcHhKckZ1WDh1U2kycDRodDA5anZ3TIiwgI
mFnZV9iaXJ0aF95ZWFyIiwgMTk2M10~WyJhdFNtRkFDWU1iS1ZLRDATbzNKZ3RRIiwgI
mlzc3VhbmN1X2RhdGUiLCAiMjAyMCOWMYyOXxMSJd~WyIOS31SMzJvSVpOLXprV3ZGcWJV
TEtnIiwgImV4cGlyeVOkYXR1IiwgIjIwMzAtMDMtMTIiXQ~WyJjaEJDc3loeWgtSjg2S
SThd1FEaUNRIiwgImlzc3VpbmdfYXV0aG9yaXR5IiwgIkRFI10~WyJmbE5QMW5jTX05T
GectYz1xTUL6Xz1nIiwgImlzc3VpbmdfY291bnRyeSIsICJERSJd~

The following payload is used for the SD-JWT:

Fett, et al. Standards Track Page 69

RFC 9901 SD-JWT November 2025

"_sd":
"OHZmnSIPz337kSWe7C341--88gzJi-eBJ2Vz_HJwATg",
"1Crn@3WmUeRWp4zwPvvCKX19ZaQp-cdQV_gHdaGSWow"
"2r009dzvHuVrWrRXT5kJMmHNQEHHNWeOMLVZW8PATB8" ,
"6ZNISDst62ymlrOAkadjdD5ZulT5A299J78SLhM__0s",
"78j977-GYBeX8IQfoELPyLBDYPdmfZo0JgViVe_1KCM",
"90CT8AaBPbn5X8nRXkesju1i®BghWqz3wqD4jF-qDGk",
"I100fcFUoDXCucp5yy2ujqPssDVGaWNiUliNz_awD@gc",
"KjAXgAAINSWHEDtRIh4u5Mn1ZsWixhhWAiX-A4QiwgA",
"LaibIU6d7GQagXR7AvGTrnXgS1d3z8EIg_fv3f0Z1Wg",
"LezjabRqiZOXzEYmVZf8RMi9xAkd3_M1LZ8U7E4s3u4",
"RTz3qTmFNHbpWrrOMZS41F474kFqRv3vIPqth6PUhIM",
"W14XHbUffzuW4IFMjpSTb1melWxUWf4N_o021dkkIqc8",
"WTpI7RcM3gxZruRpXzezSbkbOr93PVFvWx8woJ3j1cE",
"_ohJVIQIBsU4updNS4_w4Kb1MHqJOL9qLGshWqg6JXQs",
"y50czcBISChy_bsbaldMoUuAOQ5AMmOSfGoEe81v1FU"

]

iss": "https://pid-issuer.bund.de.example”,
"iat": 1683000000,
"exp": 1883000000,
"vet": "urn:eudi:pid:de:1",
"_sd_alg": "sha-256",
"enf": {
Iljwkll: {
"kty": "EC",
"crv": "P-256",
"x": "TCAER19Zvu30HF4j4W4vfSVoHIP1ILilDls7vCeGemc",
"y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"

The digests in the SD-JWT payload reference the following Disclosures:
Claim given_name:

* SHA-256 Hash:
OHZmnSIPz337kSWe7C341--88gzJi-eBJ2Vz_HJwWATg
* Disclosure:
WyIyROXDNDJzS1F2ZUNmR2ZyeU5STj13IiwgImdpdmVuX25hbWUiLCAiRXJpa2EiXQ
 Contents:

["2GLC42sKQveCfGfryNRNOw", "given_name", "Erika"]
Claim family_name:

* SHA-256 Hash:
I00fcFUoDXCucp5yy2ujqPssDVGaWNiUliNz_awD@gc

* Disclosure:

Fett, et al. Standards Track Page 70

RFC 9901 SD-JWT November 2025

WyJ1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgImZhbWlseVOuYW11IiwgIk11c3R1lcm1hbm4iXQ
¢ Contents:

["eluv50g3gSNII8EYnsxA_A", "family_name", "Mustermann"]
Claim birthdate:

* SHA-256 Hash:
Lai6IU6d7GQagXR7AvGTrnXgS1d3z8EIg_fv3f0Z1Wg
* Disclosure:
WyI2SWo3dE@tYTVpVIBHYMOTNXRtd1ZBIiwgImJpcnRoZGFOZSISICIXOTYZLTA4LTEYI10
* Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "birthdate", "1963-08-12"]
Claim street_address:

* SHA-256 Hash:
ALZERsSn5WNiEXdCksW8I5qQw3_NpAnRqpSAZDudgw8
* Disclosure:

WyJ1SThaV205UWSLUHBOUGVOZWS5IZGhRIiwgInNOcmV1dFOhZGRyZXNzIiwgIkhlaWR1c3RyYVXTM
DBkZmUgMTciXQ

e Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "street_address", "Heidestra\u@@dfe 17"]
Claim locality:

* SHA-256 Hash:
D__W_uYcvRz3tvUnIJvBDHiTc7C__qHdOXNKwIs_w9k
* Disclosure:
WyJRZT9PNjR6CUF4ZTQXMmEXMDhpcm9BIiwgImxvY2FsaXR5IiwgIktcdTAwZ jZsbiJd
 Contents:

["Qg_064zqAxe412a1088iroA", "locality", "K\u@efeln"]
Claim postal_code:

* SHA-256 Hash:
xOPy9-gJALK6UbWKFLR85cOByUD3AbNwWFg3I3YfQE_I

* Disclosure:
WyJBSngtMDk1V1BycFROTjRRTUIXUKIBIiwgInBvc3RhbF9jb2R1IiwgIjUXMTQ3I10

¢ Contents:

Fett, et al. Standards Track Page 71

RFC 9901 SD-JWT November 2025

["AJx-895VPrpTtNAQMOGROA", "postal_code", "51147"]
Claim country:

* SHA-256 Hash:
eBpCXU1J5dhH2g4t8QYNW5EXxS9AXUVb1lUodoLYoPho®
* Disclosure:
WyJQYzMzSk@yTGNoY1VFfbEhNZ3ZfdWZRIiwgImNvdW50cnkil.CAiREUiXQ
 Contents:

["Pc33JM2LchcU_lHggv_ufQ", "country", "DE"]
Claim address:

* SHA-256 Hash:
RTz3qTmFNHbpWrrOMZS41F474kFqRv3vIPqth6PUh1IM

 Disclosure:

Wy JHMDJOU3JRZmpGWFE3SW8WOXNSYWpBIiwgImFkZHJ1c3MiLCB7119zZCI6IFsiQUxaRVJzU241V
05pRVhkQ2tzVzhJNXFRdzNfTnBBb1JxcFNBWKR1ZGd30CIsICJEX19XX3VZY3ZSejNOod1VuSUp2Qk
RIaVRjNONTfX3FIZDBATkt3SXNfdz1lrIiwgImVCcENYVTFKNWRoSDJNNHQ4UV10VzVFeFM5QXhVVmJ

sVW9kbOxZb1BobzAilLCAieE9QeTktZOpBTES2VWJIXSOZMUjg1YB9CeVVEMOFiTndGZzNJM1ImUUVF
SSJdfVe

e Contents:

["GO2NSrQf jFXQ7Io0@9syajA", "address", {"_sd":

["ALZERSSNn5WNiEXdCksW8I5qQw3_NpAnRqpSAZDudgw8",
"D__W_uYcvRz3tvUnIJvBDHiTc7C__qHdOXNKwIs_w9k",
"eBpCXU1J5dhH2g4t8QYNW5SEXS9AXxUVblUodoLYoPhoB", "xOPy9-
gJALK6UbWKFLR85c0BYUD3AbNWFg3I3YfQE_I"]}]

