
The Red Hat newlib C Library i

The Red Hat newlib C Library

libc 2.2.0

The Red Hat newlib C Library ii

This file documents the ANSI C library.

Copyright (C) 1992, 1993, 1994-2014 Red Hat, Inc.

libc includes software developed by the University of California, Berkeley and its contributors.

libc includes software developed by Martin Jackson, Graham Haley and Steve Chamberlain of Tadpole Technology and
released to Cygnus.

libc uses floating-point conversion software developed at AT&T, which includes this copyright information:

The author of this software is David M. Gay.
Copyright (c) 1991 by AT&T.
Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.
THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN
PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY REPRESENTATION OR WARRANTY OF
ANY KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this
permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, subject
to the terms of the GNU General Public License, which includes the provision that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for
modified versions.

The Red Hat newlib C Library iii

Contents

1 Standard Utility Functions (stdlib.h) 1

1.1 _Exit . 1

1.2 a64l . 1

1.3 abort . 2

1.4 abs . 3

1.5 assert . 3

1.6 atexit . 4

1.7 atof . 5

1.8 atoi . 6

1.9 atoll . 6

1.10 bsearch . 7

1.11 calloc . 7

1.12 div . 8

1.13 ecvt . 9

1.14 gcvt . 9

1.15 ecvtbuf . 10

1.16 __env_lock . 11

1.17 exit . 11

1.18 getenv . 12

1.19 itoa . 12

1.20 labs . 13

1.21 ldiv . 13

1.22 llabs . 14

1.23 lldiv . 14

1.24 malloc . 15

1.25 mallinfo . 17

1.26 __malloc_lock . 17

1.27 mblen . 18

1.28 mbsrtowcs . 18

1.29 mbstowcs . 19

The Red Hat newlib C Library iv

1.30 mbtowc . 20

1.31 on_exit . 21

1.32 qsort . 21

1.33 rand . 22

1.34 rand48 . 23

1.35 rpmatch . 24

1.36 strtod . 24

1.37 strtol . 25

1.38 strtoll . 26

1.39 strtoul . 27

1.40 strtoull . 28

1.41 wcsrtombs . 29

1.42 wcstod . 30

1.43 wcstol . 31

1.44 wcstoll . 32

1.45 wcstoul . 33

1.46 wcstoull . 34

1.47 system . 35

1.48 utoa . 35

1.49 wcstombs . 36

1.50 wctomb . 36

2 Character Type Macros and Functions (ctype.h) 38

2.1 isalnum . 38

2.2 isalpha . 39

2.3 isascii . 39

2.4 isblank . 40

2.5 iscntrl . 40

2.6 isdigit . 41

2.7 islower . 41

2.8 isprint . 42

2.9 ispunct . 42

2.10 isspace . 43

2.11 isupper . 44

2.12 isxdigit . 44

2.13 toascii . 45

2.14 tolower . 45

2.15 toupper . 46

2.16 iswalnum . 46

The Red Hat newlib C Library v

2.17 iswalpha . 47

2.18 iswcntrl . 47

2.19 iswblank . 48

2.20 iswdigit . 48

2.21 iswgraph . 49

2.22 iswlower . 49

2.23 iswprint . 50

2.24 iswpunct . 50

2.25 iswspace . 51

2.26 iswupper . 51

2.27 iswxdigit . 52

2.28 iswctype . 52

2.29 wctype . 53

2.30 towlower . 53

2.31 towupper . 54

2.32 towctrans . 54

2.33 wctrans . 55

3 Input and Output (stdio.h) 56

3.1 clearerr . 56

3.2 diprintf . 57

3.3 dprintf . 57

3.4 fclose . 58

3.5 fcloseall . 59

3.6 fdopen . 59

3.7 feof . 60

3.8 ferror . 60

3.9 fflush . 61

3.10 fgetc . 62

3.11 fgetpos . 64

3.12 fgets . 64

3.13 fgetwc . 65

3.14 fgetws . 67

3.15 fileno . 68

3.16 fmemopen . 69

3.17 fopen . 69

3.18 fopencookie . 71

3.19 fpurge . 72

3.20 fputc . 72

The Red Hat newlib C Library vi

3.21 fputs . 74

3.22 fputwc . 75

3.23 fputws . 76

3.24 fread . 77

3.25 freopen . 78

3.26 fseek . 79

3.27 __fsetlocking . 80

3.28 fsetpos . 80

3.29 ftell . 81

3.30 funopen . 82

3.31 fwide . 83

3.32 fwrite . 83

3.33 getc . 84

3.34 getc_unlocked . 85

3.35 getchar . 86

3.36 getchar_unlocked . 87

3.37 getdelim . 87

3.38 getline . 88

3.39 gets . 88

3.40 getw . 89

3.41 getwchar . 89

3.42 mktemp . 90

3.43 open_memstream . 92

3.44 perror . 92

3.45 putc . 93

3.46 putc_unlocked . 94

3.47 putchar . 94

3.48 putchar_unlocked . 95

3.49 puts . 96

3.50 putw . 96

3.51 putwchar . 97

3.52 remove . 98

3.53 rename . 98

3.54 rewind . 99

3.55 setbuf . 99

3.56 setbuffer . 100

3.57 setlinebuf . 101

3.58 setvbuf . 101

3.59 siprintf . 102

The Red Hat newlib C Library vii

3.60 siscanf . 103

3.61 sprintf . 104

3.62 sscanf . 110

3.63 stdio_ext . 114

3.64 swprintf . 115

3.65 swscanf . 121

3.66 tmpfile . 125

3.67 tmpnam . 126

3.68 ungetc . 127

3.69 ungetwc . 127

3.70 vfprintf . 128

3.71 vfscanf . 129

3.72 vfwprintf . 130

3.73 vfwscanf . 130

3.74 viprintf . 131

3.75 viscanf . 132

4 Large File Input and Output (stdio.h) 134

4.1 fdopen64 . 134

4.2 fopen64 . 134

4.3 freopen64 . 135

4.4 ftello64 . 136

4.5 fseeko64 . 136

4.6 fgetpos64 . 137

4.7 fsetpos64 . 138

4.8 tmpfile64 . 138

5 Strings and Memory (string.h) 140

5.1 bcmp . 140

5.2 bcopy . 140

5.3 bzero . 141

5.4 index . 141

5.5 memccpy . 142

5.6 memchr . 142

5.7 memcmp . 143

5.8 memcpy . 143

5.9 memmem . 144

5.10 memmove . 144

5.11 mempcpy . 145

The Red Hat newlib C Library viii

5.12 memrchr . 145

5.13 memset . 146

5.14 rawmemchr . 146

5.15 rindex . 147

5.16 stpcpy . 147

5.17 stpncpy . 148

5.18 strcasecmp . 148

5.19 strcasestr . 149

5.20 strcat . 149

5.21 strchr . 150

5.22 strchrnul . 150

5.23 strcmp . 151

5.24 strcoll . 151

5.25 strcpy . 152

5.26 strcspn . 152

5.27 strerror . 153

5.28 strerror_r . 157

5.29 strlen . 158

5.30 strlwr . 159

5.31 strncasecmp . 159

5.32 strncat . 160

5.33 strncmp . 160

5.34 strncpy . 161

5.35 strnlen . 161

5.36 strpbrk . 162

5.37 strrchr . 162

5.38 strsignal . 163

5.39 strspn . 163

5.40 strstr . 164

5.41 strtok . 164

5.42 strupr . 165

5.43 strxfrm . 166

5.44 swab . 166

5.45 wcscasecmp . 167

5.46 wcsdup . 167

5.47 wcsncasecmp . 168

The Red Hat newlib C Library ix

6 Wide Character Strings (wchar.h) 169

6.1 wmemchr . 169

6.2 wmemcmp . 169

6.3 wmemcpy . 170

6.4 wmemmove . 171

6.5 wmemset . 171

6.6 wcscat . 172

6.7 wcschr . 172

6.8 wcscmp . 173

6.9 wcscoll . 173

6.10 wcscpy . 174

6.11 wcpcpy . 174

6.12 wcscspn . 175

6.13 wcsftime . 175

6.14 wcslcat . 176

6.15 wcslcpy . 177

6.16 wcslen . 177

6.17 wcsncat . 178

6.18 wcsncmp . 179

6.19 wcsncpy . 179

6.20 wcpncpy . 180

6.21 wcsnlen . 180

6.22 wcspbrk . 181

6.23 wcsrchr . 181

6.24 wcsspn . 182

6.25 wcsstr . 182

6.26 wcstok . 183

6.27 wcswidth . 184

6.28 wcsxfrm . 184

6.29 wcwidth . 185

7 Signal Handling (signal.h) 186

7.1 psignal . 186

7.2 raise . 187

7.3 signal . 188

The Red Hat newlib C Library x

8 Time Functions (time.h) 189

8.1 asctime . 189

8.2 clock . 190

8.3 ctime . 190

8.4 difftime . 191

8.5 gmtime . 192

8.6 localtime . 192

8.7 mktime . 193

8.8 strftime . 193

8.9 time . 197

8.10 __tz_lock . 198

8.11 tzset . 198

9 Locale (locale.h) 200

9.1 setlocale . 201

10 Reentrancy 203

11 Miscellaneous Macros and Functions 205

11.1 ffs . 205

11.2 unctrl . 205

12 Posix Functions 207

12.1 popen . 207

12.2 posix_spawn . 208

13 System Calls 209

13.1 Definitions for OS interface . 209

13.2 Reentrant covers for OS subroutines . 213

13.2.1 _close_r . 213

13.2.2 _execve_r . 213

13.2.3 _fork_r . 214

13.2.4 _wait_r . 214

13.2.5 _fstat_r . 214

13.2.6 _link_r . 214

13.2.7 _lseek_r . 215

13.2.8 _open_r . 215

13.2.9 _read_r . 215

13.2.10 _sbrk_r . 216

13.2.11 _kill_r . 216

13.2.12 _getpid_r . 216

The Red Hat newlib C Library xi

13.2.13 _stat_r . 217

13.2.14 _times_r . 217

13.2.15 _unlink_r . 217

13.2.16 _write_r . 217

14 Variable Argument Lists 219

14.1 ANSI-standard macros (stdarg.h) . 219

14.1.1 va_start . 219

14.1.2 va_arg . 220

14.1.3 va_end . 220

14.2 Traditional macros (varargs.h) . 221

14.2.1 va_alist . 221

14.2.2 va_start . 221

14.2.3 va_arg . 222

14.2.4 va_end . 222

15 Index 224

The Red Hat newlib C Library xii

Introduction

This reference manual describes the functions provided by the Red Hat “newlib” version of the standard ANSI C library. This
document is not intended as an overview or a tutorial for the C library. Each library function is listed with a synopsis of its use, a
brief description, return values (including error handling), and portability issues.

Some of the library functions depend on support from the underlying operating system and may not be available on every
platform. For embedded systems in particular, many of these underlying operating system services may not be available or
may not be fully functional. The specific operating system subroutines required for a particular library function are listed in the
“Portability” section of the function description. See Chapter 13, for a description of the relevant operating system calls.

The Red Hat newlib C Library 1 / 229

Chapter 1

Standard Utility Functions (stdlib.h)

This chapter groups utility functions useful in a variety of programs. The corresponding declarations are in the header file
stdlib.h.

1.1 _Exit

_Exit — end program execution with no cleanup processing

Synopsis

#include <stdlib.h>

void _Exit(int code);

Description

Use _Exit to return control from a program to the host operating environment. Use the argument code to pass an exit status
to the operating environment: two particular values, EXIT_SUCCESS and EXIT_FAILURE, are defined in `stdlib.h’ to
indicate success or failure in a portable fashion.

_Exit differs from exit in that it does not run any application-defined cleanup functions registered with atexit and it does
not clean up files and streams. It is identical to _exit.

Returns

_Exit does not return to its caller.

Portability

_Exit is defined by the C99 standard.

Supporting OS subroutines required: _exit.

1.2 a64l

a64l, l64a — convert between radix-64 ASCII string and long

The Red Hat newlib C Library 2 / 229

Synopsis

#include <stdlib.h>

long a64l(const char *input);
char *l64a(long input);

Description

Conversion is performed between long and radix-64 characters. The l64a routine transforms up to 32 bits of input value starting
from least significant bits to the most significant bits. The input value is split up into a maximum of 5 groups of 6 bits and
possibly one group of 2 bits (bits 31 and 30).

Each group of 6 bits forms a value from 0--63 which is translated into a character as follows:

• 0 = ’.’

• 1 = ’/’

• 2--11 = ’0’ to ’9’

• 12--37 = ’A’ to ’Z’

• 38--63 = ’a’ to ’z’

When the remaining bits are zero or all bits have been translated, a null terminator is appended to the string. An input value of 0
results in the empty string.

The a64l function performs the reverse translation. Each character is used to generate a 6-bit value for up to 30 bits and then
a 2-bit value to complete a 32-bit result. The null terminator means that the remaining digits are 0. An empty input string or
NULL string results in 0L. An invalid string results in undefined behavior. If the size of a long is greater than 32 bits, the result
is sign-extended.

Returns

l64a returns a null-terminated string of 0 to 6 characters. a64l returns the 32-bit translated value from the input character
string.

Portability

l64a and a64l are non-ANSI and are defined by the Single Unix Specification.

Supporting OS subroutines required: None.

1.3 abort

abort — abnormal termination of a program

Synopsis

#include <stdlib.h>

void abort(void);

The Red Hat newlib C Library 3 / 229

Description

Use abort to signal that your program has detected a condition it cannot deal with. Normally, abort ends your program’s
execution.

Before terminating your program, abort raises the exception SIGABRT (using `raise(SIGABRT)’). If you have used sig
nal to register an exception handler for this condition, that handler has the opportunity to retain control, thereby avoiding
program termination.

In this implementation, abort does not perform any stream- or file-related cleanup (the host environment may do so; if not, you
can arrange for your program to do its own cleanup with a SIGABRT exception handler).

Returns

abort does not return to its caller.

Portability

ANSI C requires abort.

Supporting OS subroutines required: _exit and optionally, write.

1.4 abs

abs — integer absolute value (magnitude)

Synopsis

#include <stdlib.h>

int abs(int i);

Description

abs returns the absolute value of i (also called the magnitude of i). That is, if i is negative, the result is the opposite of i, but
if i is nonnegative the result is i.

The similar function labs uses and returns long rather than int values.

Returns

The result is a nonnegative integer.

Portability

abs is ANSI.

No supporting OS subroutines are required.

1.5 assert

assert — macro for debugging diagnostics

The Red Hat newlib C Library 4 / 229

Synopsis

#include <assert.h>

void assert(int expression);

Description

Use this macro to embed debuggging diagnostic statements in your programs. The argument expression should be an
expression which evaluates to true (nonzero) when your program is working as you intended.

When expression evaluates to false (zero), assert calls abort, after first printing a message showing what failed and
where:

Assertion failed: expression, file filename, line lineno, function: func

If the name of the current function is not known (for example, when using a C89 compiler that does not understand __func__),
the function location is omitted.

The macro is defined to permit you to turn off all uses of assert at compile time by defining NDEBUG as a preprocessor
variable. If you do this, the assert macro expands to

(void(0))

Returns

assert does not return a value.

Portability

The assert macro is required by ANSI, as is the behavior when NDEBUG is defined.

Supporting OS subroutines required (only if enabled): close, fstat, getpid, isatty, kill, lseek, read, sbrk,
write.

1.6 atexit

atexit — request execution of functions at program exit

Synopsis

#include <stdlib.h>

int atexit(void (*function)(void));

Description

You can use atexit to enroll functions in a list of functions that will be called when your program terminates normally. The
argument is a pointer to a user-defined function (which must not require arguments and must not return a result).

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit will be the first to execute when your
program exits.

There is no built-in limit to the number of functions you can enroll in this list; however, after every group of 32 functions is
enrolled, atexit will call malloc to get space for the next part of the list. The initial list of 32 functions is statically allocated,
so you can always count on at least that many slots available.

The Red Hat newlib C Library 5 / 229

Returns

atexit returns 0 if it succeeds in enrolling your function, -1 if it fails (possible only if no space was available for malloc to
extend the list of functions).

Portability

atexit is required by the ANSI standard, which also specifies that implementations must support enrolling at least 32 functions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

1.7 atof

atof, atoff — string to double or float

Synopsis

#include <stdlib.h>

double atof(const char *s);
float atoff(const char *s);

Description

atof converts the initial portion of a string to a double. atoff converts the initial portion of a string to a float.

The functions parse the character string s, locating a substring which can be converted to a floating-point value. The substring
must match the format:

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring converted is the longest initial fragment of s that has the expected format, beginning with the first non-whitespace
character. The substring is empty if str is empty, consists entirely of whitespace, or if the first non-whitespace character is
something other than +, -, ., or a digit.

atof(s) is implemented as strtod(s, NULL). atoff(s) is implemented as strtof(s, NULL).

Returns

atof returns the converted substring value, if any, as a double; or 0.0, if no conversion could be performed. If the correct
value is out of the range of representable values, plus or minus HUGE_VAL is returned, and ERANGE is stored in errno. If the
correct value would cause underflow, 0.0 is returned and ERANGE is stored in errno.

atoff obeys the same rules as atof, except that it returns a float.

Portability

atof is ANSI C. atof, atoi, and atol are subsumed by strod and strol, but are used extensively in existing code. These
functions are less reliable, but may be faster if the argument is verified to be in a valid range.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

The Red Hat newlib C Library 6 / 229

1.8 atoi

atoi, atol, _atoi_r, _atol_r — string to integer

Synopsis

#include <stdlib.h>

int atoi(const char *s);
long atol(const char *s);
int _atoi_r(struct _reent *ptr, const char *s);
long _atol_r(struct _reent *ptr, const char *s);

Description

atoi converts the initial portion of a string to an int. atol converts the initial portion of a string to a long.

atoi(s) is implemented as (int)strtol(s, NULL, 10).atol(s) is implemented as strtol(s, NULL, 10).

_atoi_r and _atol_r are reentrant versions of atoi and atol respectively, passing the reentrancy struct pointer.

Returns

The functions return the converted value, if any. If no conversion was made, 0 is returned.

Portability

atoi, atol are ANSI.

No supporting OS subroutines are required.

1.9 atoll

atoll, _atoll_r — convert a string to a long long integer

Synopsis

#include <stdlib.h>

long long atoll(const char *str);
long long _atoll_r(struct _reent *ptr, const char *str);

Description

The function atoll converts the initial portion of the string pointed to by *str to a type long long. A call to atoll(str) in
this implementation is equivalent to strtoll(str, (char **)NULL, 10) including behavior on error.

The alternate function _atoll_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

The converted value.

The Red Hat newlib C Library 7 / 229

Portability

atoll is ISO 9899 (C99) and POSIX 1003.1-2001 compatable.

No supporting OS subroutines are required.

1.10 bsearch

bsearch — binary search

Synopsis

#include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));

Description

bsearch searches an array beginning at base for any element that matches key, using binary search. nmemb is the element
count of the array; size is the size of each element.

