

Contents

1 Mathematical Complex Functions (complex.h) 1
L1 cabs . . o o e 1
1.2 cacos . . . o e 1
1.3 cacosh . . . 2
LA carg . . . o e e e e e 3
1.5 casin o e 3
1.6 casinh L e 4
1.7 catan oo e e e 4
1.8 catanh e 5
1.9 CCOS . o e 5
1.10 ccosh . o o o o 6
LAT CEXP . o o o e e e e e e e e e 6
112 cimag o e e e e e 7
L13 clog . . o o 7
114 conj . o o e e e e 8
LIS CpOW . o o e e e 8
116 CProj . . . o o o 9
117 creal o e 9
LI CSIN . o o o o e e e 10
119 csinh . . . L o o e 11
1.20 cosqrt . . . o o e e e e 11
121 ctan e e 12
122 ctanh oo e e 12

2 Mathematical Functions (math.h) 13
2.1 AC0S . . h e e 13
2.2 acosh . L e 14
23 A@SIN . L e e 14
24 asinh e 15

2.5 QAN . . L e e e e 15

2.6 Atan2 L e e e 16
277 atanho e e 17
2.8 N 17
2.9 Chrt ..o e 18
2,10 COPYSIZN . . . o o oot o e e e 19
2,11 cosh . o o o e 19
2,02 erf . o 20
203 XD . o e e e e e 20
214 explO . . 21
215 XP2 . . e e e 21
2,16 expml 22
2,07 fabs . . oL e e 23
2,08 fdim L 23
2.19 flooro e 24
220 fma e 24
221 fMax e 25
222 fMIN . . L L L e 25
223 fmod e 26
224 fTEXP . .« o v e e e 27
225 AMMA v v e 27
226 hypot 28
227 1logb . . L e 29
228 Infinity oL e e 29
220 ISEICALET . . . o v v o e 30
230 fpelassify e 31
231 1dexp e e 33
232 10Z . o o 33
233 10gl0 . . . L e 34
234 loglp . .. e 35
2351082 . . L e e 35
236 1ogb . . . 36
237 Irint . .o L e e e e 37
238 Troundo e e 37
239 matherr e e 38
240 modf e 39
241 NAN. . Lo e 40
242 nearbyint L L e e 40
243 nextafter L e 41
244 POW . o o e e e e e 41

245 powl0 . . e 42
246 remainder L. 42
247 TEMQUO « . v o v v v e 43
2A8 TINL . . . o o o e e e e e 44
240 round ... L e e e 44
250 scalbn ... L 45
251 signbit 46
252 SIN . oot e e e 46
253 sinh ... 47
254 SATL . o o e e e e e e 47
255 AN . L Lo e e e 48
256 tanh ..o oL L L 48
257 tUNC . . . e e e e e 49

3 Index 50

1/52

Chapter 1

Mathematical Complex Functions (complex.h)

This chapter groups the complex mathematical functions. The corresponding definitions and declarations are in complex.h.
Functions and documentations are taken from NetBSD.

1.1 cabs

cabs, cabsf, cabsl — complex absolute-value

Synopsis

#include <complex.h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

Description

These functions compute compute the complex absolute value (also called norm, modulus, or magnitude) of z.
cabsf is identical to cabs, except that it performs its calculations on float complex.

cabsl is identical to cabs, except that it performs its calculations on 1long double complex.

Returns

The cabs* functions return the complex absolute value.

Portability

cabs, cabsf and cabsl are ISO C99

1.2 cacos

cacos, cacosf — complex arc cosine

2/52

Synopsis

#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);

Description

These functions compute the complex arc cosine of z, with branch cuts outside the interval [-1, +1] along the real axis.

cacosf is identical to cacos, except that it performs its calculations on floats complex.

Returns

These functions return the complex arc cosine value, in the range of a strip mathematically unbounded along the imaginary axis
and in the interval [0, pi] along the real axis.

Portability

cacos and cacosf are ISO C99

1.3 cacosh

cacosh, cacoshf — complex arc hyperbolic cosine

Synopsis

#include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);

Description
These functions compute the complex arc hyperbolic cosine of z, with a branch cut at values less than 1 along the real axis.

cacoshf is identical to cacosh, except that it performs its calculations on floats complex.

Returns

These functions return the complex arc hyperbolic cosine value, in the range of a half-strip of non-negative values along the real
axis and in the interval [-1 * pi, 41 * pi] along the imaginary axis.

Portability

cacosh and cacoshf are ISO C99

3/52

1.4 carg

carg, cargf — argument (phase angle)

Synopsis
#include <complex.h>

double carg(double complex z);
float cargf(float complex z);

Description

These functions compute the argument (also called phase angle) of z, with a branch cut along the negative real axis.

cargf is identical to carg, except that it performs its calculations on floats complex.

Returns

The carg functions return the value of the argument in the interval [-pi, +pi]

Portability

cargand cargf are ISO C99

1.5 casin

casin, casinf — complex arc sine

Synopsis
#include <complex.h>

double complex casin(double complex z);
float complex casinf(float complex z);

Description
These functions compute the complex arc sine of z, with branch cuts outside the interval [-1, +1] along the real axis.

casinf isidentical to casin, except that it performs its calculations on floats complex.

Returns

These functions return the complex arc sine value, in the range of a strip mathematically unbounded along the imaginary axis
and in the interval [-pi/2, +pi/2] along the real axis.

Portability

casin and casinf are ISO C99

4/52

1.6 casinh

casinh, casinhf — complex arc hyperbolic sine

Synopsis

#include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);

Description

These functions compute the complex arc hyperbolic sine of z, with branch cuts outside the interval [-i, +i] along the imaginary
axis.

casinhf isidentical to casinh, except that it performs its calculations on floats complex.

Returns

These functions return the complex arc hyperbolic sine value, in the range of a strip mathematically unbounded along the real
axis and in the interval [-i*p/2, +i*p/2] along the imaginary axis.

Portability

casinh and casinhf are ISO C99

1.7 catan

catan, catanf — complex arc tangent

Synopsis

#include <complex.h>

double complex catan(double complex z);
float complex catanf(float complex z);

Description

These functions compute the complex arc tangent of z, with branch cuts outside the interval [-i, +i] along the imaginary axis.

catanf is identical to catan, except that it performs its calculations on floats complex.

Returns

These functions return the complex arc tangent value, in the range of a strip mathematically unbounded along the imaginary axis
and in the interval [-pi/2, +pi/2] along the real axis.

5/52

Portability

catan and catanf are ISO C99

1.8 catanh

catanh, catanhf — complex arc hyperbolic tangent

Synopsis
#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);

Description

These functions compute the complex arc hyperbolic tan of z, with branch cuts outside the interval [-1, +1] along the real axis.

catanhf is identical to catanh, except that it performs its calculations on floats complex.

Returns

These functions return the complex arc hyperbolic tangent value, in the range of a strip mathematically unbounded along the real
axis and in the interval [-i*p/2, +i*p/2] along the imaginary axis.

Portability

catanh and catanhf are ISO C99

1.9 ccos

ccos, ccosf — complex cosine

Synopsis

#include <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);

Description

These functions compute the complex cosine of z.

ccosf is identical to ccos, except that it performs its calculations on f1loats complex.

6/52

Returns

These functions return the complex cosine value.

Portability

ccos and ccosf are ISO C99

1.10 ccosh

ccosh, ccoshf — complex hyperbolic cosine

Synopsis
#include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);

Description

These functions compute the complex hyperbolic cosine of z.

ccoshf is identical to ccosh, except that it performs its calculations on floats complex.