Claim nationalities:

* SHA-256 Hash:
y50czcOISChy_bsbaldMoUuAOQ5AMMOSTGoEe81v1FU

* Disclosure:

WyJsa2x4RjVgTV1sRTRQVWI2TUSJdkNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIKRFI11d
 Contents:

["1k1xF5jMY1GTPUOoVMNIVCA", "nationalities", ["DE"]]
Claim sex:

* SHA-256 Hash:
90CT8AaBPbn5X8nRXkesju1iBBghWqzZ3wqgD4 jF-qDGk

Fett, et al. Standards Track Page 72

RFC 9901 SD-JWT November 2025

 Disclosure:
Wy JuUHVVUWS rUkZxMeJJZUFtNOFUWEZBIiwgInNleCIsIDJd
e Contents:

["nPuoQnkRFg3BIeAm7AnXFA", "sex", 2]
Claim birth_family_name:

* SHA-256 Hash:
KjAXgAAINSWHEDtRIh4u5Mn1ZsWixhhWAiX-A4QiwgA
* Disclosure:
WyI1Y1BzMUlxdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoX2ZhbWlseVOuYW11IiwgIkdhYmxlciJdd
 Contents:

["5bPs1IquZNaBhkaFzzzZNw", "birth_family_name", "Gabler"]
Claim locality:

* SHA-256 Hash:
KUViaalLnY5jSML90G2900LENPbbXThSjSPMjZaGkxAE
* Disclosure:
WyITYTJXMFOOcmxFWnpmcW1rXzdQcS13IiwgImxvY2FsaXR5IiwgIkJlemxpbidd
 Contents:

["5a2WO_NrlEZzfgmk_7Pg-w", "locality", "Berlin"]
Claim country:

* SHA-256 Hash:

YbsTOS76VgXCVsd1jUSIwKPDgmALeB1uZclFHXT-USQ
* Disclosure:

Wy J5MXNWVTV3ZGZKYWhWZGd3UGATNTJRIiwgImNvdW50cnkilLCAIREUiXQ
* Contents:

["y1sVU5wdfJahVdgwPgS7RQ", "country", "DE"]
Claim place_of_birth:

* SHA-256 Hash:
1Crne3WmUeRWp4zwPvvCKX19ZaQp-cdQV_gHdaGSWow
e Disclosure:

WyJIY1EOWDhzclZXM1FEeG5JSmRxeU9BIiwgInBsYWN1X29mX2JpcnRoIiwgeyJfc2Qi0iBbIktVV
m1lhYUxuWTVqUOTMOTBHMj1PTOXFT1BiY1hmaFNqU1BNalphR2t4QUUiLCAiWWJzVDBTNzZWcVhDVn
NkMWpVU2x3S1BEZ21BTGVCMXVaY2xGSFhmLVVTUSJdfVO

Fett, et al. Standards Track Page 73

RFC 9901 SD-JWT November 2025

e Contents:

["HbQ4X8srVW3QDxnIJdqyOA", "place_of_birth", {"_sd":
["KUViaalLnY5jSML9BG2900LENPbbXfhSjSPMjZaGkxAE",
"YbsTOS76VgXCVsd1jUSIwKPDgmALeB1uZclFHXf-USQ"] }1]

Claim 12:

* SHA-256 Hash:
gkvy@FuvBBvjOhs2ZNwxcq0lf8mu2-kCE7-Nb2QxuBU

* Disclosure:
WyJDOUdTb3VqdmlKcXVFZ11mb2pDYjFBIiwgIjEyIiwgdHJ1ZVe

 Contents:

["C9GSoujviJquEgYfojCb1A", "12", true]
Claim 14:

* SHA-256 Hash:
y6SFrVFRyq50IbRJviTZqqjQWzOtLiuCmMe0OKqazGI

* Disclosure:
WyJreDVrRjE3Vi14MEptd1V40XZndnR3IiwgIjEOIiwgdHJ1ZVe

 Contents:

["kx5kF17V-x0JmwUx9vgvtw", "14", true]
Claim 16:

* SHA-256 Hash:
hrY4HnmF5b5JwC9eTzaFCUceIQAaIdhrqUXQNCWbfZI
* Disclosure:
Wy JIM28xdXN3UDc2MEZpMn11R2RWQOVRIiwgIjE2IiwgdHJ1ZV0O
 Contents:

["H30TuswP760Fi2yeGdVCEQ", "16", true]
Claim 18:

* SHA-256 Hash:
CVKnly5P90yJs3EwtxQiOtUczaXCYNA4IczRaohrMDg

* Disclosure:
WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpBIiwgIjE4TiwgdHJ1ZV0

 Contents:
["OBK1TV1vLg-AdwqYGbP8ZA", "18", true]

Fett, et al. Standards Track Page 74

RFC 9901 SD-JWT November 2025

Claim 21:

* SHA-256 Hash:
TtEiyzPRYOKsT7SsYGMgPZKsOT11QZRxHXAOr5_Bwkk

* Disclosure:
WyJNMEpiNTdONDF1YnJrU3V5ckRUM3hBIiwgIjIxIiwgdHJ1ZVe

 Contents:

["MOJb57t4TubrkSuyrDT3xA", "21", true]
Claim 65:

* SHA-256 Hash:
a44-g2Gr8_3AmJw2XZ8kI1y0Qz_ze9i0cW2W3RLpXGg

* Disclosure:
WyJEc210S05ncFYOZEFIcGpyY2FvcOF3IiwgIjY1IiwgZmFsc2Vd

 Contents:

["DsmtKNgpV4dAHpjrcaosAw", "65", false]
Claim age_equal_or_over:

* SHA-256 Hash:
2r009dzvHuVrWrRXT5kJMmMHNgQEHHNWeOMLVZW8PATB8

* Disclosure:

WyJ1SzVvNXBIZmd1cFBwbHRgMXFoQUp3IiwgImFnZV91lcXVhbF9vcl9vdmVyIiwgeyJfc2Qi0iBbI
jFORW15e1BSWU9Lc2Y3U3NZRO1nUFpLcOIUMWXRW1J4SFhBMHITX0J3a2siLCAiQ1ZLbmx5NVA5SMH
1KczNFd3R4UW1PdFVjemFYQ110QTRJY3pSYW90ck1EZyIsICJhNDQtZzJHc jhfMOFtSncyWFo4alk
xeTBRel96ZT1pT2NXM1lczUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajBoczJaTnd4Y3FPbGY4bXUyLWtD
RTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKdOM5ZVR6YUZDVWN1ISVFBYUlkaHJxVVhRTKNXYmZaS
SISICJ5NINGc1ZGUNIxXNTBJY1JKdmlUWNFxalFXejBOTG11Q21NZUBWS3FhekdJI119XQ

e Contents:

["eK505pHfgupPpltj1ghAJw", "age_equal_or_over", {"_sd":
["1tEiyzPRYOKsf7SsYGMgPZKsOT11QZRxHXAOr5_Bwkk",
"CVKnly5P90yJs3EwtxQiOtUczaXCYNA4IczRaohrMDg", "a44-
g2Gr8_3AmJw2XZ8kI1y0Qz_ze9iOcW2W3RLpXGg", "gkvy@FuvBBvjBhs2ZNwxcqOlf8mu2-
kCE7-Nb2QxuBU", "hrY4HnmF5b5JwC9eTzaFCUceIQAaIdhrqUXQNCWbfzZI",
"y6SFrVFRyq50IbRJviTZqqjQWzOtLiuCmMe0BKqazGI"] }]