The array must be sorted in ascending order with respect to the comparison function compar (which you supply as the last
argument of bsearch).

You must define the comparison function (*compar) to have two arguments; its result must be negative if the first argument is
less than the second, zero if the two arguments match, and positive if the first argument is greater than the second (where ``less
than” and ``greater than” refer to whatever arbitrary ordering is appropriate).

Returns

Returns a pointer to an element of array that matches key. If more than one matching element is available, the result may
point to any of them.

Portability

bsearch is ANSI.

No supporting OS subroutines are required.

1.11 calloc

calloc, _calloc_r — allocate space for arrays

Synopsis

#include <stdlib.h>

void *calloc(size_t n, size_t s);
void *_calloc_r(void *reent, size_t n, size_t s);

The Red Hat newlib C Library 8 / 229

Description

Use calloc to request a block of memory sufficient to hold an array of n elements, each of which has size s.

The memory allocated by calloc comes out of the same memory pool used by malloc, but the memory block is initialized
to all zero bytes. (To avoid the overhead of initializing the space, use malloc instead.)

The alternate function _calloc_r is reentrant. The extra argument reent is a pointer to a reentrancy structure.

Returns

If successful, a pointer to the newly allocated space.

If unsuccessful, NULL.

Portability

calloc is ANSI.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

1.12 div

div — divide two integers

Synopsis

#include <stdlib.h>

div_t div(int n, int d);

Description

Divide n/d, returning quotient and remainder as two integers in a structure div_t.

Returns

The result is represented with the structure

typedef struct
{
int quot;
int rem;
} div_t;

where the quot field represents the quotient, and rem the remainder. For nonzero d, if `r =div(n,d);’ then n equals `r.
rem + d*r.quot’.

To divide long rather than int values, use the similar function ldiv.

Portability

div is ANSI.

No supporting OS subroutines are required.

The Red Hat newlib C Library 9 / 229

1.13 ecvt

ecvt, ecvtf, fcvt, fcvtf — double or float to string

Synopsis

#include <stdlib.h>

char *ecvt(double val, int chars, int *decpt, int *sgn);
char *ecvtf(float val, int chars, int *decpt, int *sgn);
char *fcvt(double val, int decimals, int *decpt, int *sgn);
char *fcvtf(float val, int decimals, int *decpt, int *sgn);

Description

ecvt and fcvt produce (null-terminated) strings of digits representating the double number val. ecvtf and fcvtf
produce the corresponding character representations of float numbers.

(The stdlib functions ecvtbuf and fcvtbuf are reentrant versions of ecvt and fcvt.)

The only difference between ecvt and fcvt is the interpretation of the second argument (chars or decimals). For ecvt,
the second argument chars specifies the total number of characters to write (which is also the number of significant digits in the
formatted string, since these two functions write only digits). For fcvt, the second argument decimals specifies the number
of characters to write after the decimal point; all digits for the integer part of val are always included.

Since ecvt and fcvt write only digits in the output string, they record the location of the decimal point in *decpt, and the
sign of the number in *sgn. After formatting a number, *decpt contains the number of digits to the left of the decimal point.
*sgn contains 0 if the number is positive, and 1 if it is negative.

Returns

All four functions return a pointer to the new string containing a character representation of val.

Portability

None of these functions are ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

1.14 gcvt

gcvt, gcvtf — format double or float as string

Synopsis

#include <stdlib.h>

char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

The Red Hat newlib C Library 10 / 229

Description

gcvt writes a fully formatted number as a null-terminated string in the buffer *buf. gcvtf produces corresponding character
representations of float numbers.

gcvt uses the same rules as the printf format `%.precisiong’---only negative values are signed (with `-’), and either
exponential or ordinary decimal-fraction format is chosen depending on the number of significant digits (specified by precis
ion).

Returns

The result is a pointer to the formatted representation of val (the same as the argument buf).

Portability

Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

1.15 ecvtbuf

ecvtbuf, fcvtbuf — double or float to string

Synopsis

#include <stdio.h>

char *ecvtbuf(double val, int chars, int *decpt, int *sgn, char *buf);
char *fcvtbuf(double val, int decimals, int *decpt, int *sgn, char *buf);

Description

ecvtbuf and fcvtbuf produce (null-terminated) strings of digits representating the double number val.

The only difference between ecvtbuf and fcvtbuf is the interpretation of the second argument (chars or decimals). For
ecvtbuf, the second argument chars specifies the total number of characters to write (which is also the number of significant
digits in the formatted string, since these two functions write only digits). For fcvtbuf, the second argument decimals
specifies the number of characters to write after the decimal point; all digits for the integer part of val are always included.

Since ecvtbuf and fcvtbuf write only digits in the output string, they record the location of the decimal point in *decpt,
and the sign of the number in *sgn. After formatting a number, *decpt contains the number of digits to the left of the decimal
point. *sgn contains 0 if the number is positive, and 1 if it is negative. For both functions, you supply a pointer buf to an area
of memory to hold the converted string.

Returns

Both functions return a pointer to buf, the string containing a character representation of val.

Portability

Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

The Red Hat newlib C Library 11 / 229

1.16 __env_lock

__env_lock, __env_unlock — lock environ variable

Synopsis

#include <envlock.h>

void __env_lock(struct _reent *reent);
void __env_unlock(struct _reent *reent);

Description

The setenv family of routines call these functions when they need to modify the environ variable. The version of these routines
supplied in the library use the lock API defined in sys/lock.h. If multiple threads of execution can call setenv, or if setenv
can be called reentrantly, then you need to define your own versions of these functions in order to safely lock the memory pool
during a call. If you do not, the memory pool may become corrupted.

A call to setenv may call __env_lock recursively; that is, the sequence of calls may go __env_lock, __env_lock,
__env_unlock, __env_unlock. Any implementation of these routines must be careful to avoid causing a thread to wait for
a lock that it already holds.

1.17 exit

exit — end program execution

Synopsis

#include <stdlib.h>

void exit(int code);

Description

Use exit to return control from a program to the host operating environment. Use the argument code to pass an exit status
to the operating environment: two particular values, EXIT_SUCCESS and EXIT_FAILURE, are defined in `stdlib.h’ to
indicate success or failure in a portable fashion.

exit does two kinds of cleanup before ending execution of your program. First, it calls all application-defined cleanup functions
you have enrolled with atexit. Second, files and streams are cleaned up: any pending output is delivered to the host system,
each open file or stream is closed, and files created by tmpfile are deleted.

Returns

exit does not return to its caller.

Portability

ANSI C requires exit, and specifies that EXIT_SUCCESS and EXIT_FAILURE must be defined.

Supporting OS subroutines required: _exit.

The Red Hat newlib C Library 12 / 229

1.18 getenv

getenv, environ — look up environment variable

Synopsis

#include <stdlib.h>

char *getenv(const char *name);

Description

getenv searches the list of environment variable names and values (using the global pointer ``char **environ”) for a
variable whose name matches the string at name. If a variable name matches, getenv returns a pointer to the associated value.

Returns

A pointer to the (string) value of the environment variable, or NULL if there is no such environment variable.

Portability

getenv is ANSI, but the rules for properly forming names of environment variables vary from one system to another.

getenv requires a global pointer environ.

1.19 itoa

itoa — integer to string

Synopsis

#include <stdlib.h>

char *itoa(int value, char *str, int base);
char *__itoa(int value, char *str, int base);

Description

itoa converts the integer value to a null-terminated string using the specified base, which must be between 2 and 36, inclusive.
If base is 10, value is treated as signed and the string will be prefixed with ’-’ if negative. For all other bases, value is treated
as unsigned. str should be an array long enough to contain the converted value, which in the worst case is sizeof(int)*8+1 bytes.

Returns

A pointer to the string, str, or NULL if base is invalid.

The Red Hat newlib C Library 13 / 229

Portability

itoa is non-ANSI.

No supporting OS subroutine calls are required.

1.20 labs

labs — long integer absolute value

Synopsis

#include <stdlib.h>

long labs(long i);

Description

labs returns the absolute value of i (also called the magnitude of i). That is, if i is negative, the result is the opposite of i, but
if i is nonnegative the result is i.

The similar function abs uses and returns int rather than long values.

Returns

The result is a nonnegative long integer.

Portability

labs is ANSI.

No supporting OS subroutine calls are required.

1.21 ldiv

ldiv — divide two long integers

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long n, long d);

Description

Divide n/d, returning quotient and remainder as two long integers in a structure ldiv_t.

The Red Hat newlib C Library 14 / 229

Returns

The result is represented with the structure

typedef struct
{
long quot;
long rem;
} ldiv_t;

where the quot field represents the quotient, and rem the remainder. For nonzero d, if `r =ldiv(n,d);’ then n equals `r.
rem + d*r.quot’.

To divide int rather than long values, use the similar function div.

Portability

ldiv is ANSI.

No supporting OS subroutines are required.

1.22 llabs

llabs — compute the absolute value of an long long integer.

Synopsis

#include <stdlib.h>

long long llabs(long long j);

Description

The llabs function computes the absolute value of the long long integer argument j (also called the magnitude of j).

The similar function labs uses and returns long rather than long long values.

Returns

A nonnegative long long integer.

Portability

llabs is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.

1.23 lldiv

lldiv — divide two long long integers

The Red Hat newlib C Library 15 / 229

Synopsis

#include <stdlib.h>

lldiv_t lldiv(long long n, long long d);

Description

Divide n/d, returning quotient and remainder as two long long integers in a structure lldiv_t.

Returns

The result is represented with the structure

typedef struct
{
long long quot;
long long rem;
} lldiv_t;

where the quot field represents the quotient, and rem the remainder. For nonzero d, if `r =ldiv(n,d);’ then n equals `r.
rem + d*r.quot’.

To divide long rather than long long values, use the similar function ldiv.

Portability

lldiv is ISO 9899 (C99) compatable.

No supporting OS subroutines are required.

1.24 malloc

malloc, realloc, free, reallocf, memalign, malloc_usable_size, _malloc_r, _realloc_r, _reallocf_r, _free_r, _memalign_r, _mal-
loc_usable_size_r — manage memory

Synopsis

#include <stdlib.h>

void *malloc(size_t nbytes);
void *realloc(void *aptr, size_t nbytes);
void *reallocf(void *aptr, size_t nbytes);
void free(void *aptr);
void *memalign(size_t align, size_t nbytes);
size_t malloc_usable_size(void *aptr);
void *_malloc_r(void *reent, size_t nbytes);
void *_realloc_r(void *reent, void *aptr, size_t nbytes);
void *_reallocf_r(void *reent, void *aptr, size_t nbytes);
void _free_r(void *reent, void *aptr);
void *_memalign_r(void *reent, size_t align, size_t nbytes);
size_t _malloc_usable_size_r(void *reent, void *aptr);

The Red Hat newlib C Library 16 / 229

Description

These functions manage a pool of system memory.

Use malloc to request allocation of an object with at least nbytes bytes of storage available. If the space is available, malloc
returns a pointer to a newly allocated block as its result.

If you already have a block of storage allocated by malloc, but you no longer need all the space allocated to it, you can make it
smaller by calling realloc with both the object pointer and the new desired size as arguments. realloc guarantees that the
contents of the smaller object match the beginning of the original object.

Similarly, if you need more space for an object, use realloc to request the larger size; again, realloc guarantees that the
beginning of the new, larger object matches the contents of the original object.

When you no longer need an object originally allocated by malloc or realloc (or the related function calloc), return it to
the memory storage pool by calling free with the address of the object as the argument. You can also use realloc for this
purpose by calling it with 0 as the nbytes argument.

The reallocf function behaves just like realloc except if the function is required to allocate new storage and this fails. In
this case reallocf will free the original object passed in whereas realloc will not.

The memalign function returns a block of size nbytes aligned to a align boundary. The align argument must be a power
of two.

The malloc_usable_size function takes a pointer to a block allocated by malloc. It returns the amount of space that is
available in the block. This may or may not be more than the size requested from malloc, due to alignment or minimum size
constraints.

The alternate functions _malloc_r, _realloc_r, _reallocf_r, _free_r, _memalign_r, and _malloc_usable
_size_r are reentrant versions. The extra argument reent is a pointer to a reentrancy structure.

If you have multiple threads of execution which may call any of these routines, or if any of these routines may be called
reentrantly, then you must provide implementations of the __malloc_lock and __malloc_unlock functions for your
system. See the documentation for those functions.

These functions operate by calling the function _sbrk_r or sbrk, which allocates space. You may need to provide one of
these functions for your system. _sbrk_r is called with a positive value to allocate more space, and with a negative value to
release previously allocated space if it is no longer required. See Section 13.1.

Returns

malloc returns a pointer to the newly allocated space, if successful; otherwise it returns NULL. If your application needs to
generate empty objects, you may use malloc(0) for this purpose.

realloc returns a pointer to the new block of memory, or NULL if a new block could not be allocated. NULL is also the result
when you use `realloc(aptr,0)’ (which has the same effect as `free(aptr)’). You should always check the result of
realloc; successful reallocation is not guaranteed even when you request a smaller object.

free does not return a result.

memalign returns a pointer to the newly allocated space.

malloc_usable_size returns the usable size.

Portability

malloc, realloc, and free are specified by the ANSI C standard, but other conforming implementations of malloc may
behave differently when nbytes is zero.

memalign is part of SVR4.

malloc_usable_size is not portable.

Supporting OS subroutines required: sbrk.

The Red Hat newlib C Library 17 / 229

1.25 mallinfo

mallinfo, malloc_stats, mallopt, _mallinfo_r, _malloc_stats_r, _mallopt_r — malloc support

Synopsis

#include <malloc.h>

struct mallinfo mallinfo(void);
void malloc_stats(void);
int mallopt(int parameter, value);
struct mallinfo _mallinfo_r(void *reent);
void _malloc_stats_r(void *reent);
int _mallopt_r(void *reent, int parameter, value);

Description

mallinfo returns a structure describing the current state of memory allocation. The structure is defined in malloc.h. The
following fields are defined: arena is the total amount of space in the heap; ordblks is the number of chunks which are
not in use; uordblks is the total amount of space allocated by malloc; fordblks is the total amount of space not in use;
keepcost is the size of the top most memory block.

malloc_stats print some statistics about memory allocation on standard error.

mallopt takes a parameter and a value. The parameters are defined in malloc.h, and may be one of the following: M_TRIM_T
HRESHOLD sets the maximum amount of unused space in the top most block before releasing it back to the system in free (the
space is released by calling _sbrk_r with a negative argument); M_TOP_PAD is the amount of padding to allocate whenever
_sbrk_r is called to allocate more space.

The alternate functions _mallinfo_r, _malloc_stats_r, and _mallopt_r are reentrant versions. The extra argument
reent is a pointer to a reentrancy structure.

Returns

mallinfo returns a mallinfo structure. The structure is defined in malloc.h.

malloc_stats does not return a result.

mallopt returns zero if the parameter could not be set, or non-zero if it could be set.

Portability

mallinfo and mallopt are provided by SVR4, but mallopt takes different parameters on different systems. malloc_st
ats is not portable.

1.26 __malloc_lock

__malloc_lock, __malloc_unlock — lock malloc pool

Synopsis

#include <malloc.h>

void __malloc_lock(struct _reent *reent);
void __malloc_unlock(struct _reent *reent);

The Red Hat newlib C Library 18 / 229

Description

The malloc family of routines call these functions when they need to lock the memory pool. The version of these routines
supplied in the library use the lock API defined in sys/lock.h. If multiple threads of execution can call malloc, or if malloc
can be called reentrantly, then you need to define your own versions of these functions in order to safely lock the memory pool
during a call. If you do not, the memory pool may become corrupted.

A call to malloc may call __malloc_lock recursively; that is, the sequence of calls may go __malloc_lock, __mallo
c_lock, __malloc_unlock, __malloc_unlock. Any implementation of these routines must be careful to avoid causing
a thread to wait for a lock that it already holds.

1.27 mblen

mblen — minimal multibyte length function

Synopsis

#include <stdlib.h>

int mblen(const char *s, size_t n);

Description

When _MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation of mblen. In this case, the only
``multi-byte character sequences” recognized are single bytes, and thus 1 is returned unless s is the null pointer or has a length
of 0 or is the empty string.

When _MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion, passing a state variable to allow
state dependent decoding. The result is based on the locale setting which may be restricted to a defined set of locales.

Returns

This implementation of mblen returns 0 if s is NULL or the empty string; it returns 1 if not _MB_CAPABLE or the character
is a single-byte character; it returns -1 if the multi-byte character is invalid; otherwise it returns the number of bytes in the
multibyte character.

Portability

mblen is required in the ANSI C standard. However, the precise effects vary with the locale.

mblen requires no supporting OS subroutines.

1.28 mbsrtowcs

mbsrtowcs, mbsnrtowcs, _mbsrtowcs_r, _mbsnrtowcs_r — convert a character string to a wide-character string

The Red Hat newlib C Library 19 / 229

Synopsis

#include <wchar.h>

size_t mbsrtowcs(wchar_t *__restrict dst, const char **__restrict src, size_t len, mbstate_t *__restrict ps);

#include <wchar.h>

size_t _mbsrtowcs_r(struct _reent *ptr, wchar_t *dst, const char **src, size_t len, mbstate_t *ps);

#include <wchar.h>

size_t mbsnrtowcs(wchar_t *__ restrict dst, const char **__restrict src, size_t nms, size_t len, mbstate_t *__restrict ps);

#include <wchar.h>

size_t _mbsnrtowcs_r(struct _reent *ptr, wchar_t *dst, const char **src, size_t nms, size_t len, mbstate_t *ps);

Description

The mbsrtowcs function converts a sequence of multibyte characters pointed to indirectly by src into a sequence of corre-
sponding wide characters and stores at most len of them in the wchar_t array pointed to by dst, until it encounters a terminating
null character (’\0’).

If dst is NULL, no characters are stored.

If dst is not NULL, the pointer pointed to by src is updated to point to the character after the one that conversion stopped at.
If conversion stops because a null character is encountered, *src is set to NULL.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL, mbsrtowcs uses an internal, static mbstate_t
object, which is initialized to the initial conversion state at program startup.

The mbsnrtowcs function behaves identically to mbsrtowcs, except that conversion stops after reading at most nms bytes
from the buffer pointed to by src.

Returns

The mbsrtowcs and mbsnrtowcs functions return the number of wide characters stored in the array pointed to by dst if
successful, otherwise it returns (size_t)-1.

Portability

mbsrtowcs is defined by the C99 standard. mbsnrtowcs is defined by the POSIX.1-2008 standard.

1.29 mbstowcs

mbstowcs — minimal multibyte string to wide char converter

The Red Hat newlib C Library 20 / 229

Synopsis

#include <stdlib.h>

int mbstowcs(wchar_t *restrict pwc, const char *restrict s, size_t n);

Description

When _MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation of mbstowcs. In this case, the only
``multi-byte character sequences” recognized are single bytes, and they are ``converted” to wide-char versions simply by byte
extension.