Returns

These functions return the complex hyperbolic cosine value.

Portability

ccosh and ccoshf are ISO C99

1.11 cexp

cexp, cexpf — complex base-e exponential

Synopsis
#include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);

Description

These functions compute the complex base-e exponential of z.

cexpf is identical to cexp, except that it performs its calculations on floats complex.

7/52

Returns

The cexp functions return the complex base-e exponential value.

Portability

cexp and cexpf are ISO C99

1.12 cimag

cimag, cimagf, cimagl — imaginary part
Synopsis

#include <complex.h>

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

Description

These functions compute the imaginary part of z.
cimagf is identical to cimag, except that it performs its calculations on float complex.

cimagl is identical to cimag, except that it performs its calculations on long double complex.

Returns

The cimag™* functions return the imaginary part value (as a real).

Portability

cimag, cimagf and cimagl are ISO C99

1.13 clog

clog, clogf — complex base-e logarithm
Synopsis

#include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);

8/52

Description

These functions compute the complex natural (base-e) logarithm of z, with a branch cut along the negative real axis.

clogf is identical to clog, except that it performs its calculations on floats complex.

Returns

The clog functions return the complex natural logarithm value, in the range of a strip mathematically unbounded along the real
axis and in the interval [-1*pi , +i*pi] along the imaginary axis.

Portability

clog and clogf are ISO C99

1.14 conj

conj, conjf — complex conjugate

Synopsis
#include <complex.h>

double complex conj(double complex z);
float complex conjf(float complex z);

Description

These functions compute the complex conjugate of z, by reversing the sign of its imaginary part.

conjf is identical to con j, except that it performs its calculations on floats complex.

Returns

The conj functions return the complex conjugate value.

Portability

conjand conjf are ISO C99

1.15 cpow

cpow, cpowf — complex power

Synopsis
#include <complex.h>

double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);

9/52

Description

The cpow functions compute the complex power function x"y power, with a branch cut for the first parameter along the negative
real axis.

cpowf is identical to cpow, except that it performs its calculations on floats complex.

Returns

The cpow functions return the complex power function value.

Portability

cpow and cpowf are ISO C99

1.16 cproj

cproj, cprojf — Riemann sphere projection

Synopsis

#include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);

Description

These functions compute a projection of z onto the Riemann sphere: z projects to z except that all complex infinities (even those
with one infinite part and one NaN part) project to positive infinity on the real axis. If z has an infinite part, then cproj(z) is
equivalent to

INFINITY +1I * copysign(0.0, cimag(z))

cprojf isidentical to cproj, except that it performs its calculations on floats complex.

Returns

The cproj functions return the value of the projection onto the Riemann sphere.

Portability

cprojand cprojf are ISO C99

1.17 creal

creal, crealf, creall — real part

10/52

Synopsis

#include <complex.h>

double creal(double complex z);
float crealf(float complex z);
double long creall(long double complex z);

Description

These functions compute the real part of z.
crealf isidentical to creal, except that it performs its calculations on float complex.

creall isidentical to creal, except that it performs its calculations on long double complex.

Returns

The creal* functions return the real part value.

Portability

creal, crealf and creall are ISO C99

1.18 csin

csin, csinf — complex sine

Synopsis

#include <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);

Description

These functions compute the complex sine of z.

csinf isidentical to csin, except that it performs its calculations on floats complex.
Returns

These functions return the complex sine value.

Portability

csin and csinf are ISO C99

11/52

1.19 csinh

csinh, csinhf — complex hyperbolic sine

Synopsis
#include <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);

Description

These functions compute the complex hyperbolic sine of z.

ccoshf isidentical to ccosh, except that it performs its calculations on floats complex.

Returns

These functions return the complex hyperbolic sine value.

Portability

csinh and csinhf are ISO C99

1.20 csqrt

csqrt, csqrtf — complex square root

Synopsis
#include <complex.h>

double complex esqrt(double complex z);
float complex esqrtf(float complex z);

Description

These functions compute the complex square root of z, with a branch cut along the negative real axis.

csqrtf isidentical to csgrt, except that it performs its calculations on floats complex.

Returns

The csqrt functions return the complex square root value, in the range of the right halfplane (including the imaginary axis).

Portability

csqgrt and csqgrt £ are ISO C99

12 /52

1.21 ctan

ctan, ctanf — complex tangent

Synopsis
#include <complex.h>

double complex ctan(double complex z);
float complex ctanf(float complex z);

Description

These functions compute the complex tangent of z.

ctanf is identical to ctan, except that it performs its calculations on floats complex.

Returns

These functions return the complex tangent value.

Portability

ctan and ctanf are ISO C99

1.22 ctanh

ctanh, ctanf, ctanhf — complex hyperbolic tangent

Synopsis
#include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);

Description

These functions compute the complex hyperbolic tangent of z.

ctanhf is identical to ct anh, except that it performs its calculations on floats complex.

Returns

These functions return the complex hyperbolic tangent value.

Portability

ctanh and ctanhf are ISO C99

13/52

Chapter 2

Mathematical Functions (math.h)

This chapter groups a wide variety of mathematical functions. The corresponding definitions and declarations are in math. h.
Two definitions from math . h are of particular interest.

1. The representation of infinity as a double is defined as HUGE_VAL; this number is returned on overflow by many
functions. The macro HUGE_VALF is a corresponding value for float.

2. The structure exception is used when you write customized error handlers for the mathematical functions. You can
customize error handling for most of these functions by defining your own version of matherr; see the section on
matherr for details.

Since the error handling code calls fputs, the mathematical subroutines require stubs or minimal implementations for the
same list of OS subroutines as fputs: close, fstat, isatty, lseek, read, sbrk, write. @xref{syscalls,,System
Calls, libc.info, The Red Hat newlib C Library}, for a discussion and for sample minimal implementations of these support
subroutines.

Alternative declarations of the mathematical functions, which exploit specific machine capabilities to operate faster---but gen-
erally have less error checking and may reflect additional limitations on some machines---are available when you include
fastmath.h instead of math.h.

2.1 acos

acos, acosf — arc cosine

Synopsis

#include <math.h>

double acos(double x);
float acosf(float x);

Description

acos computes the inverse cosine (arc cosine) of the input value. Arguments to acos must be in the range -1 to 1.

acosf isidentical to acos, except that it performs its calculations on floats.

14 /52

Returns

acos and acosf return values in radians, in the range of 0 to pi.

If x is not between -1 and 1, the returned value is NaN (not a number) the global variable errno is set to EDOM, and a DOMAIN
error message is sent as standard error output.

You can modify error handling for these functions using matherr.

2.2 acosh

acosh, acoshf — inverse hyperbolic cosine

Synopsis

#include <math.h>

double acosh(double x);
float acoshf(float x);

Description

acosh calculates the inverse hyperbolic cosine of x. acosh is defined as

log(x + sqgrt(xxx—1))

x must be a number greater than or equal to 1.

acoshf is identical, other than taking and returning floats.

Returns

acosh and acoshf return the calculated value. If x less than 1, the return value is NaN and errno is set to EDOM.

You can change the error-handling behavior with the non-ANSI matherr function.

Portability

Neither acosh nor acoshf are ANSI C. They are not recommended for portable programs.

2.3 asin

asin, asinf — arc sine
Synopsis

#include <math.h>

double asin(double x);
float asinf(float x);

15/52

Description

asin computes the inverse sine (arc sine) of the argument x. Arguments to asin must be in the range -1 to 1.
asinf isidentical to asin, other than taking and returning floats.

You can modify error handling for these routines using matherr.

Returns

asin returns values in radians, in the range of -pi/2 to pi/2.