Claim age_in_years:

* SHA-256 Hash:
WTpI7RcM3gxZruRpXzezSbkbOr93PVFvWx8woJ3j1cE

Fett, et al. Standards Track Page 75

RFC 9901 SD-JWT November 2025

 Disclosure:
WyJGNOFEZGIwVVZiMExpMGNpUGNQMGV3IiwgImFnZV9pb195ZWFycyIsIDYyXQ
e Contents:

["j7ADdbOUVbOLiOCciPcPBew", "age_in_years", 62]
Claim age_birth_year:

* SHA-256 Hash:
LezjabRqiZ0OXzEYmVZf8RMi9xAkd3_M1LZ8U7E4s3u4
* Disclosure:
WyJXcHhKckZ1WDh1U2kycDRodDA5anZ3IiwgImFnZV9iaXJ0aF95ZWFyIiwgMTk2M10
 Contents:

["WpxJrFuX8uSi2p4ht@9jvw", "age_birth_year", 1963]
Claim issuance_date:

* SHA-256 Hash:
W14XHbUffzuW4IFMjpSTb1melWxUWf4N_o21dkkIqc8
* Disclosure:
WyJhdFNtRkFDWU1iS1ZLRDATbzNKZ3RRIiwgImlzc3VhbmN1X2RhdGUiLCAiMjAyMCOwWMyOxMSJd
 Contents:

["atSmFACYMbJVKDO503JgtQ", "issuance_date", "2020-063-11"]
Claim expiry_date:

* SHA-256 Hash:
78j977-GYBeX8IQfoELPyLBDYPdmfZo0JgViVe_1KCM
* Disclosure:
WyIOS31SMzJvSVpOLXprV3ZGeWJVTEtnIiwgImV4cGlyeVIkYXR1IiwgIjIwMzAtMDMEMTIiXQ
* Contents:

["4KyR320IZt-zkWvFgbULKg", "expiry_date", "2030-03-12"]
Claim issuing_authority:

* SHA-256 Hash:
6ZNISDst62ymlrOAkadjdD5ZulT5A299J78SLhM__0Os

* Disclosure:
WyJjaEJDc31loeWgtSjg2SSThd1FEaUNRIiwgImlzc3VpbmdfYXVBaG9yaXR5IiwgIkRFI10

¢ Contents:

Fett, et al. Standards Track Page 76

RFC 9901 SD-JWT November 2025

["chBCsyhyh-J86I-awQDiCQ", "issuing_authority", "DE"]
Claim issuing_country:

* SHA-256 Hash:
_ohJVIQIBsU4updNS4_w4Kb1MHqJOL9gLGshWq6JXQs
* Disclosure:
WyJmbES5QMW5jTX0o5TGctYz1xTU16Xz1lnIiwgImlzc3VpbmdfY291bnRyeSIsICJERSJd
 Contents:

["fINP1ncMz9Lg-c9gMIz_9g", "issuing_country", "DE"]

The following is an example of an SD-JWT+KB that discloses only nationality and the fact that
the person is over 18 years old:

eyJhbGciOiAiRVMyNTYiLCAidH1wIjogImRjK3NkLWp3dCJ9.eyJfc2Qi0iBbIjBIWm1
uU01QejMzN2tTV2U3QzMObCOBtODhnekppLWVCSjJWel9ISndBVGciLCAiMUNybjAZV21
VZVJXcDR6d1B2dkNLWGWSWmFRcC13jZFFWX2dIZGFHU1dvdyIsICIycjAwOWR6dkh1VnJ
Xc1JYVDVrSk1tSG5xRUhIb1d1IMETMV1p30FBBVEI4IiwgIjZaTk 1 TRHNONjJ5bWxyTOF
rYWRQZEQ1WnVsVDVBMjk5Sjc4UBxoTVIfT3MiLCAiNzhqZzc3LUdZQmVYOE1RZmIFTFB
5TDBEWVBkbWZabzBKZ1ZpVjBfbEtDTSIsICISMENUOEFhQ1BibjVYOG5SWGt1lc2p 1MWk
wQnFoV3FaM3dxRDRqRi1xREdrIiwgIkkwMGZ jR1VVRFhDdWNwNX15MnVqcVBzcORWR2F
XTm1lVbG10el9hdeQwzZ2MiLCAiS2pBWGdBQT10NVAIRUROUk10NHU1TW4xWnNXaXhoaFd
BaVgtQTRRaXdnQSIsICJMYWk2SVU2ZDdHUWFnWFI3QXZHVHJUWGdTbGQze jhFSWdfZnY
zZk9aMVdnIiwgIkxlemphY1lJxaVpPWHpFWW1WWmY4Uk1pOXhBa2QzX00xTFo4VTdFNHM
zdTQiLCA1iU1R6M3FUbUZOSGJwWV3JyTO1aUzQxRjQ3NGtGcVJI2M3ZJUHFBaDZQVWhsTSI
SICJXMTRYSGJVZmZ6dVcOSUZNanBTVGIxbWVsV3hVV2YBT19vMmxka2tJcWM4TIiwgIld
UcEk3UmNNM2d4WnJ1UnBYemV6U2JrYk9yOTNQVkZ2V3g4d29KM20oxYOUiLCAiX290S1Z
JUU1Cc1UBdXBKT1IMOX3cBS2IxTUhXxSjBMOXFMR3NoV3E2S1hRcyIsICJ5NTBjemMwSVN
DaH1fYnNiYTFkTWOVAUFPUTVBTW1PU2ZHbOV1ODF2MUZVI10sICJpc3MiOiAiaHROCHM
6Ly9waWQtaXNzdWVyLmJ1bmQuZGUuZXhhbXBsZSIsICJpYXQi0iAxNjgzMDAWMDAwWLCA
iZXhwIjogMTg4MzAwMDAWMCWgINZjdCI6ICJ1cm46ZXVkaTpwaWQ6ZGU6MSISICJfc2R
fYWxnIjogInNoYSOYNTYiLCAiY25mIjogeyJqd2si0iB7Imt0eSI6ICJFQyIsICJjcnY
101AiUCOYNTYiLCAieCI6ICJUQOFFUJESWNZTMO9IRjRGNFcOdmMZTVMIISVAXSUXpbER
sczd2Q2VHZW1jIiwgInki0iAiWnhqgaVdXY1pNUUdIV1dLV1E@aGJTSW1lyc1ZmdWVjQeu
2dDRqVD1GMkhaUSJ9fXe.Z0ZQTgmg8X1mCyFXiBwbV8xjctX1A1Ea5TkdnkKOyWvL fW4
0XDb50j9tzkgwff5s44IDnrfAdgLtmTcojs97_Q~WyJ1SzVvNXBIZmd1cFBwbHRgMXFo
QUp3IiwgImFnZV91lcXVhbF9vcl9vdmVyIiwgeyJfc2Qi0iBbIjFORW15e1BSWU9Lc2Y3
U3NZRO1nUFpLcO9UMWXRW1JA4SFhBMHI1X0J3a2siLCAiQ1ZLbmx5NVASMH1KczNFd3R4
UW1PdFVjemFYQ110QTRJY3pSYW90ck1EZyIsICJhNDQtZzJHcjhfMOFtSncyWFo4alkx
eTBRe196ZT1pT2NXM1lczUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajBoczJaTnd4Y3FPbGY4
bXUyLWtDRTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKdOM5ZVR6YUZDVWN1SVFBYUlk
aHJxVVhRTKNXYmZaSSIsICJ5NINGc1ZGUNn1xNTBJY1JKdm1UWNnFxalFXejBOTG11Q21N
ZU8wWS3FhekdJI119XQ~WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpBIiwgIjE4IiwgdHJ1Z
VO~WyJsa2x4RjVqTV1sRTRQVWI2TUS5JdkNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIKRFI
11d~eyJhbGci0iAiRVMyNTYiLCAidHIwIjogImtiK2p3dCJ9.eyJub25jZSI6ICIXM]M
ONTY30DkwIiwgImF1ZCI6ICJodHRwczovL3Z1cmlmaWVyLmV4YWIwbGUub3JnIiwgIml
hdCI6IDE3NDg1MzcyNDQsICJzZF90YXNoIjogI1BqTVImTTA3VmJKZET4TE1sdXZSTmI
40EpGbGpTWDRuULUcOM1VjX0JTUkBifQ.f3TeS_1BWEG78EbIJRh5wgv8nYumk7euzubx
gbgpNB4pbQQqgRPWK-vQjlhhgU1EFGZ9LFakFX_Bmgul1G_3mw