When _MB_CAPABLE is defined, this routine calls _mbstowcs_r to perform the conversion, passing a state variable to allow
state dependent decoding. The result is based on the locale setting which may be restricted to a defined set of locales.

Returns

This implementation of mbstowcs returns 0 if s is NULL or is the empty string; it returns -1 if _MB_CAPABLE and one of
the multi-byte characters is invalid or incomplete; otherwise it returns the minimum of: n or the number of multi-byte characters
in s plus 1 (to compensate for the nul character). If the return value is -1, the state of the pwc string is indeterminate. If the input
has a length of 0, the output string will be modified to contain a wchar_t nul terminator.

Portability

mbstowcs is required in the ANSI C standard. However, the precise effects vary with the locale.

mbstowcs requires no supporting OS subroutines.

1.30 mbtowc

mbtowc — minimal multibyte to wide char converter

Synopsis

#include <stdlib.h>

int mbtowc(wchar_t *restrict pwc, const char *restrict s, size_t n);

Description

When _MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation of mbtowc. In this case, only
``multi-byte character sequences” recognized are single bytes, and they are ``converted” to themselves. Each call to mbtowc
copies one character from *s to *pwc, unless s is a null pointer. The argument n is ignored.

When _MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the conversion, passing a state variable to allow
state dependent decoding. The result is based on the locale setting which may be restricted to a defined set of locales.

Returns

This implementation of mbtowc returns 0 if s is NULL or is the empty string; it returns 1 if not _MB_CAPABLE or the character
is a single-byte character; it returns -1 if n is 0 or the multi-byte character is invalid; otherwise it returns the number of bytes in
the multibyte character. If the return value is -1, no changes are made to the pwc output string. If the input is the empty string, a
wchar_t nul is placed in the output string and 0 is returned. If the input has a length of 0, no changes are made to the pwc output
string.

The Red Hat newlib C Library 21 / 229

Portability

mbtowc is required in the ANSI C standard. However, the precise effects vary with the locale.

mbtowc requires no supporting OS subroutines.

1.31 on_exit

on_exit — request execution of function with argument at program exit

Synopsis

#include <stdlib.h>

int on_exit(void (*function)(int, void *), void *arg);

Description

You can use on_exit to enroll functions in a list of functions that will be called when your program terminates normally. The
argument is a pointer to a user-defined function which takes two arguments. The first is the status code passed to exit and the
second argument is of type pointer to void. The function must not return a result. The value of arg is registered and passed as
the argument to function.

The functions are kept in a LIFO stack; that is, the last function enrolled by atexit or on_exit will be the first to execute
when your program exits. You can intermix functions using atexit and on_exit.

There is no built-in limit to the number of functions you can enroll in this list; however, after every group of 32 functions
is enrolled, atexit/on_exit will call malloc to get space for the next part of the list. The initial list of 32 functions is
statically allocated, so you can always count on at least that many slots available.

Returns

on_exit returns 0 if it succeeds in enrolling your function, -1 if it fails (possible only if no space was available for malloc
to extend the list of functions).

Portability

on_exit is a non-standard glibc extension

Supporting OS subroutines required: None

1.32 qsort

qsort — sort an array

Synopsis

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *));

The Red Hat newlib C Library 22 / 229

Description

qsort sorts an array (beginning at base) of nmemb objects. size describes the size of each element of the array.

You must supply a pointer to a comparison function, using the argument shown as compar. (This permits sorting objects of
unknown properties.) Define the comparison function to accept two arguments, each a pointer to an element of the array starting
at base. The result of (*compar) must be negative if the first argument is less than the second, zero if the two arguments
match, and positive if the first argument is greater than the second (where ``less than” and ``greater than” refer to whatever
arbitrary ordering is appropriate).

The array is sorted in place; that is, when qsort returns, the array elements beginning at base have been reordered.

Returns

qsort does not return a result.

Portability

qsort is required by ANSI (without specifying the sorting algorithm).

1.33 rand

rand, srand, rand_r — pseudo-random numbers

Synopsis

#include <stdlib.h>

int rand(void);
void srand(unsigned int seed);
int rand_r(unsigned int *seed);

Description

rand returns a different integer each time it is called; each integer is chosen by an algorithm designed to be unpredictable, so
that you can use randwhen you require a random number. The algorithm depends on a static variable called the ``random seed”;
starting with a given value of the random seed always produces the same sequence of numbers in successive calls to rand.

You can set the random seed using srand; it does nothing beyond storing its argument in the static variable used by rand.
You can exploit this to make the pseudo-random sequence less predictable, if you wish, by using some other unpredictable value
(often the least significant parts of a time-varying value) as the random seed before beginning a sequence of calls to rand; or, if
you wish to ensure (for example, while debugging) that successive runs of your program use the same ``random” numbers, you
can use srand to set the same random seed at the outset.

Returns

rand returns the next pseudo-random integer in sequence; it is a number between 0 and RAND_MAX (inclusive).

srand does not return a result.

Notes

rand and srand are unsafe for multi-threaded applications. rand_r is thread-safe and should be used instead.

The Red Hat newlib C Library 23 / 229

Portability

rand is required by ANSI, but the algorithm for pseudo-random number generation is not specified; therefore, even if you use
the same random seed, you cannot expect the same sequence of results on two different systems.

rand requires no supporting OS subroutines.

1.34 rand48

rand48, drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 — pseudo-random number generators
and initialization routines

Synopsis

#include <stdlib.h>

double drand48(void);
double erand48(unsigned short xseed[3]);
long lrand48(void);
long nrand48(unsigned short xseed[3]);
long mrand48(void);
long jrand48(unsigned short xseed[3]);
void srand48(long seed);
unsigned short *seed48(unsigned short xseed[3]);
void lcong48(unsigned short p[7]);

Description

The rand48 family of functions generates pseudo-random numbers using a linear congruential algorithm working on integers
48 bits in size. The particular formula employed is r(n+1) = (a * r(n) + c) mod m where the default values are for the multiplicand
a = 0xfdeece66d = 25214903917 and the addend c = 0xb = 11. The modulo is always fixed at m = 2 ** 48. r(n) is called the seed
of the random number generator.

For all the six generator routines described next, the first computational step is to perform a single iteration of the algorithm.

drand48 and erand48 return values of type double. The full 48 bits of r(n+1) are loaded into the mantissa of the returned
value, with the exponent set such that the values produced lie in the interval [0.0, 1.0].

lrand48 and nrand48 return values of type long in the range [0, 2**31-1]. The high-order (31) bits of r(n+1) are loaded into
the lower bits of the returned value, with the topmost (sign) bit set to zero.

mrand48 and jrand48 return values of type long in the range [-2**31, 2**31-1]. The high-order (32) bits of r(n+1) are loaded
into the returned value.

drand48, lrand48, and mrand48 use an internal buffer to store r(n). For these functions the initial value of r(0) =
0x1234abcd330e = 20017429951246.

On the other hand, erand48, nrand48, and jrand48 use a user-supplied buffer to store the seed r(n), which consists of an
array of 3 shorts, where the zeroth member holds the least significant bits.

All functions share the same multiplicand and addend.

srand48 is used to initialize the internal buffer r(n) of drand48, lrand48, and mrand48 such that the 32 bits of the seed
value are copied into the upper 32 bits of r(n), with the lower 16 bits of r(n) arbitrarily being set to 0x330e. Additionally, the
constant multiplicand and addend of the algorithm are reset to the default values given above.

seed48 also initializes the internal buffer r(n) of drand48, lrand48, and mrand48, but here all 48 bits of the seed can be
specified in an array of 3 shorts, where the zeroth member specifies the lowest bits. Again, the constant multiplicand and addend

The Red Hat newlib C Library 24 / 229

of the algorithm are reset to the default values given above. seed48 returns a pointer to an array of 3 shorts which contains the
old seed. This array is statically allocated, thus its contents are lost after each new call to seed48.

Finally, lcong48 allows full control over the multiplicand and addend used in drand48, erand48, lrand48, nrand48,
mrand48, and jrand48, and the seed used in drand48, lrand48, and mrand48. An array of 7 shorts is passed as
parameter; the first three shorts are used to initialize the seed; the second three are used to initialize the multiplicand; and the last
short is used to initialize the addend. It is thus not possible to use values greater than 0xffff as the addend.

Note that all three methods of seeding the random number generator always also set the multiplicand and addend for any of the
six generator calls.

For a more powerful random number generator, see random.

Portability

SUS requires these functions.

No supporting OS subroutines are required.

1.35 rpmatch

rpmatch — determine whether response to question is affirmative or negative

Synopsis

#include <stdlib.h>

int rpmatch(const char *response);

Description

The rpmatch function determines whether response is an affirmative or negative response to a question according to the
current locale.

Returns

rpmatch returns 1 if response is affirmative, 0 if negative, or -1 if not recognized as either.

Portability

rpmatch is a BSD extension also found in glibc.

Notes

No supporting OS subroutines are required.

1.36 strtod

strtod, strtof, _strtod_r — string to double or float

The Red Hat newlib C Library 25 / 229

Synopsis

#include <stdlib.h>

double strtod(const char *restrict str, char **restrict tail);
float strtof(const char *restrict str, char **restrict tail);
double _strtod_r(void *reent, const char *restrict str, char **restrict tail);

Description

The function strtod parses the character string str, producing a substring which can be converted to a double value. The
substring converted is the longest initial subsequence of str, beginning with the first non-whitespace character, that has one of
these formats:

[+|-]digits[.[digits]][(e|E)[+|-]digits]
[+|-].digits[(e|E)[+|-]digits]
[+|-](i|I)(n|N)(f|F)[(i|I)(n|N)(i|I)(t|T)(y|Y)]
[+|-](n|N)(a|A)(n|N)[<(>[hexdigits]<)>]
[+|-]0(x|X)hexdigits[.[hexdigits]][(p|P)[+|-]digits]
[+|-]0(x|X).hexdigits[(p|P)[+|-]digits]

The substring contains no characters if str is empty, consists entirely of whitespace, or if the first non-whitespace character is
something other than +, -, ., or a digit, and cannot be parsed as infinity or NaN. If the platform does not support NaN, then
NaN is treated as an empty substring. If the substring is empty, no conversion is done, and the value of str is stored in *tail.
Otherwise, the substring is converted, and a pointer to the final string (which will contain at least the terminating null character
of str) is stored in *tail. If you want no assignment to *tail, pass a null pointer as tail. strtof is identical to strtod
except for its return type.

This implementation returns the nearest machine number to the input decimal string. Ties are broken by using the IEEE round-
even rule. However, strtof is currently subject to double rounding errors.

The alternate function _strtod_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

strtod returns the converted substring value, if any. If no conversion could be performed, 0 is returned. If the correct value
is out of the range of representable values, plus or minus HUGE_VAL is returned, and ERANGE is stored in errno. If the correct
value would cause underflow, 0 is returned and ERANGE is stored in errno.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

1.37 strtol

strtol, _strtol_r — string to long

Synopsis

#include <stdlib.h>

long strtol(const char *restrict s, char **restrict ptr, int base);
long _strtol_r(void *reent, const char *restrict s, char **restrict ptr, int base);

The Red Hat newlib C Library 26 / 229

Description

The function strtol converts the string *s to a long. First, it breaks down the string into three parts: leading whitespace,
which is ignored; a subject string consisting of characters resembling an integer in the radix specified by base; and a trailing
portion consisting of zero or more unparseable characters, and always including the terminating null character. Then, it attempts
to convert the subject string into a long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C integer constant: an optional sign, a possible `0x’
indicating a hexadecimal base, and a number. If base is between 2 and 36, the expected form of the subject is a sequence of
letters and digits representing an integer in the radix specified by base, with an optional plus or minus sign. The letters a--z (or,
equivalently, A--Z) are used to signify values from 10 to 35; only letters whose ascribed values are less than base are permitted.
If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected form, starting with the first non-
whitespace character. If the string is empty or consists entirely of whitespace, or if the first non-whitespace character is not a
permissible letter or digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtol attempts to determine the radix from the input string.
A string with a leading 0x is treated as a hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as described above. If the subject string
begins with a minus sign, the value is negated. Finally, a pointer to the first character past the converted subject string is stored
in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and the value of s is stored in ptr (if ptr
is not NULL).

The alternate function _strtol_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

strtol returns the converted value, if any. If no conversion was made, 0 is returned.

strtol returns LONG_MAX or LONG_MIN if the magnitude of the converted value is too large, and sets errno to ERANGE.

Portability

strtol is ANSI.

No supporting OS subroutines are required.

1.38 strtoll

strtoll, _strtoll_r — string to long long

Synopsis

#include <stdlib.h>

long long strtoll(const char *restrict s, char **restrict ptr, int base);
long long _strtoll_r(void *reent, const char *restrict s, char **restrict ptr, int base);

The Red Hat newlib C Library 27 / 229

Description

The function strtoll converts the string *s to a long long. First, it breaks down the string into three parts: leading
whitespace, which is ignored; a subject string consisting of characters resembling an integer in the radix specified by base; and
a trailing portion consisting of zero or more unparseable characters, and always including the terminating null character. Then, it
attempts to convert the subject string into a long long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C integer constant: an optional sign, a possible `0x’
indicating a hexadecimal base, and a number. If base is between 2 and 36, the expected form of the subject is a sequence of
letters and digits representing an integer in the radix specified by base, with an optional plus or minus sign. The letters a--z (or,
equivalently, A--Z) are used to signify values from 10 to 35; only letters whose ascribed values are less than base are permitted.
If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected form, starting with the first non-
whitespace character. If the string is empty or consists entirely of whitespace, or if the first non-whitespace character is not a
permissible letter or digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoll attempts to determine the radix from the input string.
A string with a leading 0x is treated as a hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as described above. If the subject string
begins with a minus sign, the value is negated. Finally, a pointer to the first character past the converted subject string is stored
in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and the value of s is stored in ptr (if ptr
is not NULL).

The alternate function _strtoll_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

strtoll returns the converted value, if any. If no conversion was made, 0 is returned.

strtoll returns LONG_LONG_MAX or LONG_LONG_MIN if the magnitude of the converted value is too large, and sets errno
to ERANGE.

Portability

strtoll is ANSI.

No supporting OS subroutines are required.

1.39 strtoul

strtoul, _strtoul_r — string to unsigned long

Synopsis

#include <stdlib.h>

unsigned long strtoul(const char *restrict s, char **restrict ptr, int base);
unsigned long _strtoul_r(void *reent, const char *restrict s, char **restrict ptr, int base);

The Red Hat newlib C Library 28 / 229

Description

The function strtoul converts the string *s to an unsigned long. First, it breaks down the string into three parts: leading
whitespace, which is ignored; a subject string consisting of the digits meaningful in the radix specified by base (for example,
0 through 7 if the value of base is 8); and a trailing portion consisting of one or more unparseable characters, which always
includes the terminating null character. Then, it attempts to convert the subject string into an unsigned long integer, and returns
the result.

If the value of base is zero, the subject string is expected to look like a normal C integer constant (save that no optional sign is
permitted): a possible 0x indicating hexadecimal radix, and a number. If base is between 2 and 36, the expected form of the
subject is a sequence of digits (which may include letters, depending on the base) representing an integer in the radix specified
by base. The letters a--z (or A--Z) are used as digits valued from 10 to 35. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected form, starting with the first non-
whitespace character. If the string is empty or consists entirely of whitespace, or if the first non-whitespace character is not a
permissible digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoul attempts to determine the radix from the input string.
A string with a leading 0x is treated as a hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as described above. Finally, a pointer to
the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtoul_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

strtoul returns the converted value, if any. If no conversion was made, 0 is returned.

strtoul returns ULONG_MAX if the magnitude of the converted value is too large, and sets errno to ERANGE.

Portability

strtoul is ANSI.

strtoul requires no supporting OS subroutines.

1.40 strtoull

strtoull, _strtoull_r — string to unsigned long long

Synopsis

#include <stdlib.h>

unsigned long long strtoull(const char *restrict s, char **restrict ptr, int base);
unsigned long long _strtoull_r(void *reent, const char *restrict s, char **restrict ptr, int base);

The Red Hat newlib C Library 29 / 229

Description

The function strtoull converts the string *s to an unsigned long long. First, it breaks down the string into three parts:
leading whitespace, which is ignored; a subject string consisting of the digits meaningful in the radix specified by base (for
example, 0 through 7 if the value of base is 8); and a trailing portion consisting of one or more unparseable characters, which
always includes the terminating null character. Then, it attempts to convert the subject string into an unsigned long long integer,
and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer constant (save that no optional sign is
permitted): a possible 0x indicating hexadecimal radix, and a number. If base is between 2 and 36, the expected form of the
subject is a sequence of digits (which may include letters, depending on the base) representing an integer in the radix specified
by base. The letters a--z (or A--Z) are used as digits valued from 10 to 35. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected form, starting with the first non-
whitespace character. If the string is empty or consists entirely of whitespace, or if the first non-whitespace character is not a
permissible digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, strtoull attempts to determine the radix from the input
string. A string with a leading 0x is treated as a hexadecimal value; a string with a leading 0 and no x is treated as octal; all
other strings are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as described above. Finally,
a pointer to the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _strtoull_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

strtoull returns the converted value, if any. If no conversion was made, 0 is returned.

strtoull returns ULONG_LONG_MAX if the magnitude of the converted value is too large, and sets errno to ERANGE.

Portability

strtoull is ANSI.

strtoull requires no supporting OS subroutines.

1.41 wcsrtombs

wcsrtombs, wcsnrtombs, _wcsrtombs_r, _wcsnrtombs_r — convert a wide-character string to a character string

Synopsis

#include <wchar.h>

size_t wcsrtombs(char *__restrict dst, const wchar_t **__restrict src, size_t len, mbstate_t *__restrict ps);

#include <wchar.h>

size_t _wcsrtombs_r(struct _reent *ptr, char *dst, const wchar_t **src, size_t len, mbstate_t *ps);

#include <wchar.h>

The Red Hat newlib C Library 30 / 229

size_t wcsnrtombs(char *__restrict dst, const wchar_t **__restrict src, size_t nwc, size_t len, mbstate_t *__restrict ps);

#include <wchar.h>

size_t _wcsnrtombs_r(struct _reent *ptr, char *dst, const wchar_t **src, size_t nwc, size_t len, mbstate_t *ps);

Description

The wcsrtombs function converts a string of wide characters indirectly pointed to by src to a corresponding multibyte char-
acter string stored in the array pointed to by dst. No more than len bytes are written to dst.

If dst is NULL, no characters are stored.

If dst is not NULL, the pointer pointed to by src is updated to point to the character after the one that conversion stopped at.
If conversion stops because a null character is encountered, *src is set to NULL.

The mbstate_t argument, ps, is used to keep track of the shift state. If it is NULL, wcsrtombs uses an internal, static mbstate_t
object, which is initialized to the initial conversion state at program startup.