If x is not in the range -1 to 1, asin and asinf return NaN (not a number), set the global variable errno to EDOM, and issue
aDOMAIN error message.

You can change this error treatment using matherr.

2.4 asinh

asinh, asinhf — inverse hyperbolic sine
Synopsis
#include <math.h>

double asinh(double x);
float asinhf(float x);

Description

asinh calculates the inverse hyperbolic sine of x. asinh is defined as

sgn(x) * log(abs(x) + sqgrt (l+x=*x))

asinhf is identical, other than taking and returning floats.

Returns

asinh and asinhf return the calculated value.

Portability

Neither asinh nor asinhf are ANSI C.

2.5 atan

atan, atanf — arc tangent

16 /52

Synopsis

#include <math.h>

double atan(double x);
float atanf(float x);

Description

atan computes the inverse tangent (arc tangent) of the input value.

atanf isidentical to atan, save that it operates on floats.

Returns

atan returns a value in radians, in the range of -pi/2 to pi/2.

Portability

atanis ANSI C. atanf is an extension.

2.6 atan2

atan2, atan2f — arc tangent of y/x

Synopsis

#include <math.h>

double atan2(double y, double x);
float atan2f(float y, float x);

Description

atan2 computes the inverse tangent (arc tangent) of y/x. atan?2 produces the correct result even for angles near pi/2 or -pi/2

(that is, when x is near 0).

atan2f isidentical to atan2, save that it takes and returns £loat.

Returns

atan?2 and atan2f return a value in radians, in the range of -pi to pi.

You can modify error handling for these functions using matherr.

Portability

atan2 is ANSIC. atan2f is an extension.

17 /52

2.7 atanh

atanh, atanhf — inverse hyperbolic tangent

Synopsis

#include <math.h>

double atanh(double x);
float atanhf(float x);

Description

atanh calculates the inverse hyperbolic tangent of x.

atanhf is identical, other than taking and returning £ 1oat values.

Returns

atanh and atanhf return the calculated value.
If

X |

is greater than 1, the global errno is set to EDOM and the result is a NaN. A DOMAIN error is reported.
If

x|
is 1, the global errno is set to EDOM; and the result is infinity with the same sign as x. A SING error is reported.

You can modify the error handling for these routines using matherr.

Portability

Neither atanh nor atanhf are ANSI C.

2.8 N

jN, jNf, yN, yNf, j0, jOf, j1, j1f, jn, jnf, y0, yOf, y1, y1f, yn, ynf — Bessel functions

Synopsis

#include <math.h>

double jO(double x);

float jOf(float x);

double jl(double x);

float j1f(float x);

double jn(int n, double x);

18 /52

float jnf(int n, float x);
double yO(double x);

float yOf(float x);

double y1(double x);

float y1f(float x);

double yn(int n, double x);
float ynf(int n, float x);

Description

The Bessel functions are a family of functions that solve the differential equation

2 2 2
x vy’ + xy" + (x —-pl)y =0

These functions have many applications in engineering and physics.
jn calculates the Bessel function of the first kind of order n. 70 and j1 are special cases for order O and order 1 respectively.
Similarly, yn calculates the Bessel function of the second kind of order n, and y0 and y1 are special cases for order O and 1.

jnf, jOf, j1£, ynf, y0f, and y1f perform the same calculations, but on £1oat rather than double values.

Returns

The value of each Bessel function at x is returned.

Portability

None of the Bessel functions are in ANSI C.

2.9 cbrt

cbrt, cbrtf — cube root

Synopsis
#include <math.h>

double cbrt(double x);
float cbrtf(float x);

Description

cbrt computes the cube root of the argument.

Returns

The cube root is returned.

19/52

Portability

cbrt isin System V release 4. cbrt £ is an extension.

2.10 copysign

copysign, copysignf — sign of y, magnitude of x

Synopsis
#include <math.h>

double copysign(double x, double y);
float copysignf(float x, float y);

Description

copysign constructs a number with the magnitude (absolute value) of its first argument, x, and the sign of its second argument,
Y.

copysignf does the same thing; the two functions differ only in the type of their arguments and result.

Returns

copysign returns a double with the magnitude of x and the sign of y. copysignf returns a £ 1loat with the magnitude of
x and the sign of y.

Portability

copysign is not required by either ANSI C or the System V Interface Definition (Issue 2).

2.11 cosh

cosh, coshf — hyperbolic cosine

Synopsis
#include <math.h>

double cosh(double x);
float coshf(float x);

Description

cosh computes the hyperbolic cosine of the argument x. cosh (x) is defined as

(exp(x) + exp(-x))/2

Angles are specified in radians. coshf is identical, save that it takes and returns f1loat.

20/52

Returns

The computed value is returned. When the correct value would create an overflow, cosh returns the value HUGE_VAL with the
appropriate sign, and the global value errno is set to ERANGE.

You can modify error handling for these functions using the function matherr.

Portability

cosh is ANSI. coshf is an extension.

2.12 erf

erf, erff, erfc, erfcf — error function

Synopsis

#include <math.h>
double erf(double x);
float erff(float x);

double erfe(double x);
float erfcf(float x);

Description

erf calculates an approximation to the ““error function”, which estimates the probability that an observation will fall within x
standard deviations of the mean (assuming a normal distribution).

erfc calculates the complementary probability; that is, erfc (x) is1 -erf (x). erfc is computed directly, so that you can
use it to avoid the loss of precision that would result from subtracting large probabilities (on large x) from 1.

erff and erfcf differ from erf and erfc only in the argument and result types.

Returns

For positive arguments, er £ and all its variants return a probability---a number between 0 and 1.

Portability

None of the variants of er £ are ANSI C.

213 exp

exp, expf — exponential

Synopsis
#include <math.h>

double exp(double x);
float expf(float x);

21/52

Description

exp and expf calculate the exponential of x, that is, e raised to the power x (where e is the base of the natural system of
logarithms, approximately 2.71828).

You can use the (non-ANSI) function matherr to specify error handling for these functions.

Returns

On success, exp and expf return the calculated value. If the result underflows, the returned value is 0. If the result overflows,
the returned value is HUGE_VAL. In either case, errno is set to ERANGE.

Portability

exp is ANSI C. expf is an extension.

2.14 exp10

expl0, expl10f — exponential, base 10

Synopsis

#include <math.h>

double exp10(double x);
float exp10f(float x);

Description

expl0 and expl0f calculate 10 " x, that is, 10 raised to the power x.

You can use the (non-ANSI) function matherr to specify error handling for these functions.

Returns

On success, expl0 and expl0f return the calculated value. If the result underflows, the returned value is 0. If the result
overflows, the returned value is HUGE_VAL. In either case, errno is set to ERANGE.

Portability

expl0 and expl0f are GNU extensions.

2.15 exp2

exp2, exp2f — exponential, base 2

22/52

Synopsis

#include <math.h>

double exp2(double x);
float exp2f(float x);

Description

exp2 and exp?2f calculate 2 ” x, that is, 2 raised to the power x.

You can use the (non-ANSI) function matherr to specify error handling for these functions.

Returns

On success, exp2 and exp?2 f return the calculated value. If the result underflows, the returned value is 0. If the result overflows,
the returned value is HUGE_VAL. In either case, errno is set to ERANGE.

Portability

ANSI C, POSIX.

2.16 expmi

expml, expm1f — exponential minus 1

Synopsis

#include <math.h>

double expm1(double x);
float expm1f(float x);

Description

expml and expml £ calculate the exponential of x and subtract 1, that is, e raised to the power x minus 1 (where e is the base
of the natural system of logarithms, approximately 2.71828). The result is accurate even for small values of x, where using
exp (x) —1 would lose many significant digits.