Fett, et al. Standards Track Page 77

RFC 9901 SD-JWT November 2025

This is the payload of the corresponding Key Binding JWT:

"nonce": "1234567890",

"aud": "https://verifier.example.org",

"iat": 1748537244,

"sd_hash": "PjMYfMO7VbJdMxLI1uvRNb88JF13jSX4n-G43Uc_BSRM"

After validation, the Verifier will have the following Processed SD-JWT Payload available for
further handling:

{
"iss": "https://pid-issuer.bund.de.example",
"iat": 1683000000,
"exp": 1883000000,
"vet": "urn:eudi:pid:de:1",
"enf": {
"jwk " :
"kty": "EC",
"crv": "P-256",
"x": "TCAER19Zvu30HF4j4W4vfSVoHIP1ILilD1s7vCeGemc",
"y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
}
}.
"age_equal_or_over": {
"18": true
"nationalities": [
"DE"
]
}

A.4. W3C Verifiable Credentials Data Model v2.0

This non-normative example illustrates how the artifacts defined in this specification could be
used to express a W3C Verifiable Credentials Data Model v2.0 payload [VC_DATA_v2.0].

Key Binding is applied using the Holder's public key passed in a cnf claim in the SD-JWT.

The following is the input JWT Claims Set:

Fett, et al. Standards Track Page 78

RFC 9901 SD-JWT

"@context": [
"https://www.w3.0rg/2018/credentials/v1",
"https://w3id.org/vaccination/v1"

]l
"type": [
"VerifiableCredential",
] "VaccinationCertificate"
"issuer": "https://example.com/issuer",
"issuanceDate": "2023-062-69T11:01:59Z2",
"expirationDate": "2028-02-08T11:01:59Z2",
"name": "COVID-19 Vaccination Certificate",
"description”: "COVID-19 Vaccination Certificate",
"credentialSubject": {

"vaccine": {

“type": "Vaccine",
"atcCode": "JOB7BX03",
"medicinalProductName": "COVID-19 Vaccine Moderna",
"marketingAuthorizationHolder": "Moderna Biotech"
}I
"nextVaccinationDate": "2021-08-16T13:40:12Z2",
"countryOfVaccination": "GE",
"dateOfVaccination": "2021-06-23T13:40:12Z7",
"order": "3/3",
"recipient”: {
"type": "VaccineRecipient",
"gender": "Female",
"birthDate": "1961-08-17",
"givenName": "Marion",
"familyName": "Mustermann"
}I
"type": "VaccinationEvent",
"administeringCentre": "Praxis Sommergarten",

"batchNumber": "1626382736",
"healthProfessional": "883110000015376"

The following is the issued SD-JWT:

Fett, et al. Standards Track

November 2025

Page 79

RFC 9901 SD-JWT November 2025

eyJhbGciOiAiRVMyNTYiLCAidHIwIjogImV4YW1wbGUrc2Qtand@In®.eyJAY29udGV4
dCI6IFsiaHROCcHM6LY93d3cudzMub3JnLzIwMTgvY3J1ZGVudGlhbHMvdjEiLCAiaHR@
cHM6LY93M21kLm9yZy92YWNjaW5hdGlvbi92MSJdLCALidHIwZSI6IFsiVmVyaWZpYWJs
ZUNYZWR1bnRpYWwilCAiVmFjY21uYXRpb25DZXJ0aWZpY2F0ZSJdLCAiaXNzdWVyIjog
Imh@dHBz0i8vZXhhbXBsZS5jb20vaXNzdWVyIiwgImlzc3VhbmN1RGFOZSI6ICIyMDIz
LTAyLTA5VDEXOjAx0jUSWiIsICJ1leHBpcmFOaW9uRGFOZSI6ICIyMDIALTAYLTA4VDEX
0jAX0jUSWiIsICJuYW11IjogIkNPVKI1ELTESIFZhY2NpbmFOaW9uIENlIcnRpZmljYXR1
TiwgImR1c2NyaXBOaWOuIjogIKNPVKIELTESIFZhY2NpbmFOaWOuIENIcnRpZmljYXR1
TiwgImNyZWR1bnRpYWxTdWJqZWNOIjogeyJfc2Qi0iBbIjFWX0stOGXEUThpR1hCR1hi
W1k5ZWhxUjRIYWJXQ2k1VDB5Yk16W1B1d3cilLCAiSnpqTGdOUDIS5ZFAtQjNOZDEYUDY3
NGdGbUsyenk4MUhNdEJNZ jZDSk5XZyIsICJSMmZHYmZBMDdaX11sa3FtT1p5SbWExeH15
eDFYc3RJaVM2QjFZYmwyS1o0IiwgI1RDbXpybDdLMmd1d19kdTdwY@1JeXpSTEhWLV11
Zy1GbF9jeHRyVXZQeGcil CAiVjdrSkJMSzc4VGTWRE9tcmZKN1p1VVBIdUtfMmMNjN31a
UmEBcVYxdHh3TSIsICJiMGVVc3ZHUCTPRERKRMIZNESsemxYYzNORHNsVOpOBQOpGNzVO
dzhPal9nIiwgInpKS191UB1YandNOGRYbU1aTG5JOEZHTTA4ekozX3ViR2VFTUotNVRC
eTAiXSwgInZhY2NpbmUi0iB7119zZCI6IFsiMWNGNWhMd2toTUSJYXFmVOpyWEK3Tk1X
ZWRMLT1ImN1kyUEE1Mn1QalNaSSIsICJIaXk2V1d1ZUXENWJuMTYyOThOUHY3R1hobWxk
TURPVG5CaS1DWmJwaES5vIiwgTkxiMDI3cTYSMWpYWGwtakM3M3ZpOGViT205¢c214MOMt
X29nN2dBNFRCUUUiXSwgInR5cGUi0iAiVmFjY21uZSJ9LCAicmVjaXBpZW50IjogeyJf
€c2Qi0iBbIjFsUTFCT1kyNHEwWVGg2T0d6dGhxLTctNGw2YOFheHJZWE9HWNB1V19sbkEi
LCAiM256 THE4AMUBYbB4wNndkdjFzaEh2TOVKVnhaNUtMbWREa®hFREpBQ1dFSSIsICJQ
bjFzV2kwNkcOTEpybm4tX1JUMFJiTVOIVGR4b1BKUXVYMmMZ6V3ZfSk9VIiwgImxGOXV6
ZHN3NOhwbEdMYZzcxNFRyYNFAPNOTHSnphN3RON1FGbGVDWDRJdHCciXSwgInR5cGUi0iAL
VmFjY21uzVJ1Y21waWVudCJILCAidHIwZSI6ICJWYWNjaW5hdGlvbkV2ZW50In0@sICJf
Cc2RfYWxnIjogInNoYSOYNTYiLCAiY25mIjogeyJqd2si0iB7Imt0eSI6ICJFQyISICJj
cnYi0iAiUCOYNTYiLCAieCI6ICJUQOFFUJESWNZT1MO9IRjRQNFcOAMZTVMIISVAXSUXp
bERsczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXY1pNUUdIV1dLV1E@aGJTSW1lyc1ZmdWVj
QOU2dDRqVD1GMkhaUSJ9fX0.0Zomvw08iw4db89MYCeeomBVStXkT6u7G7FkicPWZnd2
_hGgrel_u1NHgPVocuOt-m32UubkwtPmYFxKk@AOeA~WyIyROXDNDJzST1F2ZUNmR2Zye
U5STj13IiwgImFOYONVZGUiLCAiSjA3QlgwMyJd~WyJ1bHVWNUONM2dTTk1JOEVZbnN4
QV9BIiwgIm11ZG1jaW5hbFByb2R1Y3ROYW11TIiwgIkNPVKI1ELTESIFZhY2NpbmUgTW9Ok
ZXJuYSJd~WyI2SWo3dEOtYTVpVIBHYMITNXRtd1ZBIiwgImThcmt1ldGluZ@F1dGhveml
6YXRpb25Ib2xkZXIiLCAiTWIkZXJuYSBCaW90ZWNoI10~WyJ1SThaV285UW5LUHBOUGY
0ZW5IZGhRIiwgIm51eHRWYWNjaW5hdGlvbkRhdGUiLCAiMjAyMSOwOCOXN1QxMzoBMDo
xM1oiXQ~WyJRZ19PNjR6CcUF4ZTQXMmEXMDhpcm9BIiwgImNvdW58cn1PZ1ZhY2NpbmF@
aW9uIiwgIkdFI10~WyJBSngtMDk1V1BycFROTjRRTUIXUk9BIiwgImRhdGVPZ1ZhY2Np
bmFBaW9uIiwgIjIwMjEtMDYtMjNUMTM6NDA6MTJaIllo~WyJQYzMzSkOyTGNoY1VfbEhn
Z3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd~WyJHMDJOU3JRZmpGWFE3SWBWOXNSYWpBIiw
gImdlbmR1ciIsICJGZW1hbGUiXQ~WyJsa2x4RjVqTV1sRTRQVW92TUSJdKNBIiwgImJp
cnNRORGFBZSISICIXOTYXLTA4LTE3I10~WyJuUHVVUWSrUkZxMOJJZUFtNOFUWEZBIiwg
ImdpdmVuTmFtZSIsICJNYXJpb24iXQ~WyI1Y1BzMUlxdVpOYTBoa2FGenp6Wk53IiwgI
mZhbW1lseUShbWUiLCAiTXVzdGVybWFubiJd~WyI1YTJXMF90cmxFWnpmcW1rXzdQcS13
IiwgImFkbWluaXNOZXJpbmdDZW50cmUiLCAiUHJheGlzIFNvbW11lcmdhenR1lbiJd~WyJ
S5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImJhdGNoTnVtYmVyIiwgIjE2MjYzODI3MzY
iXQ~WyJIY1E@WDhzc1lZXM1FEeG5JSmRxeU9BIiwgImhlYWx0aFByb2Z1c3Npb25hbCIs
ICI40DMXMTAWMDAWMTUZzNZzYiXQ~