The wcsnrtombs function behaves identically to wcsrtombs, except that conversion stops after reading at most nwc charac-
ters from the buffer pointed to by src.

Returns

The wcsrtombs and wcsnrtombs functions return the number of bytes stored in the array pointed to by dst (not including
any terminating null), if successful, otherwise it returns (size_t)-1.

Portability

wcsrtombs is defined by C99 standard. wcsnrtombs is defined by the POSIX.1-2008 standard.

1.42 wcstod

wcstod, wcstof, _wcstod_r, _wcstof_r — wide char string to double or float

Synopsis

#include <stdlib.h>

double wcstod(const wchar_t *__restrict str, wchar_t **__restrict tail);
float wcstof(const wchar_t *__restrict str, wchar_t **__restrict tail);
double _wcstod_r(void *reent, const wchar_t *str, wchar_t **tail);
float _wcstof_r(void *reent, const wchar_t *str, wchar_t **tail);

Description

The function wcstod parses the wide character string str, producing a substring which can be converted to a double value.
The substring converted is the longest initial subsequence of str, beginning with the first non-whitespace character, that has one
of these formats:

The Red Hat newlib C Library 31 / 229

[+|-]digits[.[digits]][(e|E)[+|-]digits]
[+|-].digits[(e|E)[+|-]digits]
[+|-](i|I)(n|N)(f|F)[(i|I)(n|N)(i|I)(t|T)(y|Y)]
[+|-](n|N)(a|A)(n|N)[<(>[hexdigits]<)>]
[+|-]0(x|X)hexdigits[.[hexdigits]][(p|P)[+|-]digits]
[+|-]0(x|X).hexdigits[(p|P)[+|-]digits]

The substring contains no characters if str is empty, consists entirely of whitespace, or if the first non-whitespace character is
something other than +, -, ., or a digit, and cannot be parsed as infinity or NaN. If the platform does not support NaN, then
NaN is treated as an empty substring. If the substring is empty, no conversion is done, and the value of str is stored in *tail.
Otherwise, the substring is converted, and a pointer to the final string (which will contain at least the terminating null character
of str) is stored in *tail. If you want no assignment to *tail, pass a null pointer as tail. wcstof is identical to wcstod
except for its return type.

This implementation returns the nearest machine number to the input decimal string. Ties are broken by using the IEEE round-
even rule. However, wcstof is currently subject to double rounding errors.

The alternate functions _wcstod_r and _wcstof_r are reentrant versions of wcstod and wcstof, respectively. The extra
argument reent is a pointer to a reentrancy structure.

Returns

Return the converted substring value, if any. If no conversion could be performed, 0 is returned. If the correct value is out of the
range of representable values, plus or minus HUGE_VAL is returned, and ERANGE is stored in errno. If the correct value would
cause underflow, 0 is returned and ERANGE is stored in errno.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

1.43 wcstol

wcstol, _wcstol_r — wide string to long

Synopsis

#include <wchar.h>

long wcstol(const wchar_t *__restrict s, wchar_t **__restrict ptr, int base);
long _wcstol_r(void *reent, const wchar_t *s, wchar_t **ptr, int base);

Description

The function wcstol converts the wide string *s to a long. First, it breaks down the string into three parts: leading whitespace,
which is ignored; a subject string consisting of characters resembling an integer in the radix specified by base; and a trailing
portion consisting of zero or more unparseable characters, and always including the terminating null character. Then, it attempts
to convert the subject string into a long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C integer constant: an optional sign, a possible `0x’
indicating a hexadecimal base, and a number. If base is between 2 and 36, the expected form of the subject is a sequence of
letters and digits representing an integer in the radix specified by base, with an optional plus or minus sign. The letters a--z (or,
equivalently, A--Z) are used to signify values from 10 to 35; only letters whose ascribed values are less than base are permitted.
If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected form, starting with the first non-
whitespace character. If the string is empty or consists entirely of whitespace, or if the first non-whitespace character is not a
permissible letter or digit, the subject string is empty.

The Red Hat newlib C Library 32 / 229

If the subject string is acceptable, and the value of base is zero, wcstol attempts to determine the radix from the input string.
A string with a leading 0x is treated as a hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as described above. If the subject string
begins with a minus sign, the value is negated. Finally, a pointer to the first character past the converted subject string is stored
in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is performed and the value of s is stored in ptr (if ptr
is not NULL).

The alternate function _wcstol_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

wcstol returns the converted value, if any. If no conversion was made, 0 is returned.

wcstol returns LONG_MAX or LONG_MIN if the magnitude of the converted value is too large, and sets errno to ERANGE.

Portability

wcstol is ANSI.

No supporting OS subroutines are required.

1.44 wcstoll

wcstoll, _wcstoll_r — wide string to long long

Synopsis

#include <wchar.h>

long long wcstoll(const wchar_t *__restrict s, wchar_t **__restrict ptr, int base);
long long _wcstoll_r(void *reent, const wchar_t *s, wchar_t **ptr, int base);

Description

The function wcstoll converts the wide string *s to a long long. First, it breaks down the string into three parts: leading
whitespace, which is ignored; a subject string consisting of characters resembling an integer in the radix specified by base; and
a trailing portion consisting of zero or more unparseable characters, and always including the terminating null character. Then, it
attempts to convert the subject string into a long long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C integer constant: an optional sign, a possible `0x’
indicating a hexadecimal base, and a number. If base is between 2 and 36, the expected form of the subject is a sequence of
letters and digits representing an integer in the radix specified by base, with an optional plus or minus sign. The letters a--z (or,
equivalently, A--Z) are used to signify values from 10 to 35; only letters whose ascribed values are less than base are permitted.
If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected form, starting with the first non-
whitespace character. If the string is empty or consists entirely of whitespace, or if the first non-whitespace character is not a
permissible letter or digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoll attempts to determine the radix from the input string.
A string with a leading 0x is treated as a hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as described above. If the subject string
begins with a minus sign, the value is negated. Finally, a pointer to the first character past the converted subject string is stored
in ptr, if ptr is not NULL.

The Red Hat newlib C Library 33 / 229

If the subject string is empty (or not in acceptable form), no conversion is performed and the value of s is stored in ptr (if ptr
is not NULL).

The alternate function _wcstoll_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

wcstoll returns the converted value, if any. If no conversion was made, 0 is returned.

wcstoll returns LONG_LONG_MAX or LONG_LONG_MIN if the magnitude of the converted value is too large, and sets errno
to ERANGE.

Portability

wcstoll is ANSI.

No supporting OS subroutines are required.

1.45 wcstoul

wcstoul, _wcstoul_r — wide string to unsigned long

Synopsis

#include <wchar.h>

unsigned long wcstoul(const wchar_t *__restrict s, wchar_t **__restrict ptr, int base);
unsigned long _wcstoul_r(void *reent, const wchar_t *s, wchar_t **ptr, int base);

Description

The function wcstoul converts the wide string *s to an unsigned long. First, it breaks down the string into three parts:
leading whitespace, which is ignored; a subject string consisting of the digits meaningful in the radix specified by base (for
example, 0 through 7 if the value of base is 8); and a trailing portion consisting of one or more unparseable characters, which
always includes the terminating null character. Then, it attempts to convert the subject string into an unsigned long integer, and
returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer constant (save that no optional sign is
permitted): a possible 0x indicating hexadecimal radix, and a number. If base is between 2 and 36, the expected form of the
subject is a sequence of digits (which may include letters, depending on the base) representing an integer in the radix specified
by base. The letters a--z (or A--Z) are used as digits valued from 10 to 35. If base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected form, starting with the first non-
whitespace character. If the string is empty or consists entirely of whitespace, or if the first non-whitespace character is not a
permissible digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoul attempts to determine the radix from the input string.
A string with a leading 0x is treated as a hexadecimal value; a string with a leading 0 and no x is treated as octal; all other strings
are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as described above. Finally, a pointer to
the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoul_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

The Red Hat newlib C Library 34 / 229

Returns

wcstoul returns the converted value, if any. If no conversion was made, 0 is returned.

wcstoul returns ULONG_MAX if the magnitude of the converted value is too large, and sets errno to ERANGE.

Portability

wcstoul is ANSI.

wcstoul requires no supporting OS subroutines.

1.46 wcstoull

wcstoull, _wcstoull_r — wide string to unsigned long long

Synopsis

#include <wchar.h>

unsigned long long wcstoull(const wchar_t *__restrict s, wchar_t **__restrict ptr, int base);
unsigned long long _wcstoull_r(void *reent, const wchar_t *s, wchar_t **ptr, int base);

Description

The function wcstoull converts the wide string *s to an unsigned long long. First, it breaks down the string into three
parts: leading whitespace, which is ignored; a subject string consisting of the digits meaningful in the radix specified by base
(for example, 0 through 7 if the value of base is 8); and a trailing portion consisting of one or more unparseable characters,
which always includes the terminating null character. Then, it attempts to convert the subject string into an unsigned long long
integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a normal C integer constant: an optional sign (+ or -),
a possible 0x indicating hexadecimal radix or a possible <0> indicating octal radix, and a number. If base is between 2 and
36, the expected form of the subject is a sequence of digits (which may include letters, depending on the base) representing an
integer in the radix specified by base. The letters a--z (or A--Z) are used as digits valued from 10 to 35. If base is 16, a leading
0x is permitted.

The subject sequence is the longest initial sequence of the input string that has the expected form, starting with the first non-
whitespace character. If the string is empty or consists entirely of whitespace, or if the first non-whitespace character is not a
permissible digit, the subject string is empty.

If the subject string is acceptable, and the value of base is zero, wcstoull attempts to determine the radix from the input
string. A string with a leading 0x is treated as a hexadecimal value; a string with a leading 0 and no x is treated as octal; all
other strings are treated as decimal. If base is between 2 and 36, it is used as the conversion radix, as described above. Finally,
a pointer to the first character past the converted subject string is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in acceptable form), no conversion is performed and
the value of s is stored in ptr (if ptr is not NULL).

The alternate function _wcstoull_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

wcstoull returns 0 and sets errno to EINVAL if the value of base is not supported.

wcstoull returns the converted value, if any. If no conversion was made, 0 is returned.

wcstoull returns ULLONG_MAX if the magnitude of the converted value is too large, and sets errno to ERANGE.

The Red Hat newlib C Library 35 / 229

Portability

wcstoull is ANSI.

wcstoull requires no supporting OS subroutines.

1.47 system

system, _system_r — execute command string

Synopsis

#include <stdlib.h>

int system(char *s);
int _system_r(void *reent, char *s);

Description

Use system to pass a command string *s to /bin/sh on your system, and wait for it to finish executing.

Use ``system(NULL)” to test whether your system has /bin/sh available.

The alternate function _system_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

system(NULL) returns a non-zero value if /bin/sh is available, and 0 if it is not.

With a command argument, the result of system is the exit status returned by /bin/sh.

Portability

ANSI C requires system, but leaves the nature and effects of a command processor undefined. ANSI C does, however, specify
that system(NULL) return zero or nonzero to report on the existence of a command processor.

POSIX.2 requires system, and requires that it invoke a sh. Where sh is found is left unspecified.

Supporting OS subroutines required: _exit, _execve, _fork_r, _wait_r.

1.48 utoa

utoa — unsigned integer to string

Synopsis

#include <stdlib.h>

char *utoa(unsigned value, char *str, int base);
char *__utoa(unsigned value, char *str, int base);

The Red Hat newlib C Library 36 / 229

Description

utoa converts the unsigned integer [<value>] to a null-terminated string using the specified base, which must be between 2 and
36, inclusive. str should be an array long enough to contain the converted value, which in the worst case is sizeof(int)*8+1
bytes.

Returns

A pointer to the string, str, or NULL if base is invalid.

Portability

utoa is non-ANSI.

No supporting OS subroutine calls are required.

1.49 wcstombs

wcstombs — minimal wide char string to multibyte string converter

Synopsis

#include <stdlib.h>

size_t wcstombs(char *restrict s, const wchar_t *restrict pwc, size_t n);

Description

When _MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation of wcstombs. In this case, all
wide-characters are expected to represent single bytes and so are converted simply by casting to char.

When _MB_CAPABLE is defined, this routine calls _wcstombs_r to perform the conversion, passing a state variable to allow
state dependent decoding. The result is based on the locale setting which may be restricted to a defined set of locales.

Returns

This implementation of wcstombs returns 0 if s is NULL or is the empty string; it returns -1 if _MB_CAPABLE and one of
the wide-char characters does not represent a valid multi-byte character; otherwise it returns the minimum of: n or the number
of bytes that are transferred to s, not including the nul terminator.

If the return value is -1, the state of the pwc string is indeterminate. If the input has a length of 0, the output string will be
modified to contain a wchar_t nul terminator if n > 0.

Portability

wcstombs is required in the ANSI C standard. However, the precise effects vary with the locale.

wcstombs requires no supporting OS subroutines.

1.50 wctomb

wctomb — minimal wide char to multibyte converter

The Red Hat newlib C Library 37 / 229

Synopsis

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

Description

When _MB_CAPABLE is not defined, this is a minimal ANSI-conforming implementation of wctomb. The only ``wide char-
acters” recognized are single bytes, and they are ``converted” to themselves.

When _MB_CAPABLE is defined, this routine calls _wctomb_r to perform the conversion, passing a state variable to allow
state dependent decoding. The result is based on the locale setting which may be restricted to a defined set of locales.

Each call to wctomb modifies *s unless s is a null pointer or _MB_CAPABLE is defined and wchar is invalid.

Returns

This implementation of wctomb returns 0 if s is NULL; it returns -1 if _MB_CAPABLE is enabled and the wchar is not a valid
multi-byte character, it returns 1 if _MB_CAPABLE is not defined or the wchar is in reality a single byte character, otherwise it
returns the number of bytes in the multi-byte character.

Portability

wctomb is required in the ANSI C standard. However, the precise effects vary with the locale.

wctomb requires no supporting OS subroutines.

The Red Hat newlib C Library 38 / 229

Chapter 2

Character Type Macros and Functions (ctype.
h)

This chapter groups macros (which are also available as subroutines) to classify characters into several categories (alphabetic,
numeric, control characters, whitespace, and so on), or to perform simple character mappings.

The header file ctype.h defines the macros.

2.1 isalnum

isalnum — alphanumeric character predicate

Synopsis

#include <ctype.h>

int isalnum(int c);

Description

isalnum is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for alphabetic or
numeric ASCII characters, and 0 for other arguments. It is defined only if c is representable as an unsigned char or if c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef isalnum’.

Returns

isalnum returns non-zero if c is a letter (a--z or A--Z) or a digit (0--9).

Portability

isalnum is ANSI C.

No OS subroutines are required.

The Red Hat newlib C Library 39 / 229

2.2 isalpha

isalpha — alphabetic character predicate

Synopsis

#include <ctype.h>

int isalpha(int c);

Description

isalpha is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero when c represents
an alphabetic ASCII character, and 0 otherwise. It is defined only if c is representable as an unsigned char or if c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef isalpha’.

Returns

isalpha returns non-zero if c is a letter (A--Z or a--z).

Portability

isalpha is ANSI C.

No supporting OS subroutines are required.

2.3 isascii

isascii — ASCII character predicate

Synopsis

#include <ctype.h>

int isascii(int c);

Description

isascii is a macro which returns non-zero when c is an ASCII character, and 0 otherwise. It is defined for all integer values.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef isascii’.

Returns

isascii returns non-zero if the low order byte of c is in the range 0 to 127 (0x00--0x7F).

The Red Hat newlib C Library 40 / 229

Portability

isascii is ANSI C.

No supporting OS subroutines are required.

2.4 isblank

isblank — blank character predicate

Synopsis

#include <ctype.h>

int isblank(int c);

Description

isblank is a function which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for blank
characters, and 0 for other characters. It is defined only if c is representable as an unsigned char or if c is EOF.

Returns

isblank returns non-zero if c is a blank character.

Portability

isblank is C99.

No supporting OS subroutines are required.

2.5 iscntrl

iscntrl — control character predicate

Synopsis

#include <ctype.h>

int iscntrl(int c);

Description

iscntrl is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for control
characters, and 0 for other characters. It is defined only if c is representable as an unsigned char or if c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef iscntrl’.

The Red Hat newlib C Library 41 / 229

Returns

iscntrl returns non-zero if c is a delete character or ordinary control character (0x7F or 0x00--0x1F).

Portability

iscntrl is ANSI C.

No supporting OS subroutines are required.

2.6 isdigit

isdigit — decimal digit predicate

Synopsis

#include <ctype.h>

int isdigit(int c);

Description

isdigit is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for decimal
digits, and 0 for other characters. It is defined only if c is representable as an unsigned char or if c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef isdigit’.

Returns

isdigit returns non-zero if c is a decimal digit (0--9).

Portability

isdigit is ANSI C.

No supporting OS subroutines are required.

2.7 islower

islower — lowercase character predicate

Synopsis

#include <ctype.h>

int islower(int c);

The Red Hat newlib C Library 42 / 229

Description

islower is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for minuscules
(lowercase alphabetic characters), and 0 for other characters. It is defined only if c is representable as an unsigned char or if c is
EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef islower’.

Returns

islower returns non-zero if c is a lowercase letter (a--z).

Portability

islower is ANSI C.

No supporting OS subroutines are required.

2.8 isprint

isprint, isgraph — printable character predicates

Synopsis

#include <ctype.h>

int isprint(int c);
int isgraph(int c);

Description

isprint is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for printable
characters, and 0 for other character arguments. It is defined only if c is representable as an unsigned char or if c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining either macro using `#undef isprint’ or `#
undef isgraph’.

Returns

isprint returns non-zero if c is a printing character, (0x20--0x7E). isgraph behaves identically to isprint, except that
the space character (0x20) is excluded.

Portability

isprint and isgraph are ANSI C.

No supporting OS subroutines are required.

2.9 ispunct

ispunct — punctuation character predicate

The Red Hat newlib C Library 43 / 229

Synopsis

#include <ctype.h>

int ispunct(int c);

Description

ispunct is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for printable
punctuation characters, and 0 for other characters. It is defined only if c is representable as an unsigned char or if c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef ispunct’.

Returns

ispunct returns non-zero if c is a printable punctuation character (isgraph(c) && !isalnum(c)).

Portability

ispunct is ANSI C.

No supporting OS subroutines are required.

2.10 isspace

isspace — whitespace character predicate

Synopsis

#include <ctype.h>

int isspace(int c);

Description

isspace is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for whitespace
characters, and 0 for other characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef isspace’.

Returns

isspace returns non-zero if c is a space, tab, carriage return, new line, vertical tab, or formfeed (0x09--0x0D, 0x20).

Portability

isspace is ANSI C.

No supporting OS subroutines are required.

The Red Hat newlib C Library 44 / 229

2.11 isupper

isupper — uppercase character predicate

Synopsis

#include <ctype.h>

int isupper(int c);

Description

isupper is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for uppercase
letters (A--Z), and 0 for other characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef isupper’.