Returns

e raised to the power x, minus 1.

Portability

Neither expm1 nor expml £ is required by ANSI C or by the System V Interface Definition (Issue 2).

23/52

2.17 fabs

fabs, fabsf — absolute value (magnitude)
Synopsis
#include <math.h>

double fabs(double x);
float fabsf(float x);

Description

fabs and fabsf calculate the absolute value (magnitude) of the argument x, by direct manipulation of the bit representation
of x.

Returns

The calculated value is returned. No errors are detected.

Portability

fabs is ANSI. fabsf is an extension.

2.18 fdim

fdim, fdimf — positive difference
Synopsis
#include <math.h>

double fdim(double x, double y);
float fdimf(float x, float y);

Description

The £dim functions determine the positive difference between their arguments, returning:

x — vy if x > y, or
+0 if x <=y, or
NAN if either argument is NAN.

A range error may occur.

24 /52

Returns

The £dim functions return the positive difference value.

Portability

ANSI C, POSIX.

2.19 floor

floor, floorf, ceil, ceilf — floor and ceiling

Synopsis

#include <math.h>

double floor(double x);
float floorf(float x);
double ceil(double x);
float ceilf(float x);

Description

floor and floorf find the nearest integer less than or equal to x. ceil and ceilf find the nearest integer greater than or
equal to x.

Returns

floor and ceil return the integer result as a double. f1oorf and ceilf return the integer result as a float.

Portability

floor and ceil are ANSI. floorf and ceilf are extensions.

2.20 fma

fma, fmaf — floating multiply add
Synopsis
#include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);

25/52

Description

The fma functions compute (x * y) + z, rounded as one ternary operation: they compute the value (as if) to infinite precision
and round once to the result format, according to the rounding mode characterized by the value of FLT_ROUNDS. That is, they
are supposed to do this: see below.

Returns

The fma functions return (x * y) + z, rounded as one ternary operation.

Bugs

This implementation does not provide the function that it should, purely returning "(x * y) + z;" with no attempt at all to provide
the simulated infinite precision intermediates which are required. DO NOT USE THEM.

If double has enough more precision than float, then fmaf should provide the expected numeric results, as it does use double for
the calculation. But since this is not the case for all platforms, this manual cannot determine if it is so for your case.

Portability

ANSI C, POSIX.

2.21 fmax

fmax, fmaxf — maximum
Synopsis
#include <math.h>

double fmax(double x, double y);
float fmaxf(float x, float y);

Description

The fmax functions determine the maximum numeric value of their arguments. NaN arguments are treated as missing data: if
one argument is a NaN and the other numeric, then the fmax functions choose the numeric value.

Returns

The fmax functions return the maximum numeric value of their arguments.

Portability

ANSI C, POSIX.

2.22 fmin

fmin, fminf — minimum

26/52

Synopsis

#include <math.h>

double fmin(double x, double y);
float fminf(float x, float y);

Description

The fmin functions determine the minimum numeric value of their arguments. NaN arguments are treated as missing data: if
one argument is a NaN and the other numeric, then the fmin functions choose the numeric value.

Returns

The fmin functions return the minimum numeric value of their arguments.

Portability

ANSI C, POSIX.

2.23 fmod

fmod, fmodf — floating-point remainder (modulo)

Synopsis

#include <math.h>

double fmod(double x, double y);
float fmodf(float x, float y);

Description

The fmod and fmodf functions compute the floating-point remainder of x/y (x modulo y).

Returns

The fmod function returns the value x-1i*y, for the largest integer i such that, if v is nonzero, the result has the same sign as x
and magnitude less than the magnitude of y.

fmod (x, 0) returns NaN, and sets errno to EDOM.

You can modify error treatment for these functions using matherr.

Portability

fmod is ANSI C. fmodf is an extension.

27152

2.24 frexp

frexp, frexpf — split floating-point number

Synopsis

#include <math.h>

double frexp(double val, int *exp);
float frexpf(float val, int *exp);

Description

All nonzero, normal numbers can be described as m * 2**p. frexp represents the double val as a mantissa m and a power of
two p. The resulting mantissa will always be greater than or equal to 0. 5, and less than 1.0 (as long as val is nonzero). The
power of two will be stored in xexp.

m and p are calculated so that val is m times 2 to the power p.

frexpf is identical, other than taking and returning floats rather than doubles.

Returns

frexp returns the mantissa m. If val is 0, infinity, or Nan, frexp will set xexp to 0 and return val.

Portability

frexp is ANSI. frexpf is an extension.

2.25 gamma

gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r, lgamma_r, Igammaf_r, tgamma, tgammaf — logarithmic and plain
gamma functions

Synopsis

#include <math.h>

double gamma(double x);

float gammaf(float x);

double Igamma(double x);

float Igammaf(float x);

double gamma_r(double x, int *signgamp);
float gammaf_r(float x, int *signgamp);
double Igamma_r(double X, int *signgamp);
float Igammaf_r(float x, int *signgamp);
double tgamma(double x);

float tgammaf(float x);

28/52

Description

gamma calculates the natural logarithm of the gamma function of x. The gamma function (exp (gamma (x))) is a general-
ization of factorial, and retains the property that exp (gamma (N)) is equivalent to Nxexp (gamma (N-1)). Accordingly, the
results of the gamma function itself grow very quickly. gamma is defined as the natural log of the gamma function, rather than
the gamma function itself, to extend the useful range of results representable.

The sign of the result is returned in the global variable signgam, which is declared in math.h.
gamma f performs the same calculation as gamma, but uses and returns £ 1oat values.

lgamma and 1gammaf are alternate names for gamma and gamma f. The use of 1Lgamma instead of gamma is a reminder that
these functions compute the log of the gamma function, rather than the gamma function itself.

The functions gamma_r, gammaf_r, lgamma_r, and 1lgammaf_r are just like gamma, gammaf, 1gamma, and 1gammaf,
respectively, but take an additional argument. This additional argument is a pointer to an integer. This additional argument is
used to return the sign of the result, and the global variable signgam is not used. These functions may be used for reentrant
calls (but they will still set the global variable errno if an error occurs).

tgamma and tgammaf are the "true gamma" functions, returning the gamma function of x--without a logarithm. (They are
apparently so named because of the prior existence of the old, poorly-named gamma functions which returned the log of gamma
up through BSD 4.2.)

Returns

Normally, the computed result is returned.

When x is a nonpositive integer, gamma returns HUGE_VAL and errno is set to EDOM. If the result overflows, gamma returns
HUGE_VAL and errno is set to ERANGE.

You can modify this error treatment using matherr.

Portability

Neither gamma nor gammaf is ANSI C. It is better not to use either of these; use 1 gamma or t gamma instead.

lgamma, lgammaf, tgamma, and tgammaf are nominally C standard in terms of the base return values, although the math
err error-handling is not standard, nor is the signgam global for 1gamma.

2.26 hypot

hypot, hypotf — distance from origin

Synopsis

#include <math.h>

double hypot(double x, double y);
float hypotf(float x, float y);

Description

hypot calculates the Euclidean distance sqrt (x*x + y=y) between the origin (0,0) and a point represented by the Cartesian
coordinates (x,y). hypot £ differs only in the type of its arguments and result.

29/52

Returns

Normally, the distance value is returned. On overflow, hypot returns HUGE_VAL and sets errno to ERANGE.

You can change the error treatment with matherr.

Portability

hypot and hypot £ are not ANSI C.