The following payload is used for the SD-JWT:

{

"@context": [
"https://www.w3.0rg/2018/credentials/v1",
"https://w3id.org/vaccination/v1"

Fett, et al. Standards Track Page 80

RFC 9901 SD-JWT

”type" : [
"VerifiableCredential",
"VaccinationCertificate"

]

issuer": "https://example.com/issuer",

"issuanceDate": "2023-02-09T11:01:59Z",
"expirationDate": "2028-02-08T11:01:59Z2",

"name" : "COVID-19 Vaccination Certificate",
"description”: "COVID-19 Vaccination Certificate",
"credentialSubject": {

_sd":

"1V_K-81DQ8iFXBFXbZY9ehqR4HabWCi5TOybIzZPeww"
"JzjLgtP29dP-B3td12P674gFmK2zy81HMtBgf6CJNWg",
"R2fGbfAB7Z_Y1kgmNZymalxyyx1XstIiS6B1Ybl2Jz4",
"TCmzrl7K2gev_du7pcMIyzRLHp-Yeg-F1l_cxtrUvPxg",
"V7kJBLK78TmVDOmrfJ7ZuUPHuK_2cc7yZRa4qV1txwM",
"bBeUsvGP-0DDdFoY4N1z1Xc3tDs1WJtCJF75Nw80j_g",
"zJK_eSMXjwM8dXmMZLNnI8FGMO8zJ3 _ubGeEMJ-5TBy0@"

"vac

]

"rec

]

”'ype": "VaccineRecipient"
"%ype": "VaccinationEvent"
Ji o
"_sd_alg": "sha-256",
"enf": {
"jwk":
”kty” : IIECII ,
"crv": "P-256",
"x": "TCAER19Zvu30HF4j4W4vfSVoHIP1ILilD1ls7vCeGemc",
"y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
}
}

The digests in the SD-JWT payload reference the following Disclosures:

cine": {

sd":
"1cF5hLwkhMNIaqfWJrXI7NMWedL-9f6Y2PA52yPjSZI",
"Hiy6WWuelLD5bn16298tPv7GXhm1dMDOTnBi-CZbphNo",
"LbB279691jXX1-jC73vi8eb0j9smx3C-_og7gA4TBQE"

'ype": "Vaccine"

ipient": {

sd":
"11SQBNY24q0Th60Gzthq-7-416cAaxrYX0GZpeW_1nA",
"3nzLq81M20oN86wdv1shHVOEJVxZ5KLmdDKHEDJABWET ",
"Pn1sWiB6G4LJrnn-_RTORbM_HTdxnPJQuX2fzWv_JoU",
"1F9uzdsw7HplGLc714Tr4W07MGJza7tt7QF1eCX4Itw"

Claim atcCode:

*« SHA-256 Hash:
1cF5hLwkhMNIaqfWJrXI7NMWedL-9f6Y2PA52yPjSZI

Fett, et al.

Standards Track

November 2025

Page 81

RFC 9901 SD-JWT November 2025

 Disclosure:
WyIyROXDNDJzS1F2ZUNmR2ZyeU5STj13IiwgImFOYONVZGUiLCAiSjA3Q1gwMyJd
e Contents:

["2GLC42sKQveCTfGfryNRNOw", "atcCode", "JO7BX03"]
Claim medicinalProductName:

* SHA-256 Hash:
Hiy6WWuelLD5bn16298tPv7GXhm1dMDOTnBi-CZbphNo
 Disclosure:

Wy J1bHVWNU9NM2dTTk1JOEVZbnN4QV9BIiwgIm11ZG1ljaWShbFByb2R1Y3ROYW11IiwgIkNPVKIEL
TESIFZhY2NpbmUgTW9kZXJuYSJd

e Contents:
["eluv50g3gSNII8EYnsxA_A", "medicinalProductName", "COVID-19 Vaccine
Moderna"]

Claim marketingAuthorizationHolder:

* SHA-256 Hash:
LbB27q691jXX1-jC73vi8eb0j9smx3C-_og7gA4TBQE
 Disclosure:

WyI2SWo3dEOtYTVpVIBHYMOTNXRtd1ZBIiwgImThcmtldGluZOF1dGhveml6YXRpb25Ib2xkZXIil
CAiTW9kZXJuYSBCaW90ZWNoI1l0

e Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "marketingAuthorizationHolder", "Moderna Biotech"]
Claim nextVaccinationDate:

* SHA-256 Hash:
R2fGbfAB7Z_Y1kgmNZymalxyyx1XstIiS6B1Ybl2J74
 Disclosure:

WyJ1SThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm51eHRWYWNjaW5hdG1lvbkRhdGUiLCAiMjAyMSOwO
COxN1QxMzoBMDoxM1oiXQ

e Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "nextVaccinationDate", "2021-08-16T13:40:127"]
Claim countryOfVaccination:

* SHA-256 Hash:
JzjLgtP29dP-B3td12P674gFmK2zy81HMtBgf6CJNWg

Fett, et al. Standards Track Page 82

RFC 9901 SD-JWT November 2025

* Disclosure:
WyJRZT19PNjR6CcUF4ZTQXMmEXMDhpcm9BIiwgImNvdW50cn1PZ1ZhY2NpbmFOaW9uIiwgIkdFI10
 Contents:

["Qg_064zgAxe412a188iroA", "countryOfVaccination", "GE"]
Claim dateOfVaccination:

* SHA-256 Hash:
zJK_eSMXjwM8dXmMZLnI8FGMB8zJ3_ubGeEMJ-5TBy@
 Disclosure:

WyJBSngtMDk1V1BycFROTjRRTU9XUk9BIiwgImRhdGVPZ1ZhY2NpbmF@aW9uIiwgI jIwMjEtMDYtM
jNUMTM6NDA6MTJaIle

e Contents:
["AJx-B95VPrpTtN4QMOgROA", "dateOfVaccination", "2021-06-23T13:40:12Z"]

Claim order:

* SHA-256 Hash:
bBeUsvGP-0DDdFoY4N1z1Xc3tDs1WJtCJF75Nw807j _g
* Disclosure:
WyJQYzMzSk@yTGNoY1VfbEhNZ3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd
 Contents:
["Pc33JM2LchcU_l1Hggv_ufQ", "order", "3/3"]

Claim gender:

* SHA-256 Hash:

3nzLg81M20oNB6wdv1shHVOEJVxZ5KLmdDKkHEDJABWEI
* Disclosure:

Wy JHMDJOU3JRZmpGWFE3SW8BWOXN5YWpBIiwgImd1lbmR1ciIsICJGZWThbGUiXQ
 Contents:

["GB2NSrQfjFXQ7Io09syajA", "gender", "Female"]
Claim birthDate:

* SHA-256 Hash:
Pn1sWiB6G4LJrnn-_RTORbM_HTdxnPJQuX2fzWv_JOU
* Disclosure:

WyJsa2x4RjVqTV1sRTRQVWI2TUS5JAkNBIiwgImJpcnRORGFOZSISICIXOTYXLTA4LTE3I10

Fett, et al. Standards Track Page 83

RFC 9901 SD-JWT November 2025

e Contents:

["1k1xF5jMY1GTPUoVvMNIVCA", "birthDate", "1961-08-17"]
Claim givenName:

* SHA-256 Hash:

1F9uzdsw7HplGLc714Tr4W07MGJza7tt7QF1leCX4Itw
* Disclosure:

Wy JuUHVVUWS rUkZxMeJJZUFtNOFUWEZBIiwgImdpdmVuTmFtZSIsICJNYXJpb24iXQ
 Contents:

["nPuoQnkRFg3BIeAm7AnXFA", "givenName", "Marion"]
Claim familyName:

* SHA-256 Hash:
11SQBNY24q0Th60Gzthq-7-416cAaxrYX0GZpeW_1nA
* Disclosure:
WyI1Y1BzMU1xdVpOYTBoa2FGenp6Wk53IiwgImZhbWlseUShbWUiLCAiTXVzdGVybWFubiJd
* Contents:

["5bPs1IquZNaBhkaFzzzZNw", "familyName", "Mustermann"]
Claim administeringCentre:

* SHA-256 Hash:
TCmzrl7K2gev_du7pcMIyzRLHp-Yeg-F1l_cxtrUvPxg
¢ Disclosure:

WyITYTJXMFOOcmxFWnpmcW1rXzdQcS13IiwgImFkbWluaXNezZXJpbmdDZW50cmUiLCAiUHJheG1zI
FNvbW11lemdhenR1biJd

e Contents:

["5a2WO_Nrl1EZzfqmk_7Pg-w", "administeringCentre", "Praxis Sommergarten"]
Claim batchNumber:

* SHA-256 Hash:

V7kJBLK78TmVDOmrfJ7ZuUPHuK_2cc7yZRa4qV1txwM
* Disclosure:

Wy J5MXNWVTV3ZGZKYWhWZGd3UGATN1JRIiwgImJhdGNoTnVtYmVyIiwgIjE2MjYzODI3MzYiXQ
 Contents:

["y1sVU5SwdfJahVdgwPgS7RQ", "batchNumber", "1626382736"]

Fett, et al. Standards Track Page 84

RFC 9901 SD-JWT November 2025

Claim healthProfessional:

* SHA-256 Hash:
1V_K-81DQ8iFXBFXbZY9ehqR4HabWCi5TOybIzZPeww
* Disclosure:

WyJIY1EOWDhzclZXM1FEeG5JSmRxeU9BIiwgImhlYWx0aFByb2Z1c3Npb25hbCIsICI40DMXMTAWM
DAWMTUzNzYiXQ

e Contents:

["HbQ4X8srVW3QDxnIJdqyOA", "healthProfessional”, "883110000015376"]

This is an example of an SD-JWT+KB that discloses only type, medicinalProductName, atcCode
of the vaccine, type of the recipient, type, order, and dateOfVaccination:

Fett, et al. Standards Track Page 85

RFC 9901 SD-JWT November 2025

eyJhbGciOiAiRVMyNTYiLCAidHIwIjogImV4YW1wbGUrc2Qtand@In®.eyJAY29udGV4
dCI6IFsiaHROCcHM6LY93d3cudzMub3JnLzIwMTgvY3J1ZGVudGlhbHMvdjEiLCAiaHR@
cHM6LY93M21kLm9yZy92YWNjaW5hdGlvbi92MSJdLCALidHIwZSI6IFsiVmVyaWZpYWJs
ZUNyZWR1bnRpYWwil CAiVmF jY21uYXRpb25DZXJ0aWZpY2FBZSJdLCAiaXNzdWVyIjog
Imh@dHBz0i8vZXhhbXBsZS5jb20vaXNzdWVyIiwgImlzc3VhbmN1RGFOZSI6ICIyMDIz
LTAyLTA5VDEXOjAx0jUSWiIsICJ1leHBpcmFOaW9uRGFOZSI6ICIyMDIALTAYLTA4VDEX
0jAX0jUSWiIsICJuYW11IjogIkNPVKI1ELTESIFZhY2NpbmFOaW9uIENlIcnRpZmljYXR1
TiwgImR1c2NyaXBOaWOuIjogIKNPVKIELTESIFZhY2NpbmFOaWOuIENIcnRpZmljYXR1
TiwgImNyZWR1bnRpYWxTdWJqZWNOIjogeyJfc2Qi0iBbIjFWX0stOGXEUThpR1hCR1hi
W1k5ZWhxUjRIYWJXQ2k1VDB5Yk16W1B1d3cilLCAiSnpqTGdOUDIS5ZFAtQjNOZDEYUDY3
NGdGbUsyenk4MUhNdEJNZ jZDSk5XZyIsICJSMmZHYmZBMDdaX11sa3FtT1p5SbWExeH15
eDFYc3RJaVM2QjFZYmwyS1o0IiwgI1RDbXpybDdLMmd1d19kdTdwY@1JeXpSTEhWLV11
Zy1GbF9jeHRyVXZQeGcilLCAiVjdrSkJMSzc4VGTWRE9tcmZKNTp1VVBIdUtfMmNjN31a
UmEBcVYXxdHh3TSIsICJiMGVVc3ZHUCTPRERKRMIZNES5semxYYzNORHNsVOpBQOpGNzVO
dzhPal9nIiwgInpKS191UB1YandNOGRYbU1aTG5JOEZHTTA4ekozX3ViR2VFTUotNVRC
eTAiXSwgInZhY2NpbmUi0iB7119zZCI6IFsiMWNGNWhMd2toTUSJYXFmVOpyWEK3Tk1X
ZWRMLT1ImN1kyUEE1Mn1QalNaSSIsICJIaXk2V1d1ZUXENWJuMTYyOThOUHY3R1hobWxk
TURPVG5CaS1DWmJwaES5vIiwgTkxiMDI3cTYSMWpYWGwtakM3M3ZpOGViT205¢c214MOMt
X29nN2dBNFRCUUUiXSwgInR5cGUi0iAiVmMFjY21uZSJ9LCAicmVjaXBpZW50IjogeyJf
€c2Qi0iBbIjFsUTFCT1kyNHEWVGg2TOd6dGhXxLTctNGwW2YBFheHJZWE9HWNB1V19sbkEi
LCAiM256 THE4AMUBYbB4wNndkdjFzaEh2TOVKVnhaNUtMbWREa®hFREpBQ1dFSSIsICJQ
bjFzV2kwNkcOTEpybm4tX1JUMFJiTVOIVGR4b1BKUXVYMmMZ6V3ZfSk9VIiwgImxGOXV6
ZHN3NOhwbEdMYzcxNFRyNFAPNOTHSnphN3RON1FGbGVDWDRJdHciXSwgInR5¢cGUiOiAL
VmFjY21uzVJ1Y21waWVudCJILCAidHIwZSI6ICJWYWNjaW5hdGlvbkV2ZW50In0@sICJf
C2RTYWxnIjogInNoYSOYNTYiLCAiY25mIjogeyJqd2si0iB7Imt0eSI6ICJIFQYyIsICJ]
cnYi0iAiUCOYNTYiLCAieCI6ICJUQOFFUJESWNZT1MO9IRjRQNFcOAMZTVMIISVAXSUXp
bERsczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXY1pNUUdIV1dLV1E@aGJTSW1lyc1ZmdWVj
QOU2dDRqVD1GMkhaUSJ9fX0.0Zomvw08iw4db89MYCeeomBVStXkT6u7G7FkicPWZnd2
_hGgrel_ul1NHgPVocuOt-m32UubkwtPmYFxKk@AOeA~WyJQYzMzSkOyTGNoY1VfbEhnZ
3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd~WyJBSngtMDk1V1BycFROTjRRTUIXUk9BIiwg
ImRhdGVPZ1ZhY2NpbmFOaW9uIiwgIjIwMjEtMDYtMjNUMTME6NDA6MTJaIlle~WyIyROxD
NDJzS1F2ZUNmR2ZyeU5STj13IiwgImFOYONVZGUiLCAiSjA3QlgwMyJd~WyJ1bHVWNU9
nM2dTTk1JOEVZbnN4QV9BIiwgIm11ZG1ljaW5hbFByb2R1Y3ROYW11IiwgIKNPVKIELTE
5IFZhY2NpbmUgTW9kZXJuYSJd~eyJhbGci0iAiRVMyNTYiLCAidH1wIjogImtiK2p3dC
J9.eyJub25jZSI6ICIXMjMONTY30DkwIiwgImF1ZCI6ICJodHRwczovL3Z1lecmlmaWVyL
mV4YW1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF90YXNoIjogIklvV1VIO
TFsbGYzWEVybDQyY1Ezc3hfNTNWMW8xdWpDe jA4aERXSEs3RGsifQ.nBvzyIwCFMDVau
EaeJIWEKZZchxXMpXTQewHgAKARbOSZxBO9IbXXtHfpoGqO_BtNFN21ShJEIQBGyc-Xp
HigA

After the validation, the Verifier will have the following Processed SD-JWT Payload available for
further handling:

Fett, et al. Standards Track Page 86

RFC 9901 SD-JWT November 2025

"@context": [
"https://www.w3.0rg/2018/credentials/v1",
"https://w3id.org/vaccination/v1"

1,

"type": [

"VerifiableCredential",
"VaccinationCertificate"

]

issuer": "https://example.com/issuer",
"issuanceDate": "2023-062-69T11:01:59Z2",
"expirationDate": "2028-02-08T11:01:59Z2",
"name": "COVID-19 Vaccination Certificate",
"description”: "COVID-19 Vaccination Certificate",
"credentialSubject": {
"vaccine": {

“type": "Vaccine",

"atcCode": "JOB7BX03",

"medicinalProductName": "COVID-19 Vaccine Moderna"

}

"recipient”: {
“type": "VaccineRecipient"

"%ype": "VaccinationEvent",
"order": "3/3",
"dateOfVaccination": "2021-06-23T13:40:122"

|
"enf": {
"Jwk" |
"kty": "EC",
"crv': "P-256",
"x": "TCAER19Zvu30HF4j4W4vfSVoHIP1ILilD1s7vCeGemc",
"y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"

}

A.5. Elliptic Curve Key Used in the Examples

The following Elliptic Curve public key, represented in JWK format, can be used to validate the
Issuer signatures in the above examples:

”kty” : IIECII ,

"crv": "P-256",

"x": "b28d4MwZMjw8-00CGAXxTfnn9SLMVMM19S1qZpVb_uNtQ",
"y": "Xv5zWwuoaTgdS6hV43yI6gBwTnjukmFQQnJ_kCxzgk8"

The public key used to validate a Key Binding JWT can be found in the examples as the content
of the cnf claim.

Fett, et al. Standards Track Page 87

RFC 9901 SD-JWT November 2025

Appendix B. Disclosure Format Considerations

As described in Section 4.2, the Disclosure structure is JSON containing a salt and the cleartext
content of a claim, which is base64url encoded. The encoded value is the input used to calculate
a digest for the respective claim. The inclusion of digest value in the signed JWT ensures the
integrity of the claim value. Using encoded content as the input to the integrity mechanism is
conceptually similar to the approach in JWS and particularly useful when the content, like JSON,
can have different representations but is semantically equivalent, thus avoiding
canonicalization. Some further discussion of the considerations around this design decision
follows.

When receiving an SD-JWT, a Verifier must be able to recompute digests of the disclosed claim
values and, given the same input values, obtain the same digest values as signed by the Issuer.

Usually, JSON-based formats transport claim values as simple properties of a JSON object such as
this:

“family_name": "Mobius",

"address": {
"street_address": "Schulstr. 12",
"locality": "Schulpforta”

}

However, a problem arises when computation over the data needs to be performed and verified,
like signing or computing digests. Common signature schemes require the same byte string as
input to the signature verification as was used for creating the signature. In the digest approach
outlined above, the same problem exists: for the Issuer and the Verifier to arrive at the same
digest, the same byte string must be hashed.