Returns

isupper returns non-zero if c is a uppercase letter (A-Z).

Portability

isupper is ANSI C.

No supporting OS subroutines are required.

2.12 isxdigit

isxdigit — hexadecimal digit predicate

Synopsis

#include <ctype.h>

int isxdigit(int c);

Description

isxdigit is a macro which classifies ASCII integer values by table lookup. It is a predicate returning non-zero for hexadecimal
digits, and 0 for other characters. It is defined only if c is representable as an unsigned char or if c is EOF.

You can use a compiled subroutine instead of the macro definition by undefining the macro using `#undef isxdigit’.

Returns

isxdigit returns non-zero if c is a hexadecimal digit (0--9, a--f, or A--F).

The Red Hat newlib C Library 45 / 229

Portability

isxdigit is ANSI C.

No supporting OS subroutines are required.

2.13 toascii

toascii — force integers to ASCII range

Synopsis

#include <ctype.h>

int toascii(int c);

Description

toascii is a macro which coerces integers to the ASCII range (0--127) by zeroing any higher-order bits.

You can use a compiled subroutine instead of the macro definition by undefining this macro using `#undef toascii’.

Returns

toascii returns integers between 0 and 127.

Portability

toascii is not ANSI C.

No supporting OS subroutines are required.

2.14 tolower

tolower, _tolower — translate characters to lowercase

Synopsis

#include <ctype.h>

int tolower(int c);
int _tolower(int c);

Description

tolower is a macro which converts uppercase characters to lowercase, leaving all other characters unchanged. It is only defined
when c is an integer in the range EOF to 255.

You can use a compiled subroutine instead of the macro definition by undefining this macro using `#undef tolower’.

_tolower performs the same conversion as tolower, but should only be used when c is known to be an uppercase character
(A--Z).

The Red Hat newlib C Library 46 / 229

Returns

tolower returns the lowercase equivalent of c when it is a character between A and Z, and c otherwise.

_tolower returns the lowercase equivalent of c when it is a character between A and Z. If c is not one of these characters, the
behaviour of _tolower is undefined.

Portability

tolower is ANSI C. _tolower is not recommended for portable programs.

No supporting OS subroutines are required.

2.15 toupper

toupper, _toupper — translate characters to uppercase

Synopsis

#include <ctype.h>

int toupper(int c);
int _toupper(int c);

Description

toupper is a macro which converts lowercase characters to uppercase, leaving all other characters unchanged. It is only defined
when c is an integer in the range EOF to 255.

You can use a compiled subroutine instead of the macro definition by undefining this macro using `#undef toupper’.

_toupper performs the same conversion as toupper, but should only be used when c is known to be a lowercase character
(a--z).

Returns

toupper returns the uppercase equivalent of c when it is a character between a and z, and c otherwise.

_toupper returns the uppercase equivalent of c when it is a character between a and z. If c is not one of these characters, the
behaviour of _toupper is undefined.

Portability

toupper is ANSI C. _toupper is not recommended for portable programs.

No supporting OS subroutines are required.

2.16 iswalnum

iswalnum — alphanumeric wide character test

The Red Hat newlib C Library 47 / 229

Synopsis

#include <wctype.h>

int iswalnum(wint_t c);

Description

iswalnum is a function which classifies wide-character values that are alphanumeric.

Returns

iswalnum returns non-zero if c is a alphanumeric wide character.

Portability

iswalnum is C99.

No supporting OS subroutines are required.

2.17 iswalpha

iswalpha — alphabetic wide character test

Synopsis

#include <wctype.h>

int iswalpha(wint_t c);

Description

iswalpha is a function which classifies wide-character values that are alphabetic.

Returns

iswalpha returns non-zero if c is an alphabetic wide character.

Portability

iswalpha is C99.

No supporting OS subroutines are required.

2.18 iswcntrl

iswcntrl — control wide character test

The Red Hat newlib C Library 48 / 229

Synopsis

#include <wctype.h>

int iswcntrl(wint_t c);

Description

iswcntrl is a function which classifies wide-character values that are categorized as control characters.

Returns

iswcntrl returns non-zero if c is a control wide character.

Portability

iswcntrl is C99.

No supporting OS subroutines are required.

2.19 iswblank

iswblank — blank wide character test

Synopsis

#include <wctype.h>

int iswblank(wint_t c);

Description

iswblank is a function which classifies wide-character values that are categorized as blank.

Returns

iswblank returns non-zero if c is a blank wide character.

Portability

iswblank is C99.

No supporting OS subroutines are required.

2.20 iswdigit

iswdigit — decimal digit wide character test

The Red Hat newlib C Library 49 / 229

Synopsis

#include <wctype.h>

int iswdigit(wint_t c);

Description

iswdigit is a function which classifies wide-character values that are decimal digits.

Returns

iswdigit returns non-zero if c is a decimal digit wide character.

Portability

iswdigit is C99.

No supporting OS subroutines are required.

2.21 iswgraph

iswgraph — graphic wide character test

Synopsis

#include <wctype.h>

int iswgraph(wint_t c);

Description

iswgraph is a function which classifies wide-character values that are graphic.

Returns

iswgraph returns non-zero if c is a graphic wide character.

Portability

iswgraph is C99.

No supporting OS subroutines are required.

2.22 iswlower

iswlower — lowercase wide character test

The Red Hat newlib C Library 50 / 229

Synopsis

#include <wctype.h>

int iswlower(wint_t c);

Description

iswlower is a function which classifies wide-character values that have uppercase translations.

Returns

iswlower returns non-zero if c is a lowercase wide character.

Portability

iswlower is C99.

No supporting OS subroutines are required.

2.23 iswprint

iswprint — printable wide character test

Synopsis

#include <wctype.h>

int iswprint(wint_t c);

Description

iswprint is a function which classifies wide-character values that are printable.

Returns

iswprint returns non-zero if c is a printable wide character.

Portability

iswprint is C99.

No supporting OS subroutines are required.

2.24 iswpunct

iswpunct — punctuation wide character test

The Red Hat newlib C Library 51 / 229

Synopsis

#include <wctype.h>

int iswpunct(wint_t c);

Description

iswpunct is a function which classifies wide-character values that are punctuation.

Returns

iswpunct returns non-zero if c is a punctuation wide character.

Portability

iswpunct is C99.

No supporting OS subroutines are required.

2.25 iswspace

iswspace — whitespace wide character test

Synopsis

#include <wctype.h>

int iswspace(wint_t c);

Description

iswspace is a function which classifies wide-character values that are categorized as whitespace.

Returns

iswspace returns non-zero if c is a whitespace wide character.

Portability

iswspace is C99.

No supporting OS subroutines are required.

2.26 iswupper

iswupper — uppercase wide character test

The Red Hat newlib C Library 52 / 229

Synopsis

#include <wctype.h>

int iswupper(wint_t c);

Description

iswupper is a function which classifies wide-character values that have uppercase translations.

Returns

iswupper returns non-zero if c is a uppercase wide character.

Portability

iswupper is C99.

No supporting OS subroutines are required.

2.27 iswxdigit

iswxdigit — hexadecimal digit wide character test

Synopsis

#include <wctype.h>

int iswxdigit(wint_t c);

Description

iswxdigit is a function which classifies wide character values that are hexadecimal digits.

Returns

iswxdigit returns non-zero if c is a hexadecimal digit wide character.

Portability

iswxdigit is C99.

No supporting OS subroutines are required.

2.28 iswctype

iswctype — extensible wide-character test

The Red Hat newlib C Library 53 / 229

Synopsis

#include <wctype.h>

int iswctype(wint_t c, wctype_t desc);

Description

iswctype is a function which classifies wide-character values using the wide-character test specified by desc.

Returns

iswctype returns non-zero if and only if c matches the test specified by desc. If desc is unknown, zero is returned.

Portability

iswctype is C99.

No supporting OS subroutines are required.

2.29 wctype

wctype — get wide-character classification type

Synopsis

#include <wctype.h>

wctype_t wctype(const char *c);

Description

wctype is a function which takes a string c and gives back the appropriate wctype_t type value associated with the string, if
one exists. The following values are guaranteed to be recognized: "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower",
"print", "punct", "space", "upper", and "xdigit".

Returns

wctype returns 0 and sets errno to EINVAL if the given name is invalid. Otherwise, it returns a valid non-zero wctype_t
value.

Portability

wctype is C99.

No supporting OS subroutines are required.

2.30 towlower

towlower — translate wide characters to lowercase

The Red Hat newlib C Library 54 / 229

Synopsis

#include <wctype.h>

wint_t towlower(wint_t c);

Description

towlower is a function which converts uppercase wide characters to lowercase, leaving all other characters unchanged.

Returns

towlower returns the lowercase equivalent of c when it is a uppercase wide character; otherwise, it returns the input character.

Portability

towlower is C99.

No supporting OS subroutines are required.

2.31 towupper

towupper — translate wide characters to uppercase

Synopsis

#include <wctype.h>

wint_t towupper(wint_t c);

Description

towupper is a function which converts lowercase wide characters to uppercase, leaving all other characters unchanged.

Returns

towupper returns the uppercase equivalent of c when it is a lowercase wide character, otherwise, it returns the input character.

Portability

towupper is C99.

No supporting OS subroutines are required.

2.32 towctrans

towctrans — extensible wide-character translation

The Red Hat newlib C Library 55 / 229

Synopsis

#include <wctype.h>

wint_t towctrans(wint_t c, wctrans_t w);

Description

towctrans is a function which converts wide characters based on a specified translation type w. If the translation type is invalid
or cannot be applied to the current character, no change to the character is made.

Returns

towctrans returns the translated equivalent of c when it is a valid for the given translation, otherwise, it returns the input
character. When the translation type is invalid, errno is set EINVAL.

Portability

towctrans is C99.

No supporting OS subroutines are required.

2.33 wctrans

wctrans — get wide-character translation type

Synopsis

#include <wctype.h>

wctrans_t wctrans(const char *c);

Description

wctrans is a function which takes a string c and gives back the appropriate wctrans_t type value associated with the string, if
one exists. The following values are guaranteed to be recognized: "tolower" and "toupper".

Returns

wctrans returns 0 and sets errno to EINVAL if the given name is invalid. Otherwise, it returns a valid non-zero wctrans_t
value.

Portability

wctrans is C99.

No supporting OS subroutines are required.

The Red Hat newlib C Library 56 / 229

Chapter 3

Input and Output (stdio.h)

This chapter comprises functions to manage files or other input/output streams. Among these functions are subroutines to
generate or scan strings according to specifications from a format string.

The underlying facilities for input and output depend on the host system, but these functions provide a uniform interface.

The corresponding declarations are in stdio.h.

The reentrant versions of these functions use macros

_stdin_r(reent) _stdout_r(reent) _stderr_r(reent)

instead of the globals stdin, stdout, and stderr. The argument reent is a pointer to a reentrancy structure.

3.1 clearerr

clearerr, clearerr_unlocked — clear file or stream error indicator

Synopsis

#include <stdio.h>

void clearerr(FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

void clearerr_unlocked(FILE *fp);

Description

The stdio functions maintain an error indicator with each file pointer fp, to record whether any read or write errors have
occurred on the associated file or stream. Similarly, it maintains an end-of-file indicator to record whether there is no more data
in the file.

Use clearerr to reset both of these indicators.

See ferror and feof to query the two indicators.

clearerr_unlocked is a non-thread-safe version of clearerr. clearerr_unlockedmay only safely be used within a
scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program
if and only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the
flockfile() or ftrylockfile() functions. If threads are disabled, then clearerr_unlocked is equivalent to clearerr.

The Red Hat newlib C Library 57 / 229

Returns

clearerr does not return a result.

Portability

ANSI C requires clearerr.

clearerr_unlocked is a BSD extension also provided by GNU libc.

No supporting OS subroutines are required.

3.2 diprintf

diprintf, vdiprintf, _diprintf_r, _vdiprintf_r — print to a file descriptor (integer only)

Synopsis

#include <stdio.h>

#include <stdarg.h>

int diprintf(int fd, const char *format);(...);
int vdiprintf(int fd, const char *format, va_list ap);
int _diprintf_r(struct _reent *ptr, int fd, const char *format);(...);
int _vdiprintf_r(struct _reent *ptr, int fd, const char *format, va_list ap);

Description

diprintf and vdiprintf are similar to dprintf and vdprintf, except that only integer format specifiers are processed.

The functions _diprintf_r and _vdiprintf_r are simply reentrant versions of the functions above.

Returns

Similar to dprintf and vdprintf.

Portability

This set of functions is an integer-only extension, and is not portable.

Supporting OS subroutines required: sbrk, write.

3.3 dprintf

dprintf, vdprintf, _dprintf_r, _vdprintf_r — print to a file descriptor

The Red Hat newlib C Library 58 / 229

Synopsis

#include <stdio.h>

#include <stdarg.h>

int dprintf(int fd, const char *restrict format);(...);
int vdprintf(int fd, const char *restrict format, va_list ap);
int _dprintf_r(struct _reent *ptr, int fd, const char *restrict format);(...);
int _vdprintf_r(struct _reent *ptr, int fd, const char *restrict format, va_list ap);

Description

dprintf and vdprintf allow printing a format, similarly to printf, but write to a file descriptor instead of to a FILE
stream.

The functions _dprintf_r and _vdprintf_r are simply reentrant versions of the functions above.

Returns

The return value and errors are exactly as for write, except that errno may also be set to ENOMEM if the heap is exhausted.

Portability

This function is originally a GNU extension in glibc and is not portable.

Supporting OS subroutines required: sbrk, write.

3.4 fclose

fclose, _fclose_r — close a file

Synopsis

#include <stdio.h>

int fclose(FILE *fp);
int _fclose_r(struct _reent *reent, FILE *fp);

Description

If the file or stream identified by fp is open, fclose closes it, after first ensuring that any pending data is written (by calling
fflush(fp)).

The alternate function _fclose_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

fclose returns 0 if successful (including when fp is NULL or not an open file); otherwise, it returns EOF.

The Red Hat newlib C Library 59 / 229

Portability

fclose is required by ANSI C.

Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.

3.5 fcloseall

fcloseall, _fcloseall_r — close all files

Synopsis

#include <stdio.h>

int fcloseall(void);
int _fcloseall_r(struct _reent *ptr);

Description

fcloseall closes all files in the current reentrancy struct’s domain. The function _fcloseall_r is the same function,
except the reentrancy struct is passed in as the ptr argument.

This function is not recommended as it closes all streams, including the std streams.

Returns

fclose returns 0 if all closes are successful. Otherwise, EOF is returned.

Portability

fcloseall is a glibc extension.

Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.

3.6 fdopen

fdopen, _fdopen_r — turn open file into a stream

Synopsis

#include <stdio.h>

FILE *fdopen(int fd, const char *mode);
FILE *_fdopen_r(struct _reent *reent, int fd, const char *mode);

Description

fdopen produces a file descriptor of type FILE *, from a descriptor for an already-open file (returned, for example, by the
system subroutine open rather than by fopen). The mode argument has the same meanings as in fopen.

The Red Hat newlib C Library 60 / 229

Returns

File pointer or NULL, as for fopen.

Portability

fdopen is ANSI.

3.7 feof

feof, feof_unlocked — test for end of file

Synopsis

#include <stdio.h>

int feof(FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

int feof_unlocked(FILE *fp);

Description

feof tests whether or not the end of the file identified by fp has been reached.

feof_unlocked is a non-thread-safe version of feof. feof_unlocked may only safely be used within a scope protected
by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and only if
they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile() or
ftrylockfile() functions. If threads are disabled, then feof_unlocked is equivalent to feof.

Returns

feof returns 0 if the end of file has not yet been reached; if at end of file, the result is nonzero.

Portability

feof is required by ANSI C.

feof_unlocked is a BSD extension also provided by GNU libc.

No supporting OS subroutines are required.

3.8 ferror

ferror, ferror_unlocked — test whether read/write error has occurred

The Red Hat newlib C Library 61 / 229

Synopsis

#include <stdio.h>

int ferror(FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

int ferror_unlocked(FILE *fp);

Description

The stdio functions maintain an error indicator with each file pointer fp, to record whether any read or write errors have
occurred on the associated file or stream. Use ferror to query this indicator.

See clearerr to reset the error indicator.

ferror_unlocked is a non-thread-safe version of ferror. ferror_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then ferror_unlocked is equivalent to ferror.

Returns

ferror returns 0 if no errors have occurred; it returns a nonzero value otherwise.

Portability

ANSI C requires ferror.

ferror_unlocked is a BSD extension also provided by GNU libc.

No supporting OS subroutines are required.

3.9 fflush

fflush, fflush_unlocked, _fflush_r, _fflush_unlocked_r — flush buffered file output

Synopsis

#include <stdio.h>

int fflush(FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

The Red Hat newlib C Library 62 / 229

int fflush_unlocked(FILE *fp);

#include <stdio.h>

int _fflush_r(struct _reent *reent, FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

int _fflush_unlocked_r(struct _reent *reent, FILE *fp);

Description

The stdio output functions can buffer output before delivering it to the host system, in order to minimize the overhead of
system calls.

Use fflush to deliver any such pending output (for the file or stream identified by fp) to the host system.

If fp is NULL, fflush delivers pending output from all open files.

Additionally, if fp is a seekable input stream visiting a file descriptor, set the position of the file descriptor to match next unread
byte, useful for obeying POSIX semantics when ending a process without consuming all input from the stream.

fflush_unlocked is a non-thread-safe version of fflush. fflush_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fflush_unlocked is equivalent to fflush.

The alternate functions _fflush_r and _fflush_unlocked_r are reentrant versions, where the extra argument reent is
a pointer to a reentrancy structure, and fp must not be NULL.

Returns

fflush returns 0 unless it encounters a write error; in that situation, it returns EOF.

Portability

ANSI C requires fflush. The behavior on input streams is only specified by POSIX, and not all implementations follow POSIX
rules.

fflush_unlocked is a BSD extension also provided by GNU libc.

No supporting OS subroutines are required.

3.10 fgetc

fgetc, fgetc_unlocked, _fgetc_r, _fgetc_unlocked_r — get a character from a file or stream

The Red Hat newlib C Library 63 / 229

Synopsis

#include <stdio.h>

int fgetc(FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

int fgetc_unlocked(FILE *fp);

#include <stdio.h>

int _fgetc_r(struct _reent *ptr, FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

int _fgetc_unlocked_r(struct _reent *ptr, FILE *fp);

Description

Use fgetc to get the next single character from the file or stream identified by fp. As a side effect, fgetc advances the file’s
current position indicator.

For a macro version of this function, see getc.

fgetc_unlocked is a non-thread-safe version of fgetc. fgetc_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fgetc_unlocked is equivalent to fgetc.

The functions _fgetc_r and _fgetc_unlocked_r are simply reentrant versions that are passed the additional reentrant
structure pointer argument: ptr.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more data, or the host system reports a
read error; in either of these situations, fgetc returns EOF.