2.27 ilogb

ilogb, ilogbf — get exponent of floating-point number

Synopsis

#include <math.h>

int ilogb(double val);
int ilogbf(float val);

Description

All nonzero, normal numbers can be described as m * 2**p. i1ogb and i 1ogbf examine the argument val, and return p. The
functions frexp and frexpf are similar to 1 1ogb and i1logbf, but also return m.

Returns
ilogb and ilogbf return the power of two used to form the floating-point argument. If val is O, they return FP_TILOGBO.
If val is infinite, they return INT_MAX. If val is NaN, they return FP_ILOGBNAN. (FP_ILOGBO and FP_ILOGBNAN are

defined in math.h, but in turn are defined as INT_MIN or INT_MAX from limits.h. The value of FP_ILOGBO may be either
INT_MIN or -INT_MAX. The value of FP_ILOGBNAN may be either INT_MAX or INT_MIN.)

Portability

C99, POSIX

2.28 infinity

infinity, infinityf — representation of infinity
Synopsis

#include <math.h>

double infinity(void);
float infinityf(void);

30/52

Description

infinity and infinityf return the special number IEEE infinity in double- and single-precision arithmetic respectively.

Portability

infinityand infinityf are neither standard C nor POSIX. C and POSIX require macros HUGE_VAL and HUGE_VALF
to be defined in math.h, which Newlib defines to be infinities corresponding to these archaic infinity() and infinityf() functions in
floating-point implementations which do have infinities.

2.29 isgreater

isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered — comparison macros

Synopsis

#include <math.h>

int isgreater(real-floating x, real-floating y);

int isgreaterequal(real-floating x, real-floating y);
int isless(real-floating x, real-floating y);

int islessequal(real-floating x, real-floating y);

int islessgreater(real-floating x, real-floating y);
int isunordered(real-floating x, real-floating y);

Description

isgreater, isgreaterequal, isless, islessequal, islessgreater, and isunordered are macros defined
for use in comparing floating-point numbers without raising any floating-point exceptions.

The relational operators (i.e. <, >, <=, and >=) support the usual mathematical relationships between numeric values. For any
ordered pair of numeric values exactly one of the relationships--less, greater, and equal--is true. Relational operators may raise
the "invalid" floating-point exception when argument values are NaNs. For a NaN and a numeric value, or for two NaNs, just the
unordered relationship is true (i.e., if one or both of the arguments a NaN, the relationship is called unordered). The specified
macros are quiet (non floating-point exception raising) versions of the relational operators, and other comparison macros that
facilitate writing efficient code that accounts for NaNs without suffering the "invalid" floating-point exception. In the synopses
shown, "real-floating" indicates that the argument is an expression of real floating type.

Please note that saying that the macros do not raise floating-point exceptions, it is referring to the function that they are perform-
ing. It is certainly possible to give them an expression which causes an exception. For example:

causes an "invalid" exception,
NaN < 1.0

does not, and
isless (NaN, 1.0)

causes an exception due to the "NaN*0.", but not from the
isless (NaNx0., 1.0) resultant reduced comparison of isless(NaN, 1.0).

Returns

No floating-point exceptions are raised for any of the macros.

31/52

The i sgreater macro returns the value of (x) > (y).

The isgreaterequal macro returns the value of (x) >= (y).

The isless macro returns the value of (x) < (y).

The islessequal macro returns the value of (x) <= (y).

The islessgreater macro returns the value of (x) < (y) Il (x) > (y).

The i sunordered macro returns 1 if either of its arguments is NaN and 0 otherwise.

Portability

C99, POSIX.

2.30 fpclassify

fpclassify, isfinite, isinf, isnan, isnormal, finite, finitef, isinf, isinff, isnan, isnanf — floating-point classification macros, test for
exceptional numbers

Synopsis
[C99 standard macros:]
#include <math.h>

int fpclassify(real-floating x);
int isfinite(real-floating x);
int isinf(real-floating x);

int isnan(real-floating x);

int isnormal(real-floating x);

[Archaic SUSv2 functions:]
#include <ieeefp.h>

int isnan(double arg);
int isinf(double arg);
int finite(double arg);
int isnanf(float arg);
int isinff(float arg);
int finitef(float arg);

Description

fpclassify,isfinite, isinf, isnan, and isnormal are macros defined for use in classifying floating-point numbers.
This is a help because of special "values" like NaN and infinities. In the synopses shown, "real-floating" indicates that the
argument is an expression of real floating type. These function-like macros are C99 and POSIX-compliant, and should be used
instead of the now-archaic SUSv2 functions.

The fpclassify macro classifies its argument value as NaN, infinite, normal, subnormal, zero, or into another implementation-
defined category. First, an argument represented in a format wider than its semantic type is converted to its semantic type. Then
classification is based on the type of the argument. The fpclassify macro returns the value of the number classification
macro appropriate to the value of its argument:

32/52

FP_INFINITE

x is either plus or minus infinity;

FP_NAN

x is "Not A Number" (plus or minus);

FP_NORMAL

x is a "normal” number (i.e. is none of the other special
forms);

FP_SUBNORMAL

x is too small be stored as a regular normalized number
(i.e. loss of precision is likely); or

FP_ZERO

x is O (either plus or minus).

The "is" set of macros provide a useful set of shorthand ways for classifying floating-point numbers, providing the following

equivalent relations:

isfinite (x)

returns non-zero if x is finite. (It is equivalent to
(fpclassify(x) != FP_INFINITE &&
fpclassify(x) != FP_NAN).)

returns non-zero if x is infinite. (It is equivalent to

isinf (x) (fpclassify(x) ==FP_INFINITE).)
returns non-zero if x is NaN. (It is equivalent to
isnan (x) (fpclassify(x) ==FP_NAN).)

isnormal (x)

returns non-zero if x is normal. (It is equivalent to
(fpclassify(x) ==FP_NORMAL).)

The archaic SUSv2 functions provide information on the floating-point argument supplied.

There are five major number formats ("exponent” referring to the biased exponent in the binary-encoded number):

A number which contains all zero bits, excluding the sign
zero bit.

A number with a zero exponent but a nonzero fraction.
subnormal

A number with an exponent and a fraction.
normal
C e A number with an all 1°s exponent and a zero fraction.
infinity
NAN A number with an all 1’s exponent and a nonzero fraction.

isnan returns 1 if the argument is a nan. isinf returns 1 if the argument is infinity. £inite returns 1 if the argument is zero,
subnormal or normal. The isnanf, isinff and finitef functions perform the same operations as their isnan, isinf
and finite counterparts, but on single-precision floating-point numbers.

It should be noted that the C99 standard dictates that i snan and isinf are macros that operate on multiple types of floating-
point. The SUSv2 standard declares i snan as a function taking double. Newlib has decided to declare them both as macros in
math.h and as functions in ieeefp.h to maintain backward compatibility.

33/52

Returns

The fpclassify macro returns the value corresponding to the appropriate FP_ macro.
The isfinite macro returns nonzero if x is finite, else 0.

The isinf macro returns nonzero if x is infinite, else 0.

The isnan macro returns nonzero if x is an NaN, else 0.

The isnormal macro returns nonzero if x has a normal value, else 0.

Portability

math.h macros are C99, POSIX.

ieeefp.h funtions are outdated and should be avoided.

2.31 Idexp

Idexp, 1dexpf — load exponent

Synopsis

#include <math.h>

double ldexp(double val, int exp);
float Idexpf(float val, int exp);

Description

ldexp calculates the value val times 2 to the power exp. ldexpf is identical, save that it takes and returns £1loat rather
than double values.

Returns

ldexp returns the calculated value.