JSON, however, does not prescribe a unique encoding for data, but allows for variations in the
encoded string. The data above, for example, can be encoded as

"family_name": "M\u@efébius",
"address": {
"street_address": "Schulstr. 12",
"locality": "Schulpforta"

}

or as

Fett, et al. Standards Track Page 88

RFC 9901 SD-JWT November 2025

':%z;lmily_name" : "Mobius",
"address": {"locality":"Schulpforta", "street_address":"Schulstr. 12"}

The two representations of the value in family_name are very different on the byte level, but
they yield equivalent objects. The same is true for the representations of address, which vary in
white space and order of elements in the object.

The variations in white space, ordering of object properties, and encoding of Unicode characters
are all allowed by the JSON specification, including further variations, e.g., concerning floating-
point numbers, as described in [RFC8785]. Variations can be introduced whenever JSON data is
serialized or deserialized and unless dealt with, will lead to different digests and the inability to
verify signatures.

There are generally two approaches to deal with this problem:

1. Canonicalization: The data is transferred in JSON format, potentially introducing variations
in its representation, but is transformed into a canonical form before computing a digest.
Both the Issuer and the Verifier must use the same canonicalization algorithm to arrive at
the same byte string for computing a digest.

2. Source string hardening: Instead of transferring data in a format that may introduce
variations, a representation of the data is serialized. This representation is then used as the
hashing input at the Verifier, but also transferred to the Verifier and used for the same
digest calculation there. This means that the Verifier can easily compute and check the
digest of the byte string before finally deserializing and accessing the data.

Mixed approaches are conceivable, i.e., transferring both the original JSON data and a string
suitable for computing a digest, but such approaches can easily lead to undetected
inconsistencies resulting in time-of-check-time-of-use type security vulnerabilities.

In this specification, the source string hardening approach is used, as it allows for simple and
reliable interoperability without the requirement for a canonicalization library. To harden the
source string, any serialization format that supports the necessary data types could be used in
theory, like protobuf, msgpack, or pickle. In this specification, JSON is used and plaintext
contents of each Disclosure are encoded using base64url encoding for transport. This approach
means that SD-JWTs can be implemented purely based on widely available JWT, JSON, and
Base64 encoding and decoding libraries.

A Verifier can then easily check the digest over the source string before extracting the original
JSON data. Variations in the encoding of the source string are implicitly tolerated by the Verifier,
as the digest is computed over a predefined byte string and not over a JSON object.

Fett, et al. Standards Track Page 89

RFC 9901 SD-JWT November 2025

It is important to note that the Disclosures are neither intended nor suitable for direct
consumption by an application that needs to access the disclosed claim values after the
verification by the Verifier. The Disclosures are only intended to be used by a Verifier to check
the digests over the source strings and to extract the original JSON data. The original JSON data
is then used by the application. See Section 7.3 for details.

Acknowledgements

We would like to thank Alen Horvat, Alex Hodder, Anders Rundgren, Arjan Geluk, Chad Parry,
Christian Bormann, Christian Paquin, Dale Bowie, Dan Moore, David Bakker, David Waite, Deb
Cooley, Dick Hardt, Fabian Hauck, Filip Skokan, Giuseppe De Marco, Jacob Ward, Jeffrey Yasskin,
John Preufd Mattsson, Joseph Heenan, Justin Richer, Kushal Das, Martin Thomson, Matthew
Miller, Michael Fraser, Michael B. Jones, Mike Prorock, Nat Sakimura, Neil Madden, Oliver Terbu,
Orie Steele, Paul Bastian, Peter Altmann, Pieter Kasselman, Richard Barnes, Rohan Mahy, Roman
Danyliw, Ryosuke Abe, Sami Rosendahl, Shawn Butterfield, Shawn Emery, Simon Schulz,
Takahiko Kawasaki, Tobias Looker, Torsten Lodderstedt, Vittorio Bertocci, Watson Ladd, and
Yaron Sheffer for their contributions (some of which were substantial) to this draft and to the
initial set of implementations.

The work on this document was started at the OAuth Security Workshop 2022 in Trondheim,
Norway.

Authors' Addresses

Daniel Fett

Authlete

Email: mail@danielfett.de
URI: https://danielfett.de/

Kristina Yasuda
Keio University
Email: kristina@sfc.keio.ac.jp

Brian Campbell

Ping Identity
Email: bcampbell@pingidentity.com

Fett, et al. Standards Track Page 90

mailto:mail@danielfett.de
https://danielfett.de/
mailto:kristina@sfc.keio.ac.jp
mailto:bcampbell@pingidentity.com

	RFC 9901
	Selective Disclosure for JSON Web Tokens (SD-JWTs)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Feature Summary
	1.2. Conventions and Terminology

	2. Flow Diagram
	3. Concepts
	3.1. SD-JWT and Disclosures
	3.2. Disclosing to a Verifier
	3.3. Optional Key Binding
	3.4. Verification

	4. SD-JWT and SD-JWT+KB Data Formats
	4.1. Issuer-Signed JWT
	4.1.1. Hash Function Claim
	4.1.2. Key Binding

	4.2. Disclosures
	4.2.1. Disclosures for Object Properties
	4.2.2. Disclosures for Array Elements
	4.2.3. Hashing Disclosures
	4.2.4. Embedding Disclosure Digests in SD-JWTs
	4.2.4.1. Object Properties
	4.2.4.2. Array Elements

	4.2.5. Decoy Digests
	4.2.6. Recursive Disclosures

	4.3. Key Binding JWT
	4.3.1. Binding to an SD-JWT
	4.3.2. Validating the Key Binding JWT

	5. Example SD-JWT
	5.1. Issuance
	5.2. Presentation

	6. Considerations on Nested Data in SD-JWTs
	6.1. Example: Flat SD-JWT
	6.2. Example: Structured SD-JWT
	6.3. Example: SD-JWT with Recursive Disclosures

	7. Verification and Processing
	7.1. Verification of the SD-JWT
	7.2. Processing by the Holder
	7.3. Verification by the Verifier

	8. JWS JSON Serialization
	8.1. New Unprotected Header Parameters
	8.2. Flattened JSON Serialization
	8.3. General JSON Serialization
	8.4. Verification of the JWS JSON Serialized SD-JWT

	9. Security Considerations
	9.1. Mandatory Signing of the Issuer-Signed JWT
	9.2. Manipulation of Disclosures
	9.3. Entropy of the Salt
	9.4. Choice of a Hash Algorithm
	9.5. Key Binding
	9.6. Concealing Claim Names
	9.7. Selectively Disclosable Validity Claims
	9.8. Distribution and Rotation of Issuer Signature Verification Key
	9.9. Forwarding Credentials
	9.10. Integrity of SD-JWTs and SD-JWT+KBs
	9.11. Explicit Typing
	9.12. Key Pair Generation and Lifecycle Management

	10. Privacy Considerations
	10.1. Unlinkability
	10.2. Storage of User Data
	10.3. Confidentiality During Transport
	10.4. Decoy Digests
	10.5. Issuer Identifier

	11. IANA Considerations
	11.1. JSON Web Token Claims Registration
	11.2. Media Type Registrations
	11.2.1. SD-JWT Content
	11.2.2. JWS JSON Serialized SD-JWT Content
	11.2.3. Key Binding JWT Content

	11.3. Structured Syntax Suffixes Registration

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Additional Examples
	A.1. Simple Structured SD-JWT
	A.2. Complex Structured SD-JWT
	A.3. SD-JWT-Based Verifiable Credentials (SD-JWT VC)
	A.4. W3C Verifiable Credentials Data Model v2.0
	A.5. Elliptic Curve Key Used in the Examples

	Appendix B. Disclosure Format Considerations
	Acknowledgements
	Authors' Addresses