You can distinguish the two situations that cause an EOF result by using the ferror and feof functions.

Portability

ANSI C requires fgetc.

fgetc_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

The Red Hat newlib C Library 64 / 229

3.11 fgetpos

fgetpos, _fgetpos_r — record position in a stream or file

Synopsis

#include <stdio.h>

int fgetpos(FILE *restrict fp, fpos_t *restrict pos);
int _fgetpos_r(struct _reent *ptr, FILE *restrict fp, fpos_t *restrict pos);

Description

Objects of type FILE can have a ``position” that records how much of the file your program has already read. Many of the
stdio functions depend on this position, and many change it as a side effect.

You can use fgetpos to report on the current position for a file identified by fp; fgetpos will write a value representing that
position at *pos. Later, you can use this value with fsetpos to return the file to this position.

In the current implementation, fgetpos simply uses a character count to represent the file position; this is the same number
that would be returned by ftell.

Returns

fgetpos returns 0when successful. If fgetpos fails, the result is 1. Failure occurs on streams that do not support positioning;
the global errno indicates this condition with the value ESPIPE.

Portability

fgetpos is required by the ANSI C standard, but the meaning of the value it records is not specified beyond requiring that it be
acceptable as an argument to fsetpos. In particular, other conforming C implementations may return a different result from
ftell than what fgetpos writes at *pos.

No supporting OS subroutines are required.

3.12 fgets

fgets, fgets_unlocked, _fgets_r, _fgets_unlocked_r — get character string from a file or stream

Synopsis

#include <stdio.h>

char *fgets(char *restrict buf, int n, FILE *restrict fp);

#define _GNU_SOURCE

#include <stdio.h>

The Red Hat newlib C Library 65 / 229

char *fgets_unlocked(char *restrict buf, int n, FILE *restrict fp);

#include <stdio.h>

char *_fgets_r(struct _reent *ptr, char *restrict buf, int n, FILE *restrict fp);

#include <stdio.h>

char *_fgets_unlocked_r(struct _reent *ptr, char *restrict buf, int n, FILE *restrict fp);

Description

Reads at most n-1 characters from fp until a newline is found. The characters including to the newline are stored in buf. The
buffer is terminated with a 0.

fgets_unlocked is a non-thread-safe version of fgets. fgets_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fgets_unlocked is equivalent to fgets.

The functions _fgets_r and _fgets_unlocked_r are simply reentrant versions that are passed the additional reentrant
structure pointer argument: ptr.

Returns

fgets returns the buffer passed to it, with the data filled in. If end of file occurs with some data already accumulated, the data
is returned with no other indication. If no data are read, NULL is returned instead.

Portability

fgets should replace all uses of gets. Note however that fgets returns all of the data, while gets removes the trailing
newline (with no indication that it has done so.)

fgets_unlocked is a GNU extension.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.13 fgetwc

fgetwc, getwc, fgetwc_unlocked, getwc_unlocked, _fgetwc_r, _fgetwc_unlocked_r, _getwc_r, _getwc_unlocked_r — get a wide
character from a file or stream

Synopsis

#include <stdio.h>

#include <wchar.h>

wint_t fgetwc(FILE *fp);

The Red Hat newlib C Library 66 / 229

#define _GNU_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t fgetwc_unlocked(FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t _fgetwc_r(struct _reent *ptr, FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t _fgetwc_unlocked_r(struct _reent *ptr, FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t getwc(FILE *fp);

#define _GNU_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t getwc_unlocked(FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t _getwc_r(struct _reent *ptr, FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t _getwc_unlocked_r(struct _reent *ptr, FILE *fp);

The Red Hat newlib C Library 67 / 229

Description

Use fgetwc to get the next wide character from the file or stream identified by fp. As a side effect, fgetwc advances the file’s
current position indicator.

fgetwc_unlocked is a non-thread-safe version of fgetwc. fgetwc_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fgetwc_unlocked is equivalent to fgetwc.

The getwc and getwc_unlocked functions or macros functions identically to fgetwc and fgetwc_unlocked. It may
be implemented as a macro, and may evaluate its argument more than once. There is no reason ever to use it.

_fgetwc_r, _getwc_r, _fgetwc_unlocked_r, and _getwc_unlocked_r are simply reentrant versions of the above
functions that are passed the additional reentrant structure pointer argument: ptr.

Returns

The next wide character cast to wint_t, unless there is no more data, or the host system reports a read error; in either of these
situations, fgetwc and getwc return WEOF.

You can distinguish the two situations that cause an EOF result by using the ferror and feof functions.

Portability

fgetwc and getwc are required by C99 and POSIX.1-2001.

fgetwc_unlocked and getwc_unlocked are GNU extensions.

3.14 fgetws

fgetws, fgetws_unlocked, _fgetws_r, _fgetws_unlocked_r — get wide character string from a file or stream

Synopsis

#include <wchar.h>

wchar_t *fgetws(wchar_t *__restrict ws, int n, FILE *__restrict fp);

#define _GNU_SOURCE

#include <wchar.h>

wchar_t *fgetws_unlocked(wchar_t *__restrict ws, int n, FILE *__restrict fp);

#include <wchar.h>

wchar_t *_fgetws_r(struct _reent *ptr, wchar_t *ws, int n, FILE *fp);

#include <wchar.h>

wchar_t *_fgetws_unlocked_r(struct _reent *ptr, wchar_t *ws, int n, FILE *fp);

The Red Hat newlib C Library 68 / 229

Description

Reads at most n-1 wide characters from fp until a newline is found. The wide characters including to the newline are stored in
ws. The buffer is terminated with a 0.

fgetws_unlocked is a non-thread-safe version of fgetws. fgetws_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fgetws_unlocked is equivalent to fgetws.

The _fgetws_r and _fgetws_unlocked_r functions are simply reentrant version of the above and are passed an additional
reentrancy structure pointer: ptr.

Returns

fgetws returns the buffer passed to it, with the data filled in. If end of file occurs with some data already accumulated, the data
is returned with no other indication. If no data are read, NULL is returned instead.

Portability

fgetws is required by C99 and POSIX.1-2001.

fgetws_unlocked is a GNU extension.

3.15 fileno

fileno, fileno_unlocked — return file descriptor associated with stream

Synopsis

#include <stdio.h>

int fileno(FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

int fileno_unlocked(FILE *fp);

Description

You can use fileno to return the file descriptor identified by fp.

fileno_unlocked is a non-thread-safe version of fileno. fileno_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fileno_unlocked is equivalent to fileno.

Returns

fileno returns a non-negative integer when successful. If fp is not an open stream, fileno returns -1.

The Red Hat newlib C Library 69 / 229

Portability

fileno is not part of ANSI C. POSIX requires fileno.

fileno_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: none.

3.16 fmemopen

fmemopen — open a stream around a fixed-length string

Synopsis

#include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t size, const char *restrict mode);

Description

fmemopen creates a seekable FILE stream that wraps a fixed-length buffer of size bytes starting at buf. The stream is opened
with mode treated as in fopen, where append mode starts writing at the first NUL byte. If buf is NULL, then size bytes are
automatically provided as if by malloc, with the initial size of 0, and mode must contain + so that data can be read after it is
written.

The stream maintains a current position, which moves according to bytes read or written, and which can be one past the end of
the array. The stream also maintains a current file size, which is never greater than size. If mode starts with r, the position
starts at 0, and file size starts at size if buf was provided. If mode starts with w, the position and file size start at 0, and if buf
was provided, the first byte is set to NUL. If mode starts with a, the position and file size start at the location of the first NUL
byte, or else size if buf was provided.

When reading, NUL bytes have no significance, and reads cannot exceed the current file size. When writing, the file size can
increase up to size as needed, and NUL bytes may be embedded in the stream (see open_memstream for an alternative that
automatically enlarges the buffer). When the stream is flushed or closed after a write that changed the file size, a NUL byte is
written at the current position if there is still room; if the stream is not also open for reading, a NUL byte is additionally written at
the last byte of buf when the stream has exceeded size, so that a write-only buf is always NUL-terminated when the stream
is flushed or closed (and the initial size should take this into account). It is not possible to seek outside the bounds of size. A
NUL byte written during a flush is restored to its previous value when seeking elsewhere in the string.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno will be set to EINVAL if size is
zero or mode is invalid, ENOMEM if buf was NULL and memory could not be allocated, or EMFILE if too many streams are
already open.

Portability

This function is being added to POSIX 200x, but is not in POSIX 2001.

Supporting OS subroutines required: sbrk.

3.17 fopen

fopen, _fopen_r — open a file

The Red Hat newlib C Library 70 / 229

Synopsis

#include <stdio.h>

FILE *fopen(const char *file, const char *mode);
FILE *_fopen_r(struct _reent *reent, const char *file, const char *mode);

Description

fopen initializes the data structures needed to read or write a file. Specify the file’s name as the string at file, and the kind of
access you need to the file with the string at mode.

The alternate function _fopen_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Three fundamental kinds of access are available: read, write, and append. *mode must begin with one of the three characters
`r’, `w’, or `a’, to select one of these:

r

Open the file for reading; the operation will fail if the file
does not exist, or if the host system does not permit you to
read it.

w

Open the file for writing from the beginning of the file:
effectively, this always creates a new file. If the file whose
name you specified already existed, its old contents are
discarded.

a

Open the file for appending data, that is writing from the
end of file. When you open a file this way, all data always
goes to the current end of file; you cannot change this using
fseek.

Some host systems distinguish between ``binary” and ``text” files. Such systems may perform data transformations on data
written to, or read from, files opened as ``text”. If your system is one of these, then you can append a `b’ to any of the three
modes above, to specify that you are opening the file as a binary file (the default is to open the file as a text file).

`rb’, then, means ``read binary”; `wb’, ``write binary”; and `ab’, ``append binary”.

To make C programs more portable, the `b’ is accepted on all systems, whether or not it makes a difference.

Finally, you might need to both read and write from the same file. You can also append a `+’ to any of the three modes, to permit
this. (If you want to append both `b’ and `+’, you can do it in either order: for example, "rb+" means the same thing as "r+b"
when used as a mode string.)

Use "r+" (or "rb+") to permit reading and writing anywhere in an existing file, without discarding any data; "w+" (or "wb+")
to create a new file (or begin by discarding all data from an old one) that permits reading and writing anywhere in it; and "a+"
(or "ab+") to permit reading anywhere in an existing file, but writing only at the end.

Returns

fopen returns a file pointer which you can use for other file operations, unless the file you requested could not be opened; in
that situation, the result is NULL. If the reason for failure was an invalid string at mode, errno is set to EINVAL.

Portability

fopen is required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, open, read, sbrk, write.

The Red Hat newlib C Library 71 / 229

3.18 fopencookie

fopencookie — open a stream with custom callbacks

Synopsis

#include <stdio.h>

FILE *fopencookie(const void *cookie, const char *mode, cookie_io_functions_t functions);

Description

fopencookie creates a FILE stream where I/O is performed using custom callbacks. The callbacks are registered via the
structure:

typedef ssize_t (*cookie_read_function_t)(void *_cookie, char *_buf, size_t _n); typedef ssize_t (*cookie_write_function_t)(void
*_cookie, const char *_buf, size_t _n); typedef int (*cookie_seek_function_t)(void *_cookie, off_t *_off, int _whence); typedef
int (*cookie_close_function_t)(void *_cookie);

typedef struct
{

cookie_read_function_t *read;
cookie_write_function_t *write;
cookie_seek_function_t *seek;
cookie_close_function_t *close;

} cookie_io_functions_t;

The stream is opened with mode treated as in fopen. The callbacks functions.read and functions.write may only
be NULL when mode does not require them.

functions.read should return -1 on failure, or else the number of bytes read (0 on EOF). It is similar to read, except that
cookie will be passed as the first argument.

functions.write should return -1 on failure, or else the number of bytes written. It is similar to write, except that
cookie will be passed as the first argument.

functions.seek should return -1 on failure, and 0 on success, with _off set to the current file position. It is a cross between
lseek and fseek, with the _whence argument interpreted in the same manner. A NULL functions.seek makes the
stream behave similarly to a pipe in relation to stdio functions that require positioning.

functions.close should return -1 on failure, or 0 on success. It is similar to close, except that cookie will be passed
as the first argument. A NULL functions.close merely flushes all data then lets fclose succeed. A failed close will still
invalidate the stream.

Read and write I/O functions are allowed to change the underlying buffer on fully buffered or line buffered streams by calling
setvbuf. They are also not required to completely fill or empty the buffer. They are not, however, allowed to change streams
from unbuffered to buffered or to change the state of the line buffering flag. They must also be prepared to have read or write
calls occur on buffers other than the one most recently specified.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno will be set to EINVAL if a function
pointer is missing or mode is invalid, ENOMEM if the stream cannot be created, or EMFILE if too many streams are already
open.

The Red Hat newlib C Library 72 / 229

Portability

This function is a newlib extension, copying the prototype from Linux. It is not portable. See also the funopen interface from
BSD.

Supporting OS subroutines required: sbrk.

3.19 fpurge

fpurge, _fpurge_r, __fpurge — discard pending file I/O

Synopsis

#include <stdio.h>

int fpurge(FILE *fp);
int _fpurge_r(struct _reent *reent, FILE *fp);

#include <stdio.h>

#include <stdio_ext.h>

void __fpurge(FILE *fp);

Description

Use fpurge to clear all buffers of the given stream. For output streams, this discards data not yet written to disk. For input
streams, this discards any data from ungetc and any data retrieved from disk but not yet read via getc. This is more severe
than fflush, and generally is only needed when manually altering the underlying file descriptor of a stream.

__fpurge behaves exactly like fpurge but does not return a value.

The alternate function _fpurge_r is a reentrant version, where the extra argument reent is a pointer to a reentrancy structure,
and fp must not be NULL.

Returns

fpurge returns 0 unless fp is not valid, in which case it returns EOF and sets errno.

Portability

These functions are not portable to any standard.

No supporting OS subroutines are required.

3.20 fputc

fputc, fputc_unlocked, _fputc_r, _fputc_unlocked_r — write a character on a stream or file

The Red Hat newlib C Library 73 / 229

Synopsis

#include <stdio.h>

int fputc(int ch, FILE *fp);

#define _BSD_SOURCE

#include <stdio.h>

int fputc_unlocked(int ch, FILE *fp);

#include <stdio.h>

int _fputc_r(struct _rent *ptr, int ch, FILE *fp);

#include <stdio.h>

int _fputc_unlocked_r(struct _rent *ptr, int ch, FILE *fp);

Description

fputc converts the argument ch from an int to an unsigned char, then writes it to the file or stream identified by fp.

If the file was opened with append mode (or if the stream cannot support positioning), then the new character goes at the end of
the file or stream. Otherwise, the new character is written at the current value of the position indicator, and the position indicator
oadvances by one.

For a macro version of this function, see putc.

fputc_unlocked is a non-thread-safe version of fputc. fputc_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fputc_unlocked is equivalent to fputc.

The _fputc_r and _fputc_unlocked_r functions are simply reentrant versions of the above that take an additional reen-
trant structure argument: ptr.

Returns

If successful, fputc returns its argument ch. If an error intervenes, the result is EOF. You can use `ferror(fp)’ to query for
errors.

Portability

fputc is required by ANSI C.

fputc_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

The Red Hat newlib C Library 74 / 229

3.21 fputs

fputs, fputs_unlocked, _fputs_r, _fputs_unlocked_r — write a character string in a file or stream

Synopsis

#include <stdio.h>

int fputs(const char *restrict s, FILE *restrict fp);

#define _GNU_SOURCE

#include <stdio.h>

int fputs_unlocked(const char *restrict s, FILE *restrict fp);

#include <stdio.h>

int _fputs_r(struct _reent *ptr, const char *restrict s, FILE *restrict fp);

#include <stdio.h>

int _fputs_unlocked_r(struct _reent *ptr, const char *restrict s, FILE *restrict fp);

Description

fputs writes the string at s (but without the trailing null) to the file or stream identified by fp.

fputs_unlocked is a non-thread-safe version of fputs. fputs_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fputs_unlocked is equivalent to fputs.

_fputs_r and _fputs_unlocked_r are simply reentrant versions of the above that take an additional reentrant struct
pointer argument: ptr.

Returns

If successful, the result is 0; otherwise, the result is EOF.

Portability

ANSI C requires fputs, but does not specify that the result on success must be 0; any non-negative value is permitted.

fputs_unlocked is a GNU extension.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

The Red Hat newlib C Library 75 / 229

3.22 fputwc

fputwc, putwc, fputwc_unlocked, putwc_unlocked, _fputwc_r, _fputwc_unlocked_r, _putwc_r, _putwc_unlocked_r — write a
wide character on a stream or file

Synopsis

#include <stdio.h>

#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *fp);

#define _GNU_SOURCE

#include <stdio.h>

#include <wchar.h>

wint_t fputwc_unlocked(wchar_t wc, FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t _fputwc_r(struct _reent *ptr, wchar_t wc, FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t _fputwc_unlocked_r(struct _reent *ptr, wchar_t wc, FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t putwc(wchar_t wc, FILE *fp);

#define _GNU_SOURCE

#include <stdio.h>

#include <wchar.h>

The Red Hat newlib C Library 76 / 229

wint_t putwc_unlocked(wchar_t wc, FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t _putwc_r(struct _reent *ptr, wchar_t wc, FILE *fp);

#include <stdio.h>

#include <wchar.h>

wint_t _putwc_unlocked_r(struct _reent *ptr, wchar_t wc, FILE *fp);

Description

fputwc writes the wide character argument wc to the file or stream identified by fp.

If the file was opened with append mode (or if the stream cannot support positioning), then the new wide character goes at the
end of the file or stream. Otherwise, the new wide character is written at the current value of the position indicator, and the
position indicator oadvances by one.

fputwc_unlocked is a non-thread-safe version of fputwc. fputwc_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fputwc_unlocked is equivalent to fputwc.

The putwc and putwc_unlocked functions or macros function identically to fputwc and fputwc_unlocked. They
may be implemented as a macro, and may evaluate its argument more than once. There is no reason ever to use them.

The _fputwc_r, _putwc_r, _fputwc_unlocked_r, and _putwc_unlocked_r functions are simply reentrant ver-
sions of the above that take an additional reentrant structure argument: ptr.

Returns

If successful, fputwc and putwc return their argument wc. If an error intervenes, the result is EOF. You can use `ferr
or(fp)’ to query for errors.

Portability

fputwc and putwc are required by C99 and POSIX.1-2001.

fputwc_unlocked and putwc_unlocked are GNU extensions.