Underflow and overflow both set errno to ERANGE. On underflow, 1dexp and ldexpf return 0.0. On overflow, 1dexp
returns plus or minus HUGE_VAL.

Portability

ldexp is ANSI. 1dexpf is an extension.

2.32 log

log, logf — natural logarithms

34 /52

Synopsis

#include <math.h>

double log(double x);
float logf(float x);

Description

Return the natural logarithm of x, that is, its logarithm base e (where e is the base of the natural system of logarithms, 2.71828...).
log and logf are identical save for the return and argument types.

You can use the (non-ANSI) function matherr to specify error handling for these functions.

Returns

Normally, returns the calculated value. When x is zero, the returned value is ~-HUGE_VAL and errno is set to ERANGE. When
x 1s negative, the returned value is NaN (not a number) and errno is set to EDOM. You can control the error behavior via
matherr.

Portability

logis ANSIL logf is an extension.

2.33 log10

log10, log10f — base 10 logarithms

Synopsis

#include <math.h>

double log10(double x);
float log10f(float x);

Description
1og10 returns the base 10 logarithm of x. It is implemented as 1og (x) /log(10).

1ogl0f is identical, save that it takes and returns £f1oat values.

Returns

logl0 and 1oglO0f return the calculated value.

See the description of 1og for information on errors.

Portability

1logl0is ANSIC. 10gl0f is an extension.

35/52

2.34 loglp

loglp, loglpf —logof 1 + x

Synopsis
#include <math.h>

double loglp(double x);
float log1pf(float x);

Description

loglp calculates the natural logarithm of 1+x. You can use 1oglp rather than "1og (1+x)’ for greater precision when x is
very small.

loglpf calculates the same thing, but accepts and returns £ 1oat values rather than double.

Returns

loglp returns a double, the natural log of 1+x. loglpf returns a £ loat, the natural log of 1+x.

Portability

Neither 1oglp nor 1oglpf is required by ANSI C or by the System V Interface Definition (Issue 2).

2.35 log2

log2, log2f — base 2 logarithm

Synopsis
#include <math.h>

double log2(double x);
float log2f(float x);

Description
The Log2 functions compute the base-2 logarithm of x. A domain error occurs if the argument is less than zero. A range error
occurs if the argument is zero.

The Newlib implementations are not full, intrinisic calculations, but rather are derivatives based on 1og. (Accuracy might be
slightly off from a direct calculation.) In addition to functions, they are also implemented as macros defined in math.h:

#define log2(x) (log (x) / _M_LN2)
#define log2f (x) (logf (x) / (float) _M_LN2)

To use the functions instead, just undefine the macros first.

You can use the (non-ANSI) function matherr to specify error handling for these functions, indirectly through the respective
log function.

36/52

Returns
The 10g2 functions return 1og base-2 (x) on success. When x is zero, the returned value is ~-HUGE_VAL and errno is set

to ERANGE. When x is negative, the returned value is NaN (not a number) and errno is set to EDOM. You can control the error
behavior viamatherr.

Portability

C99, POSIX, System V Interface Definition (Issue 6).

2.36 logb

logb, logbf — get exponent of floating-point number

Synopsis

#include <math.h>

double logb(double x);
float logbf(float x);

Description

The 1ogb functions extract the exponent of x, as a signed integer value in floating-point format. If x is subnormal it is treated as
though it were normalized; thus, for positive finite x, 1 <= (x * FLT_RADIX to the power (-logb(x))) < FLT_RADIX. A domain
error may occur if the argument is zero. In this floating-point implementation, FLT_RADIX is 2. Which also means that for
finite x, 1ogb(x) = floor(log2(fabs(x))).

All nonzero, normal numbers can be described as m * 2**p, where 1.0 <=m < 2.0. The 1ogb functions examine the argument
%, and return p. The frexp functions are similar to the 1ogb functions, but returning m adjusted to the interval [.5, 1) or 0, and
p+l.

Returns

When x is:

+inf or -inf, +inf is returned;

NaN, NaN is returned;

0, -inf is returned, and the divide-by-zero exception is raised;

otherwise, the 1ogb functions return the signed exponent of x.

Portability

ANSI C, POSIX

See Also

frexp, ilogb

37/52

2.37 Irint

Irint, Irintf, llrint, llrintf — round to integer

Synopsis

#include <math.h>
long int Irint(double x);
long int Irintf(float x);

long long int llrint(double x);
long long int lrintf(float x);

Description
The 1rint and 11rint functions round their argument to the nearest integer value, using the current rounding direction. If the
rounded value is outside the range of the return type, the numeric result is unspecified. A range error may occur if the magnitude

of x is too large. The "inexact" floating-point exception is raised in implementations that support it when the result differs in
value from the argument (i.e., when a fraction actually has been truncated).

Returns

x rounded to an integral value, using the current rounding direction.

See Also

lround

Portability

ANSI C, POSIX

2.38 Iround

lround, Iroundf, llround, llroundf — round to integer, to nearest

Synopsis
#include <math.h>

long int Iround(double x);

long int lIroundf(float x);

long long int llround(double x);
long long int llroundf(float x);

Description

The 1round and 11lround functions round their argument to the nearest integer value, rounding halfway cases away from
zero, regardless of the current rounding direction. If the rounded value is outside the range of the return type, the numeric result
is unspecified (depending upon the floating-point implementation, not the library). A range error may occur if the magnitude of
X is too large.

38/52

Returns

x rounded to an integral value as an integer.

See Also

See the round functions for the return being the same floating-point type as the argument. 1rint, 11rint.

Portability

ANSI C, POSIX

2.39 matherr

matherr — modifiable math error handler

Synopsis

#include <math.h>

int matherr(struct exception *e);

Description

matherr is called whenever a math library function generates an error. You can replace matherr by your own subroutine to
customize error treatment. The customized matherr must return O if it fails to resolve the error, and non-zero if the error is
resolved.

When matherr returns a nonzero value, no error message is printed and the value of errno is not modified. You can accom-
plish either or both of these things in your own matherr using the information passed in the structure xe.

This is the exception structure (defined in ‘'math.h’):

struct exception {
int type;
char xname;
double argl, arg2, retval;
int err;

}i

The members of the exception structure have the following meanings:

The type of mathematical error that occured; macros
type encoding error types are also defined in “'math.h’.

a pointer to a null-terminated string holding the name of
name the math library function where the error occurred.

The arguments which caused the error.
argl, arg2

The error return value (what the calling function will
retval return).

If set to be non-zero, this is the new value assigned to
err errno.

39/52

The error types defined in “math . h’ represent possible mathematical errors as follows:

An argument was not in the domain of the function; e.g.
DOMAIN log(-1.0).

The requested calculation would result in a singularity; e.g.
SING

pow (0.0,-2.0)

A calculation would produce a result too large to represent;
OVERFLOW e.g. exp(1000.0).

A calculation would produce a result too small to
UNDERFLOW represent; €.g. exp (-1000.0).

Total loss of precision. The result would have no
TLOSS significant digits; e.g. sin (10e70).
PT.OSS Partial loss of precision.

Returns

The library definition for matherr returns O in all cases.

You can change the calling function’s result from a customized matherr by modifying e->retval, which propagates backs
to the caller.

If matherr returns O (indicating that it was not able to resolve the error) the caller sets errno to an appropriate value, and
prints an error message.

Portability

matherr is not ANSI C.