3.23 fputws

fputws, fputws_unlocked, _fputws_r, _fputws_unlocked_r — write a wide character string in a file or stream

The Red Hat newlib C Library 77 / 229

Synopsis

#include <wchar.h>

int fputws(const wchar_t *__restrict ws, FILE *__restrict fp);

#define _GNU_SOURCE

#include <wchar.h>

int fputws_unlocked(const wchar_t *__restrict ws, FILE *__restrict fp);

#include <wchar.h>

int _fputws_r(struct _reent *ptr, const wchar_t *ws, FILE *fp);

#include <wchar.h>

int _fputws_unlocked_r(struct _reent *ptr, const wchar_t *ws, FILE *fp);

Description

fputws writes the wide character string at ws (but without the trailing null) to the file or stream identified by fp.

fputws_unlocked is a non-thread-safe version of fputws. fputws_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fputws_unlocked is equivalent to fputws.

_fputws_r and _fputws_unlocked_r are simply reentrant versions of the above that take an additional reentrant struct
pointer argument: ptr.

Returns

If successful, the result is a non-negative integer; otherwise, the result is -1 to indicate an error.

Portability

fputws is required by C99 and POSIX.1-2001.

fputws_unlocked is a GNU extension.

3.24 fread

fread, fread_unlocked, _fread_r, _fread_unlocked_r — read array elements from a file

The Red Hat newlib C Library 78 / 229

Synopsis

#include <stdio.h>

size_t fread(void *restrict buf, size_t size, size_t count, FILE *restrict fp);

#define _BSD_SOURCE

#include <stdio.h>

size_t fread_unlocked(void *restrict buf, size_t size, size_t count, FILE *restrict fp);

#include <stdio.h>

size_t _fread_r(struct _reent *ptr, void *restrict buf, size_t size, size_t count, FILE *restrict fp);

#include <stdio.h>

size_t _fread_unlocked_r(struct _reent *ptr, void *restrict buf, size_t size, size_t count, FILE *restrict fp);

Description

fread attempts to copy, from the file or stream identified by fp, count elements (each of size size) into memory, starting at
buf. fread may copy fewer elements than count if an error, or end of file, intervenes.

fread also advances the file position indicator (if any) for fp by the number of characters actually read.

fread_unlocked is a non-thread-safe version of fread. fread_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fread_unlocked is equivalent to fread.

_fread_r and _fread_unlocked_r are simply reentrant versions of the above that take an additional reentrant structure
pointer argument: ptr.

Returns

The result of fread is the number of elements it succeeded in reading.

Portability

ANSI C requires fread.

fread_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.25 freopen

freopen, _freopen_r — open a file using an existing file descriptor

The Red Hat newlib C Library 79 / 229

Synopsis

#include <stdio.h>

FILE *freopen(const char *restrict file, const char *restrict mode, FILE *restrict fp);
FILE *_freopen_r(struct _reent *ptr, const char *restrict file, const char *restrict mode, FILE *restrict fp);

Description

Use this variant of fopen if you wish to specify a particular file descriptor fp (notably stdin, stdout, or stderr) for the
file.

If fp was associated with another file or stream, freopen closes that other file or stream (but ignores any errors while closing
it).

file and mode are used just as in fopen.

If file is NULL, the underlying stream is modified rather than closed. The file cannot be given a more permissive access mode
(for example, a mode of "w" will fail on a read-only file descriptor), but can change status such as append or binary mode. If
modification is not possible, failure occurs.

Returns

If successful, the result is the same as the argument fp. If the file cannot be opened as specified, the result is NULL.

Portability

ANSI C requires freopen.

Supporting OS subroutines required: close, fstat, isatty, lseek, open, read, sbrk, write.

3.26 fseek

fseek, fseeko, _fseek_r, _fseeko_r — set file position

Synopsis

#include <stdio.h>

int fseek(FILE *fp, long offset, int whence);
int fseeko(FILE *fp, off_t offset, int whence);
int _fseek_r(struct _reent *ptr, FILE *fp, long offset, int whence);
int _fseeko_r(struct _reent *ptr, FILE *fp, off_t offset, int whence);

Description

Objects of type FILE can have a ``position” that records how much of the file your program has already read. Many of the
stdio functions depend on this position, and many change it as a side effect.

You can use fseek/fseeko to set the position for the file identified by fp. The value of offset determines the new position,
in one of three ways selected by the value of whence (defined as macros in `stdio.h’):

SEEK_SET---offset is the absolute file position (an offset from the beginning of the file) desired. offset must be positive.

SEEK_CUR---offset is relative to the current file position. offset can meaningfully be either positive or negative.

SEEK_END---offset is relative to the current end of file. offset can meaningfully be either positive (to increase the size of
the file) or negative.

See ftell/ftello to determine the current file position.

The Red Hat newlib C Library 80 / 229

Returns

fseek/fseeko return 0 when successful. On failure, the result is EOF. The reason for failure is indicated in errno: either
ESPIPE (the stream identified by fp doesn’t support repositioning) or EINVAL (invalid file position).

Portability

ANSI C requires fseek.

fseeko is defined by the Single Unix specification.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.27 __fsetlocking

__fsetlocking — set or query locking mode on FILE stream

Synopsis

#include <stdio.h>

#include <stdio_ext.h>

int __fsetlocking(FILE *fp, int type);

Description

This function sets how the stdio functions handle locking of FILE fp. The following values describe type:

FSETLOCKING_INTERNAL is the default state, where stdio functions automatically lock and unlock the stream.

FSETLOCKING_BYCALLER means that automatic locking in stdio functions is disabled. Applications which set this take all
responsibility for file locking themselves.

FSETLOCKING_QUERY returns the current locking mode without changing it.

Returns

__fsetlocking returns the current locking mode of fp.

Portability

This function originates from Solaris and is also provided by GNU libc.

No supporting OS subroutines are required.

3.28 fsetpos

fsetpos, _fsetpos_r — restore position of a stream or file

The Red Hat newlib C Library 81 / 229

Synopsis

#include <stdio.h>

int fsetpos(FILE *fp, const fpos_t *pos);
int _fsetpos_r(struct _reent *ptr, FILE *fp, const fpos_t *pos);

Description

Objects of type FILE can have a ``position” that records how much of the file your program has already read. Many of the
stdio functions depend on this position, and many change it as a side effect.

You can use fsetpos to return the file identified by fp to a previous position *pos (after first recording it with fgetpos).

See fseek for a similar facility.

Returns

fgetpos returns 0 when successful. If fgetpos fails, the result is 1. The reason for failure is indicated in errno: either
ESPIPE (the stream identified by fp doesn’t support repositioning) or EINVAL (invalid file position).

Portability

ANSI C requires fsetpos, but does not specify the nature of *pos beyond identifying it as written by fgetpos.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.29 ftell

ftell, ftello, _ftell_r, _ftello_r — return position in a stream or file

Synopsis

#include <stdio.h>

long ftell(FILE *fp);
off_t ftello(FILE *fp);
long _ftell_r(struct _reent *ptr, FILE *fp);
off_t _ftello_r(struct _reent *ptr, FILE *fp);

Description

Objects of type FILE can have a ``position” that records how much of the file your program has already read. Many of the
stdio functions depend on this position, and many change it as a side effect.

The result of ftell/ftello is the current position for a file identified by fp. If you record this result, you can later use it with
fseek/fseeko to return the file to this position. The difference between ftell and ftello is that ftell returns long
and ftello returns off_t.

In the current implementation, ftell/ftello simply uses a character count to represent the file position; this is the same
number that would be recorded by fgetpos.

The Red Hat newlib C Library 82 / 229

Returns

ftell/ftello return the file position, if possible. If they cannot do this, they return -1L. Failure occurs on streams that do
not support positioning; the global errno indicates this condition with the value ESPIPE.

Portability

ftell is required by the ANSI C standard, but the meaning of its result (when successful) is not specified beyond requiring that
it be acceptable as an argument to fseek. In particular, other conforming C implementations may return a different result from
ftell than what fgetpos records.

ftello is defined by the Single Unix specification.

No supporting OS subroutines are required.

3.30 funopen

funopen, fropen, fwopen — open a stream with custom callbacks

Synopsis

#include <stdio.h>

FILE *funopen(const void *cookie, int (*readfn) (void *cookie, char *buf, int n), int (*writefn) (void *cookie, const char *buf,
int n), fpos_t (*seekfn) (void *cookie, fpos_t off, int whence), int (*closefn) (void *cookie));
FILE *fropen(const void *cookie, int (*readfn) (void *cookie, char *buf, int n));
FILE *fwopen(const void *cookie, int (*writefn) (void *cookie, const char *buf, int n));

Description

funopen creates a FILE stream where I/O is performed using custom callbacks. At least one of readfn and writefn must
be provided, which determines whether the stream behaves with mode <"r">, <"w">, or <"r+">.

readfn should return -1 on failure, or else the number of bytes read (0 on EOF). It is similar to read, except that <int> rather
than <size_t> bounds a transaction size, and cookie will be passed as the first argument. A NULL readfn makes attempts to
read the stream fail.

writefn should return -1 on failure, or else the number of bytes written. It is similar to write, except that <int> rather than
<size_t> bounds a transaction size, and cookie will be passed as the first argument. A NULL writefn makes attempts to
write the stream fail.

seekfn should return (fpos_t)-1 on failure, or else the current file position. It is similar to lseek, except that cookie will be
passed as the first argument. A NULL seekfn makes the stream behave similarly to a pipe in relation to stdio functions that
require positioning. This implementation assumes fpos_t and off_t are the same type.

closefn should return -1 on failure, or 0 on success. It is similar to close, except that cookie will be passed as the first
argument. A NULL closefn merely flushes all data then lets fclose succeed. A failed close will still invalidate the stream.

Read and write I/O functions are allowed to change the underlying buffer on fully buffered or line buffered streams by calling
setvbuf. They are also not required to completely fill or empty the buffer. They are not, however, allowed to change streams
from unbuffered to buffered or to change the state of the line buffering flag. They must also be prepared to have read or write
calls occur on buffers other than the one most recently specified.

The functions fropen and fwopen are convenience macros around funopen that only use the specified callback.

The Red Hat newlib C Library 83 / 229

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno will be set to EINVAL if a function
pointer is missing, ENOMEM if the stream cannot be created, or EMFILE if too many streams are already open.

Portability

This function is a newlib extension, copying the prototype from BSD. It is not portable. See also the fopencookie interface
from Linux.

Supporting OS subroutines required: sbrk.

3.31 fwide

fwide, _fwide_r — set and determine the orientation of a FILE stream

Synopsis

#include <wchar.h>

int fwide(FILE *fp, int mode);
int _fwide_r(struct _reent *ptr, FILE *fp, int mode);

Description

When mode is zero, the fwide function determines the current orientation of fp. It returns a value > 0 if fp is wide-character
oriented, i.e. if wide character I/O is permitted but char I/O is disallowed. It returns a value < 0 if fp is byte oriented, i.e. if
char I/O is permitted but wide character I/O is disallowed. It returns zero if fp has no orientation yet; in this case the next I/O
operation might change the orientation (to byte oriented if it is a char I/O operation, or to wide-character oriented if it is a wide
character I/O operation).

Once a stream has an orientation, it cannot be changed and persists until the stream is closed, unless the stream is re-opened with
freopen, which removes the orientation of the stream.

When mode is non-zero, the fwide function first attempts to set fp’s orientation (to wide-character oriented if mode > 0, or to
byte oriented if mode < 0). It then returns a value denoting the current orientation, as above.

Returns

The fwide function returns fp’s orientation, after possibly changing it. A return value > 0 means wide-character oriented. A
return value < 0 means byte oriented. A return value of zero means undecided.

Portability

C99, POSIX.1-2001.

3.32 fwrite

fwrite, fwrite_unlocked, _fwrite_r, _fwrite_unlocked_r — write array elements

The Red Hat newlib C Library 84 / 229

Synopsis

#include <stdio.h>

size_t fwrite(const void *restrict buf, size_t size, size_t count, FILE *restrict fp);

#define _BSD_SOURCE

#include <stdio.h>

size_t fwrite_unlocked(const void *restrict buf, size_t size, size_t count, FILE *restrict fp);

#include <stdio.h>

size_t _fwrite_r(struct _reent *ptr, const void *restrict buf, size_t size, size_t count, FILE *restrict fp);

#include <stdio.h>

size_t _fwrite_unlocked_r(struct _reent *ptr, const void *restrict buf, size_t size, size_t count, FILE *restrict fp);

Description

fwrite attempts to copy, starting from the memory location buf, count elements (each of size size) into the file or stream
identified by fp. fwrite may copy fewer elements than count if an error intervenes.

fwrite also advances the file position indicator (if any) for fp by the number of characters actually written.

fwrite_unlocked is a non-thread-safe version of fwrite. fwrite_unlocked may only safely be used within a scope
protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program if and
only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the flockfile()
or ftrylockfile() functions. If threads are disabled, then fwrite_unlocked is equivalent to fwrite.

_fwrite_r and _fwrite_unlocked_r are simply reentrant versions of the above that take an additional reentrant structure
argument: ptr.

Returns

If fwrite succeeds in writing all the elements you specify, the result is the same as the argument count. In any event, the
result is the number of complete elements that fwrite copied to the file.

Portability

ANSI C requires fwrite.

fwrite_unlocked is a BSD extension also provided by GNU libc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.33 getc

getc, _getc_r — read a character (macro)

The Red Hat newlib C Library 85 / 229

Synopsis

#include <stdio.h>

int getc(FILE *fp);

#include <stdio.h>

int _getc_r(struct _reent *ptr, FILE *fp);

Description

getc is a macro, defined in stdio.h. You can use getc to get the next single character from the file or stream identified by
fp. As a side effect, getc advances the file’s current position indicator.

For a subroutine version of this macro, see fgetc.

The _getc_r function is simply the reentrant version of getcwhich passes an additional reentrancy structure pointer argument:
ptr.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more data, or the host system reports a
read error; in either of these situations, getc returns EOF.

You can distinguish the two situations that cause an EOF result by using the ferror and feof functions.

Portability

ANSI C requires getc; it suggests, but does not require, that getc be implemented as a macro. The standard explicitly permits
macro implementations of getc to use the argument more than once; therefore, in a portable program, you should not use an
expression with side effects as the getc argument.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.34 getc_unlocked

getc_unlocked, _getc_unlocked_r — non-thread-safe version of getc (macro)

Synopsis

#include <stdio.h>

int getc_unlocked(FILE *fp);

#include <stdio.h>

int _getc_unlocked_r(FILE *fp);

The Red Hat newlib C Library 86 / 229

Description

getc_unlocked is a non-thread-safe version of getc declared in stdio.h. getc_unlocked may only safely be used
within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). These functions may safely be used in a multi-threaded
program if and only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then getc_unlocked is equivalent to getc.

The _getc_unlocked_r function is simply the reentrant version of get_unlocked which passes an additional reentrancy
structure pointer argument: ptr.

Returns

See getc.

Portability

POSIX 1003.1 requires getc_unlocked. getc_unlocked may be implemented as a macro, so arguments should not have
side-effects.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.35 getchar

getchar, _getchar_r — read a character (macro)

Synopsis

#include <stdio.h>

int getchar(void);
int _getchar_r(struct _reent *reent);

Description

getchar is a macro, defined in stdio.h. You can use getchar to get the next single character from the standard input
stream. As a side effect, getchar advances the standard input’s current position indicator.

The alternate function _getchar_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

The next character (read as an unsigned char, and cast to int), unless there is no more data, or the host system reports a
read error; in either of these situations, getchar returns EOF.

You can distinguish the two situations that cause an EOF result by using `ferror(stdin)’ and `feof(stdin)’.

Portability

ANSI C requires getchar; it suggests, but does not require, that getchar be implemented as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

The Red Hat newlib C Library 87 / 229

3.36 getchar_unlocked

getchar_unlocked, _getchar_unlocked_r — non-thread-safe version of getchar (macro)

Synopsis

#include <stdio.h>

int getchar_unlocked(void);

#include <stdio.h>

int _getchar_unlocked_r(struct _reent *ptr);

Description

getchar_unlocked is a non-thread-safe version of getchar declared in stdio.h. getchar_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). These functions may safely be used in
a multi-threaded program if and only if they are called while the invoking thread owns the (FILE *) object, as is the case after a
successful call to the flockfile() or ftrylockfile() functions. If threads are disabled, then getchar_unlocked is equivalent to
getchar.

The _getchar_unlocked_r function is simply the reentrant version of getchar_unlocked which passes an addtional
reentrancy structure pointer argument: ptr.

Returns

See getchar.

Portability

POSIX 1003.1 requires getchar_unlocked. getchar_unlocked may be implemented as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.37 getdelim

getdelim — read a line up to a specified line delimiter

Synopsis

#include <stdio.h>

int getdelim(char **bufptr, size_t *n, int delim, FILE *fp);

Description

getdelim reads a file fp up to and possibly including a specified delimiter delim. The line is read into a buffer pointed to
by bufptr and designated with size *n. If the buffer is not large enough, it will be dynamically grown by getdelim. As the
buffer is grown, the pointer to the size n will be updated.

The Red Hat newlib C Library 88 / 229

Returns

getdelim returns -1 if no characters were successfully read; otherwise, it returns the number of bytes successfully read. At
end of file, the result is nonzero.

Portability

getdelim is a glibc extension.

No supporting OS subroutines are directly required.

3.38 getline

getline — read a line from a file

Synopsis

#include <stdio.h>

ssize_t getline(char **bufptr, size_t *n, FILE *fp);

Description

getline reads a file fp up to and possibly including the newline character. The line is read into a buffer pointed to by bufptr
and designated with size *n. If the buffer is not large enough, it will be dynamically grown by getdelim. As the buffer is
grown, the pointer to the size n will be updated.

getline is equivalent to getdelim(bufptr, n, ’\n’, fp);

Returns

getline returns -1 if no characters were successfully read, otherwise, it returns the number of bytes successfully read. at end
of file, the result is nonzero.

Portability

getline is a glibc extension.

No supporting OS subroutines are directly required.

3.39 gets

gets, _gets_r — get character string (obsolete, use fgets instead)

Synopsis

#include <stdio.h>

char *gets(char *buf);
char *_gets_r(struct _reent *reent, char *buf);

The Red Hat newlib C Library 89 / 229

Description

Reads characters from standard input until a newline is found. The characters up to the newline are stored in buf. The newline
is discarded, and the buffer is terminated with a 0.

This is a dangerous function, as it has no way of checking the amount of space available in buf. One of the attacks used by the
Internet Worm of 1988 used this to overrun a buffer allocated on the stack of the finger daemon and overwrite the return address,
causing the daemon to execute code downloaded into it over the connection.

The alternate function _gets_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

gets returns the buffer passed to it, with the data filled in. If end of file occurs with some data already accumulated, the data is
returned with no other indication. If end of file occurs with no data in the buffer, NULL is returned.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.40 getw

getw — read a word (int)

Synopsis

#include <stdio.h>

int getw(FILE *fp);

Description

getw is a function, defined in stdio.h. You can use getw to get the next word from the file or stream identified by fp. As a
side effect, getw advances the file’s current position indicator.

Returns

The next word (read as an int), unless there is no more data or the host system reports a read error; in either of these situations,
getw returns EOF. Since EOF is a valid int, you must use ferror or feof to distinguish these situations.