2.40 modf

modf, modff — split fractional and integer parts

Synopsis

#include <math.h>

double modf(double val, double *ipart);
float modff(float val, float *ipart);

Description

modf splits the double val apart into an integer part and a fractional part, returning the fractional part and storing the integer
partin xipart. No rounding whatsoever is done; the sum of the integer and fractional parts is guaranteed to be exactly equal to
val. Thatis, if realpart =modf(val, &intpart); then "realpart+intpart’ isthe same as val. modff isidentical,
save that it takes and returns £1oat rather than double values.

40/52

Returns

The fractional part is returned. Each result has the same sign as the supplied argument val.

Portability

modf is ANSI C. modf £ is an extension.

2.41 nan

]

nan, nanf — representation of “~Not a Number’

Synopsis

#include <math.h>

double nan(const char *unused);
float nanf(const char *unused);

Description

nan and nanf return an IEEE NaN (Not a Number) in double- and single-precision arithmetic respectively. The argument is
currently disregarded.

2.42 nearbyint

nearbyint, nearbyintf — round to integer

Synopsis

#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);

Description

The nearbyint functions round their argument to an integer value in floating-point format, using the current rounding direction
and (supposedly) without raising the "inexact" floating-point exception. See the rint functions for the same function with the
"inexact" floating-point exception being raised when appropriate.

Bugs

Newlib does not support the floating-point exception model, so that the floating-point exception control is not present and thereby
what may be seen will be compiler and hardware dependent in this regard. The Newlib nearbyint functions are identical to
the rint functions with respect to the floating-point exception behavior, and will cause the "inexact" exception to be raised for
most targets.

41/52

Returns

x rounded to an integral value, using the current rounding direction.

Portability

ANSI C, POSIX

See Also

rint, round

2.43 nextafter

nextafter, nextafterf — get next number

Synopsis

#include <math.h>

double nextafter(double val, double dir);
float nextafterf(float val, float dir);

Description

nextafter returns the double-precision floating-point number closest to val in the direction toward dir. nextafterf
performs the same operation in single precision. For example, nextafter (0.0, 1.0) returns the smallest positive number
which is representable in double precision.

Returns

Returns the next closest number to val in the direction toward dir.

Portability

Neither nextafter nor nextafterf is required by ANSI C or by the System V Interface Definition (Issue 2).

244 pow

pow, powf — x to the power y
Synopsis

#include <math.h>

double pow(double x, double y);
float powf(float x, float y);

42 /52

Description

pow and powf calculate x raised to the exponent y.

Returns

On success, pow and pow £ return the value calculated.

When the argument values would produce overflow, pow returns HUGE_VAL and set errno to ERANGE. If the argument x
passed to pow or powf is a negative noninteger, and y is also not an integer, then errno is set to EDOM. If x and y are both 0,
then pow and powf return 1.

You can modify error handling for these functions using matherr.

Portability

pow is ANSI C. powf is an extension.

245 pow10

pow10, pow10f — base 10 power functions

Synopsis

#include <math.h>

double pow10(double x);
float pow10f(float x);

Description

powl0 and powlOf calculate 10 " x, that is, 10 raised to the power x.

You can use the (non-ANSI) function matherr to specify error handling for these functions.

Returns

On success, pow1l0 and pow10f return the calculated value. If the result underflows, the returned value is 0. If the result
overflows, the returned value is HUGE_VAL. In either case, errno is set to ERANGE.

Portability

powl0 and pow10f are GNU extensions.

2.46 remainder

remainder, remainderf — round and remainder

43 /52

Synopsis
#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);

Description

remainder and remainderf find the remainder of x/y; this value is in the range -y/2 .. +y/2.

Returns

remainder returns the integer result as a double.

Portability

remainder is a System V release 4. remainderf is an extension.

2.47 remquo

remquo, remquof — remainder and part of quotient

Synopsis
#include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);

Description

The remqguo functions compute the same remainder as the remainder functions; this value is in the range -y/2 ... +y/2. In
the object pointed to by quo they store a value whose sign is the sign of x/y and whose magnitude is congruent modulo 2**n
to the magnitude of the integral quotient of x/y. (That is, quo is given the n Isbs of the quotient, not counting the sign.) This
implementation uses n=31 if int is 32 bits or more, otherwise, n is 1 less than the width of int.

For example:

remquo (-29.0, 3.0, &quo)

returns -1.0 and sets quo=10, and

remgquo (-98307.0, 3.0, &quo)

returns -0.0 and sets quo=-32769, although for 16-bit int, quo=-1. In the latter case, the actual quotient of -(32769=0x8001) is
reduced to -1 because of the 15-bit limitation for the quotient.

Returns

When either argument is NaN, NaN is returned. If y is 0 or x is infinite (and neither is NaN), a domain error occurs (i.e. the
"invalid" floating point exception is raised or errno is set to EDOM), and NaN is returned. Otherwise, the remquo functions
return x REM y.

44 /52

Bugs

IEEE754-2008 calls for remquo(subnormal, inf) to cause the "underflow" floating-point exception. This implementation does
not.

Portability

C99, POSIX.

2.48 rint

rint, rintf — round to integer

Synopsis
#include <math.h>

double rint(double x);
float rintf(float x);

Description

The rint functions round their argument to an integer value in floating-point format, using the current rounding direction. They
raise the "inexact" floating-point exception if the result differs in value from the argument. See the nearbyint functions for
the same function with the "inexact" floating-point exception never being raised. Newlib does not directly support floating-point

exceptions. The rint functions are written so that the "inexact" exception is raised in hardware implementations that support it,
even though Newlib does not provide access.

Returns

x rounded to an integral value, using the current rounding direction.

Portability

ANSI C, POSIX

See Also

nearbyint, round

2.49 round

round, roundf — round to integer, to nearest

Synopsis
#include <math.h>

double round(double x);
float roundf(float x);

45/52

Description
The round functions round their argument to the nearest integer value in floating-point format, rounding halfway cases away
from zero, regardless of the current rounding direction. (While the "inexact" floating-point exception behavior is unspecified by

the C standard, the round functions are written so that "inexact" is not raised if the result does not equal the argument, which
behavior is as recommended by IEEE 754 for its related functions.)

Returns

x rounded to an integral value.

Portability

ANSI C, POSIX

See Also

nearbyint, rint

2.50 scalbn

scalbn, scalbnf, scalbln, scalblnf — scale by power of FLT_RADIX (=2)

Synopsis
#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

double scalbln(double x, long int n);
float scalbInf(float x, long int n);

Description
The scalbn and scalbln functions compute x times FLT_RADIX to the power n. efficiently. The result is computed

by manipulating the exponent, rather than by actually performing an exponentiation or multiplication. In this floating-point
implementation FLT_RADIX=2, which makes the scalbn functions equivalent to the 1dexp functions.

Returns

x times 2 to the power n. A range error may occur.

Portability

ANSI C, POSIX

See Also

ldexp

46 /52

2.51 signbit

signbit — Does floating-point number have negative sign?

Synopsis

#include <math.h>

int signbit(real-floating x);

Description
The signbit macro determines whether the sign of its argument value is negative. The macro reports the sign of all values,

including infinities, zeros, and NaNs. If zero is unsigned, it is treated as positive. As shown in the synopsis, the argument is
"real-floating," meaning that any of the real floating-point types (float, double, etc.) may be given to it.

Note that because of the possibilities of signed 0 and NaNs, the expression "x < 0.0" does not give the same result as signbit
in all cases.

Returns

The signbit macro returns a nonzero value if and only if the sign of its argument value is negative.

Portability

C99, POSIX.

2.52 sin

sin, sinf, cos, cosf — sine or cosine

Synopsis

#include <math.h>

double sin(double x);
float sinf(float x);
double cos(double x);
float cosf(float x);

Description
sin and cos compute (respectively) the sine and cosine of the argument x. Angles are specified in radians.

sinf and cosf are identical, save that they take and return £1oat values.

Returns

The sine or cosine of x is returned.

47 /52

Portability

sin and cos are ANSIC. sinf and cosf are extensions.

2.53 sinh

sinh, sinhf — hyperbolic sine

Synopsis

#include <math.h>

double sinh(double x);
float sinhf(float x);

Description

sinh computes the hyperbolic sine of the argument x. Angles are specified in radians. sinh(x) is defined as

(exp(x) — exp(-x))/2

sinhf is identical, save that it takes and returns £loat values.

Returns

The hyperbolic sine of x is returned.

When the correct result is too large to be representable (an overflow), sinh returns HUGE_VAL with the appropriate sign, and
sets the global value errno to ERANGE.

You can modify error handling for these functions with matherr.

Portability

sinhis ANSI C. sinhf is an extension.

254 sqrt

sqrt, sqrtf — positive square root

Synopsis
#include <math.h>

double sqrt(double x);
float sqrtf(float x);

Description

sqgrt computes the positive square root of the argument. You can modify error handling for this function with matherr.

48 /52

Returns

On success, the square root is returned. If x is real and positive, then the result is positive. If x is real and negative, the global
value errno is set to EDOM (domain error).

Portability

sqgrt is ANSI C. sgrtf is an extension.

2.55 tan

tan, tanf — tangent

Synopsis

#include <math.h>

double tan(double x);
float tanf(float x);

Description

tan computes the tangent of the argument x. Angles are specified in radians.

tanf is identical, save that it takes and returns £1oat values.

Returns

The tangent of x is returned.

Portability

tan is ANSI. tanf is an extension.

2.56 tanh

tanh, tanhf — hyperbolic tangent
Synopsis
#include <math.h>

double tanh(double x);
float tanhf(float x);

49 /52

Description

tanh computes the hyperbolic tangent of the argument x. Angles are specified in radians.
tanh (x) is defined as

sinh (x) /cosh (x)

tanhf is identical, save that it takes and returns f1oat values.

Returns

The hyperbolic tangent of x is returned.

Portability

tanh is ANSI C. tanhf is an extension.

2.57 trunc

trunc, truncf — round to integer, towards zero

Synopsis

#include <math.h>

double trunc(double x);
float truncf(float x);

Description
The t runc functions round their argument to the integer value, in floating format, nearest to but no larger in magnitude than the
argument, regardless of the current rounding direction. (While the "inexact" floating-point exception behavior is unspecified by

the C standard, the t runc functions are written so that "inexact" is not raised if the result does not equal the argument, which
behavior is as recommended by IEEE 754 for its related functions.)

Returns

x truncated to an integral value.

Portability

ANSI C, POSIX

50/52

Chapter 3

Index

A

acos, 13
acosf, 13
acosh, 14
acoshf, 14
asin, 14
asinf, 14
asinh, 15
asinhf, 15
atan, 15
atan2, 16
atan2f, 16
atanf, 15
atanh, 17
atanhf, 17

C

cabs, 1
cabsf, 1
cabsl, 1
cacos, 1
cacosf, 1
cacosh, 2
cacoshf, 2
carg, 3
cargf, 3
casin, 3
casinf, 3
casinh, 4
casinhf, 4
catan, 4
catanf, 4
catanh, 5
catanhf, 5
cbrt, 18
cbrtf, 18
ccos, 5
ccosf, 5
ccosh, 6
ccoshf, 6
ceil, 24
ceilf, 24
cexp, 6

cexpf, 6
cimag, 7
cimagf, 7
cimagl, 7
clog, 7
clogf, 7
conj, 8
conjf, 8
copysign, 19
copysignf, 19
cos, 46
cosf, 46
cpow, 8
cpowf, 8
cproj, 9
cprojf, 9
creal, 9
crealf, 9
creall, 9
csin, 10
csinf, 10
csinh, 11
csinhf, 11
csqrt, 11
csqrtf, 11
ctan, 12
ctanf, 12
ctanh, 12
ctanhf, 12

E

erf, 20
erfc, 20
erfcf, 20
erff, 20
exp, 20
expl0, 21
explOf, 21
exp2, 21
exp2f, 21
expf, 20
expml, 22
expmlf, 22

51/52

F

fabs, 23
fabsf, 23
fdim, 23
fdimf, 23
finite, 31
finitef, 31
floor, 24
floorf, 24
fma, 24
fmaf, 24
fmax, 25
fmaxf, 25
fmin, 25
fminf, 25
fmod, 26
fmodf, 26
fpclassify, 31
frexp, 27
frexpf, 27

G

gamma, 27
gamma_r, 27
gammaf, 27
gammaf_r, 27

H
hypot, 28
hypotf, 28

I

ilogb, 29
ilogbf, 29
infinity, 29
infinityf, 29
isfinite, 31
isgreater, 30

isgreaterequal, 30

isinf, 31

isinff, 31

isless, 30
islessequal, 30
islessgreater, 30
isnan, 31
isnanf, 31
isnormal, 31
isunordered, 30

J

jO, 17
jOf, 17
jl, 17
jIf, 17
jn, 17
jnf, 17

L

Idexp, 33
Idexpf, 33
Igamma, 27
Igamma_r, 27
lgammaf, 27
lgammaf _r, 27
Ilrint, 37
rintf, 37
Ilround, 37
llroundf, 37
log, 33
log10, 34
log10f, 34
loglp, 35
loglpf, 35
log2, 35
log2f, 35
logb, 36
logbf, 36
logf, 33
Irint, 37
Irintf, 37
Iround, 37
Iroundf, 37

M

matherr, 38
modf, 39
modff, 39

N

nan, 40

nanf, 40
nearbyint, 40
nearbyintf, 40
nextafter, 41
nextafterf, 41

(0]
OS stubs, 13

P

pow, 41
powl0, 42
pow10f, 42
powf, 41

R

remainder, 42
remainderf, 42
remquo, 43
remquof, 43
rint, 44

rintf, 44
round, 44
roundf, 44

S

52 /52

scalbln, 45
scalblnf, 45
scalbn, 45
scalbnf, 45
signbit, 46

sin, 46

sinf, 46

sinh, 47

sinhf, 47

sqrt, 47

sqrtf, 47

stubs, 13
support subroutines, 13
system calls, 13

T

tan, 48

tanf, 48
tanh, 48
tanhf, 48
tgamma, 27
tgammaf, 27
trunc, 49
truncf, 49

Y

y0, 17
yof, 17
yl, 17
yif, 17
yn, 17
ynf, 17

	Mathematical Complex Functions (complex.h)
	cabs
	cacos
	cacosh
	carg
	casin
	casinh
	catan
	catanh
	ccos
	ccosh
	cexp
	cimag
	clog
	conj
	cpow
	cproj
	creal
	csin
	csinh
	csqrt
	ctan
	ctanh

	Mathematical Functions (math.h)
	acos
	acosh
	asin
	asinh
	atan
	atan2
	atanh
	jN
	cbrt
	copysign
	cosh
	erf
	exp
	exp10
	exp2
	expm1
	fabs
	fdim
	floor
	fma
	fmax
	fmin
	fmod
	frexp
	gamma
	hypot
	ilogb
	infinity
	isgreater
	fpclassify
	ldexp
	log
	log10
	log1p
	log2
	logb
	lrint
	lround
	matherr
	modf
	nan
	nearbyint
	nextafter
	pow
	pow10
	remainder
	remquo
	rint
	round
	scalbn
	signbit
	sin
	sinh
	sqrt
	tan
	tanh
	trunc

	Index