Portability

getw is a remnant of K&R C; it is not part of any ISO C Standard. fread should be used instead. In fact, this implementation
of getw is based upon fread.

Supporting OS subroutines required: fread.

3.41 getwchar

getwchar, getwchar_unlocked, _getwchar_r, _getwchar_unlocked_r — read a wide character from standard input

The Red Hat newlib C Library 90 / 229

Synopsis

#include <wchar.h>

wint_t getwchar(void);

#define _GNU_SOURCE

#include <wchar.h>

wint_t getwchar_unlocked(void);

#include <wchar.h>

wint_t _getwchar_r(struct _reent *reent);

#include <wchar.h>

wint_t _getwchar_unlocked_r(struct _reent *reent);

Description

getwchar function or macro is the wide character equivalent of the getchar function. You can use getwchar to get the
next wide character from the standard input stream. As a side effect, getwchar advances the standard input’s current position
indicator.

getwchar_unlocked is a non-thread-safe version of getwchar. getwchar_unlockedmay only safely be used within a
scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program
if and only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the
flockfile() or ftrylockfile() functions. If threads are disabled, then getwchar_unlocked is equivalent to getwchar.

The alternate functions _getwchar_r and _getwchar_unlocked_r are reentrant versions of the above. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns

The next wide character cast to wint_t, unless there is no more data, or the host system reports a read error; in either of these
situations, getwchar returns WEOF.

You can distinguish the two situations that cause an WEOF result by using `ferror(stdin)’ and `feof(stdin)’.

Portability

getwchar is required by C99.

getwchar_unlocked is a GNU extension.

3.42 mktemp

mktemp, mkstemp, mkostemp, mkstemps, mkostemps, mkdtemp, _mktemp_r, _mkdtemp_r, _mkstemp_r, _mkstemps_r, _mkostemp_r,
_mkostemps_r — generate unused file name, generate unused directory

The Red Hat newlib C Library 91 / 229

Synopsis

#include <stdlib.h>

char *mktemp(char *path);
char *mkdtemp(char *path);
int mkstemp(char *path);
int mkstemps(char *path, int suffixlen);
int mkostemp(char *path, int flags);
int mkostemps(char *path, int suffixlen, int flags);
char *_mktemp_r(struct _reent *reent, char *path);
char *_mkdtemp_r(struct _reent *reent, char *path);
int *_mkstemp_r(struct _reent *reent, char *path);
int *_mkstemps_r(struct _reent *reent, char *path, int len);
int *_mkostemp_r(struct _reent *reent, char *path, int flags);
int *_mkostemps_r(struct _reent *reent, char *path, int len, int flags);

Description

mktemp, mkstemp, and mkstemps attempt to generate a file name that is not yet in use for any existing file. mkstemp
and mkstemps create the file and open it for reading and writing; mktemp simply generates the file name (making mktemp
a security risk). mkostemp and mkostemps allow the addition of other open flags, such as O_CLOEXEC, O_APPEND, or
O_SYNC. On platforms with a separate text mode, mkstemp forces O_BINARY, while mkostemp allows the choice between
O_BINARY, O_TEXT, or 0 for default. mkdtemp attempts to create a directory instead of a file, with a permissions mask of
0700.

You supply a simple pattern for the generated file name, as the string at path. The pattern should be a valid filename (including
path information if you wish) ending with at least six `X’ characters. The generated filename will match the leading part of the
name you supply, with the trailing `X’ characters replaced by some combination of digits and letters. With mkstemps, the `X’
characters end suffixlen bytes before the end of the string.

The alternate functions _mktemp_r, _mkdtemp_r, _mkstemp_r, _mkostemp_r, _mkostemps_r, and _mkstemps_r
are reentrant versions. The extra argument reent is a pointer to a reentrancy structure.

Returns

mktemp returns the pointer path to the modified string representing an unused filename, unless it could not generate one, or the
pattern you provided is not suitable for a filename; in that case, it returns NULL. Be aware that there is an inherent race between
generating the name and attempting to create a file by that name; you are advised to use O_EXCL|O_CREAT.

mkdtemp returns the pointer path to the modified string if the directory was created, otherwise it returns NULL.

mkstemp, mkstemps, mkostemp, and mkostemps return a file descriptor to the newly created file, unless it could not
generate an unused filename, or the pattern you provided is not suitable for a filename; in that case, it returns -1.

Notes

Never use mktemp. The generated filenames are easy to guess and there’s a race between the test if the file exists and the creation
of the file. In combination this makes mktemp prone to attacks and using it is a security risk. Whenever possible use mkstemp
instead. It doesn’t suffer the race condition.

Portability

ANSI C does not require either mktemp or mkstemp; the System V Interface Definition requires mktemp as of Issue 2.
POSIX 2001 requires mkstemp, and POSIX 2008 requires mkdtemp while deprecating mktemp. mkstemps, mkostemp,
and mkostemps are not standardized.

Supporting OS subroutines required: getpid, mkdir, open, stat.

The Red Hat newlib C Library 92 / 229

3.43 open_memstream

open_memstream, open_wmemstream — open a write stream around an arbitrary-length string

Synopsis

#include <stdio.h>

FILE *open_memstream(char **restrict buf, size_t *restrict size);

#include <wchar.h>

FILE *open_wmemstream(wchar_t **restrict buf, size_t *restrict size);

Description

open_memstream creates a seekable, byte-oriented FILE stream that wraps an arbitrary-length buffer, created as if by mal
loc. The current contents of *buf are ignored; this implementation uses *size as a hint of the maximum size expected, but
does not fail if the hint was wrong. The parameters buf and size are later stored through following any call to fflush or
fclose, set to the current address and usable size of the allocated string; although after fflush, the pointer is only valid until
another stream operation that results in a write. Behavior is undefined if the user alters either *buf or *size prior to fclose.

open_wmemstream is like open_memstream just with the associated stream being wide-oriented. The size set in size in
subsequent operations is the number of wide characters.

The stream is write-only, since the user can directly read *buf after a flush; see fmemopen for a way to wrap a string with a
readable stream. The user is responsible for calling free on the final *buf after fclose.

Any time the stream is flushed, a NUL byte is written at the current position (but is not counted in the buffer length), so that
the string is always NUL-terminated after at most *size bytes (or wide characters in case of open_wmemstream). However,
data previously written beyond the current stream offset is not lost, and the NUL value written during a flush is restored to its
previous value when seeking elsewhere in the string.

Returns

The return value is an open FILE pointer on success. On error, NULL is returned, and errno will be set to EINVAL if buf or
size is NULL, ENOMEM if memory could not be allocated, or EMFILE if too many streams are already open.

Portability

POSIX.1-2008

Supporting OS subroutines required: sbrk.

3.44 perror

perror, _perror_r — print an error message on standard error

Synopsis

#include <stdio.h>

void perror(char *prefix);
void _perror_r(struct _reent *reent, char *prefix);

The Red Hat newlib C Library 93 / 229

Description

Use perror to print (on standard error) an error message corresponding to the current value of the global variable errno.
Unless you use NULL as the value of the argument prefix, the error message will begin with the string at prefix, followed
by a colon and a space (:). The remainder of the error message is one of the strings described for strerror.

The alternate function _perror_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

perror returns no result.

Portability

ANSI C requires perror, but the strings issued vary from one implementation to another.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.45 putc

putc, _putc_r — write a character (macro)

Synopsis

#include <stdio.h>

int putc(int ch, FILE *fp);

#include <stdio.h>

int _putc_r(struct _reent *ptr, int ch, FILE *fp);

Description

putc is a macro, defined in stdio.h. putc writes the argument ch to the file or stream identified by fp, after converting it
from an int to an unsigned char.

If the file was opened with append mode (or if the stream cannot support positioning), then the new character goes at the end of
the file or stream. Otherwise, the new character is written at the current value of the position indicator, and the position indicator
advances by one.

For a subroutine version of this macro, see fputc.

The _putc_r function is simply the reentrant version of putc that takes an additional reentrant structure argument: ptr.

Returns

If successful, putc returns its argument ch. If an error intervenes, the result is EOF. You can use `ferror(fp)’ to query for
errors.

The Red Hat newlib C Library 94 / 229

Portability

ANSI C requires putc; it suggests, but does not require, that putc be implemented as a macro. The standard explicitly permits
macro implementations of putc to use the fp argument more than once; therefore, in a portable program, you should not use
an expression with side effects as this argument.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.46 putc_unlocked

putc_unlocked, _putc_unlocked_r — non-thread-safe version of putc (macro)

Synopsis

#include <stdio.h>

int putc_unlocked(int ch, FILE *fp);

#include <stdio.h>

int _putc_unlocked_r(struct _reent *ptr, int ch, FILE *fp);

Description

putc_unlocked is a non-thread-safe version of putc declared in stdio.h. putc_unlocked may only safely be used
within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). These functions may safely be used in a multi-threaded
program if and only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to
the flockfile() or ftrylockfile() functions. If threads are disabled, then putc_unlocked is equivalent to putc.

The function _putc_unlocked_r is simply the reentrant version of putc_unlocked that takes an additional reentrant
structure pointer argument: ptr.

Returns

See putc.

Portability

POSIX 1003.1 requires putc_unlocked. putc_unlocked may be implemented as a macro, so arguments should not have
side-effects.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.47 putchar

putchar, _putchar_r — write a character (macro)

The Red Hat newlib C Library 95 / 229

Synopsis

#include <stdio.h>

int putchar(int ch);
int _putchar_r(struct _reent *reent, int ch);

Description

putchar is a macro, defined in stdio.h. putchar writes its argument to the standard output stream, after converting it
from an int to an unsigned char.

The alternate function _putchar_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

If successful, putchar returns its argument ch. If an error intervenes, the result is EOF. You can use `ferror(stdin)’ to
query for errors.

Portability

ANSI C requires putchar; it suggests, but does not require, that putchar be implemented as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.48 putchar_unlocked

putchar_unlocked — non-thread-safe version of putchar (macro)

Synopsis

#include <stdio.h>

int putchar_unlocked(int ch);

Description

putchar_unlocked is a non-thread-safe version of putchar declared in stdio.h. putchar_unlocked may only
safely be used within a scope protected by flockfile() (or ftrylockfile()) and funlockfile(). These functions may safely be used in
a multi-threaded program if and only if they are called while the invoking thread owns the (FILE *) object, as is the case after a
successful call to the flockfile() or ftrylockfile() functions. If threads are disabled, then putchar_unlocked is equivalent to
putchar.

Returns

See putchar.

Portability

POSIX 1003.1 requires putchar_unlocked. putchar_unlocked may be implemented as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

The Red Hat newlib C Library 96 / 229

3.49 puts

puts, _puts_r — write a character string

Synopsis

#include <stdio.h>

int puts(const char *s);
int _puts_r(struct _reent *reent, const char *s);

Description

puts writes the string at s (followed by a newline, instead of the trailing null) to the standard output stream.

The alternate function _puts_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

If successful, the result is a nonnegative integer; otherwise, the result is EOF.

Portability

ANSI C requires puts, but does not specify that the result on success must be 0; any non-negative value is permitted.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.50 putw

putw — write a word (int)

Synopsis

#include <stdio.h>

int putw(int w, FILE *fp);

Description

putw is a function, defined in stdio.h. You can use putw to write a word to the file or stream identified by fp. As a side
effect, putw advances the file’s current position indicator.

Returns

Zero on success, EOF on failure.

The Red Hat newlib C Library 97 / 229

Portability

putw is a remnant of K&R C; it is not part of any ISO C Standard. fwrite should be used instead. In fact, this implementation
of putw is based upon fwrite.

Supporting OS subroutines required: fwrite.

3.51 putwchar

putwchar, putwchar_unlocked, _putwchar_r, _putwchar_unlocked_r — write a wide character to standard output

Synopsis

#include <wchar.h>

wint_t putwchar(wchar_t wc);

#include <wchar.h>

wint_t putwchar_unlocked(wchar_t wc);

#include <wchar.h>

wint_t _putwchar_r(struct _reent *reent, wchar_t wc);

#include <wchar.h>

wint_t _putwchar_unlocked_r(struct _reent *reent, wchar_t wc);

Description

The putwchar function or macro is the wide-character equivalent of the putchar function. It writes the wide character wc to
stdout.

putwchar_unlocked is a non-thread-safe version of putwchar. putwchar_unlockedmay only safely be used within a
scope protected by flockfile() (or ftrylockfile()) and funlockfile(). This function may safely be used in a multi-threaded program
if and only if they are called while the invoking thread owns the (FILE *) object, as is the case after a successful call to the
flockfile() or ftrylockfile() functions. If threads are disabled, then putwchar_unlocked is equivalent to putwchar.

The alternate functions _putwchar_r and _putwchar_unlocked_r are reentrant versions of the above. The extra argu-
ment reent is a pointer to a reentrancy structure.

Returns

If successful, putwchar returns its argument wc. If an error intervenes, the result is EOF. You can use `ferror(stdin)’ to
query for errors.

The Red Hat newlib C Library 98 / 229

Portability

putwchar is required by C99.

putwchar_unlocked is a GNU extension.

3.52 remove

remove, _remove_r — delete a file’s name

Synopsis

#include <stdio.h>

int remove(char *filename);
int _remove_r(struct _reent *reent, char *filename);

Description

Use remove to dissolve the association between a particular filename (the string at filename) and the file it represents. After
calling remove with a particular filename, you will no longer be able to open the file by that name.

In this implementation, you may use remove on an open file without error; existing file descriptors for the file will continue to
access the file’s data until the program using them closes the file.

The alternate function _remove_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

remove returns 0 if it succeeds, -1 if it fails.

Portability

ANSI C requires remove, but only specifies that the result on failure be nonzero. The behavior of remove when you call it on
an open file may vary among implementations.

Supporting OS subroutine required: unlink.

3.53 rename

rename — rename a file

Synopsis

#include <stdio.h>

int rename(const char *old, const char *new);

The Red Hat newlib C Library 99 / 229

Description

Use rename to establish a new name (the string at new) for a file now known by the string at old. After a successful rename,
the file is no longer accessible by the string at old.

If rename fails, the file named *old is unaffected. The conditions for failure depend on the host operating system.

Returns

The result is either 0 (when successful) or -1 (when the file could not be renamed).

Portability

ANSI C requires rename, but only specifies that the result on failure be nonzero. The effects of using the name of an existing
file as *new may vary from one implementation to another.

Supporting OS subroutines required: link, unlink, or rename.

3.54 rewind

rewind, _rewind_r — reinitialize a file or stream

Synopsis

#include <stdio.h>

void rewind(FILE *fp);
void _rewind_r(struct _reent *ptr, FILE *fp);

Description

rewind returns the file position indicator (if any) for the file or stream identified by fp to the beginning of the file. It also clears
any error indicator and flushes any pending output.

Returns

rewind does not return a result.

Portability

ANSI C requires rewind.

No supporting OS subroutines are required.

3.55 setbuf

setbuf — specify full buffering for a file or stream

The Red Hat newlib C Library 100 / 229

Synopsis

#include <stdio.h>

void setbuf(FILE *fp, char *buf);

Description

setbuf specifies that output to the file or stream identified by fp should be fully buffered. All output for this file will go to a
buffer (of size BUFSIZ, specified in `stdio.h’). Output will be passed on to the host system only when the buffer is full, or
when an input operation intervenes.

You may, if you wish, supply your own buffer by passing a pointer to it as the argument buf. It must have size BUFSIZ. You
can also use NULL as the value of buf, to signal that the setbuf function is to allocate the buffer.

Warnings

You may only use setbuf before performing any file operation other than opening the file.

If you supply a non-null buf, you must ensure that the associated storage continues to be available until you close the stream
identified by fp.

Returns

setbuf does not return a result.

Portability

Both ANSI C and the System V Interface Definition (Issue 2) require setbuf. However, they differ on the meaning of a
NULL buffer pointer: the SVID issue 2 specification says that a NULL buffer pointer requests unbuffered output. For maximum
portability, avoid NULL buffer pointers.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.56 setbuffer

setbuffer — specify full buffering for a file or stream with size

Synopsis

#include <stdio.h>

void setbuffer(FILE *fp, char *buf, int size);

Description

setbuffer specifies that output to the file or stream identified by fp should be fully buffered. All output for this file will go
to a buffer (of size size). Output will be passed on to the host system only when the buffer is full, or when an input operation
intervenes.

You may, if you wish, supply your own buffer by passing a pointer to it as the argument buf. It must have size size. You can
also use NULL as the value of buf, to signal that the setbuffer function is to allocate the buffer.

The Red Hat newlib C Library 101 / 229

Warnings

You may only use setbuffer before performing any file operation other than opening the file.

If you supply a non-null buf, you must ensure that the associated storage continues to be available until you close the stream
identified by fp.

Returns

setbuffer does not return a result.

Portability

This function comes from BSD not ANSI or POSIX.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.57 setlinebuf

setlinebuf — specify line buffering for a file or stream

Synopsis

#include <stdio.h>

void setlinebuf(FILE *fp);

Description

setlinebuf specifies that output to the file or stream identified by fp should be line buffered. This causes the file or stream
to pass on output to the host system at every newline, as well as when the buffer is full, or when an input operation intervenes.

Warnings

You may only use setlinebuf before performing any file operation other than opening the file.

Returns

setlinebuf returns as per setvbuf.

Portability

This function comes from BSD not ANSI or POSIX.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.58 setvbuf

setvbuf — specify file or stream buffering

The Red Hat newlib C Library 102 / 229

Synopsis

#include <stdio.h>

int setvbuf(FILE *fp, char *buf, int mode, size_t size);

Description

Use setvbuf to specify what kind of buffering you want for the file or stream identified by fp, by using one of the following
values (from stdio.h) as the mode argument:

_IONBF
Do not use a buffer: send output directly to the host system
for the file or stream identified by fp.

_IOFBF

Use full output buffering: output will be passed on to the
host system only when the buffer is full, or when an input
operation intervenes.

_IOLBF

Use line buffering: pass on output to the host system at
every newline, as well as when the buffer is full, or when
an input operation intervenes.

Use the size argument to specify how large a buffer you wish. You can supply the buffer itself, if you wish, by passing a pointer
to a suitable area of memory as buf. Otherwise, you may pass NULL as the buf argument, and setvbuf will allocate the
buffer.

Warnings

You may only use setvbuf before performing any file operation other than opening the file.

If you supply a non-null buf, you must ensure that the associated storage continues to be available until you close the stream
identified by fp.

Returns

A 0 result indicates success, EOF failure (invalid mode or size can cause failure).

Portability

Both ANSI C and the System V Interface Definition (Issue 2) require setvbuf. However, they differ on the meaning of a
NULL buffer pointer: the SVID issue 2 specification says that a NULL buffer pointer requests unbuffered output. For maximum
portability, avoid NULL buffer pointers.

Both specifications describe the result on failure only as a nonzero value.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.59 siprintf

siprintf, fiprintf, iprintf, sniprintf, asiprintf, asniprintf, _fiprintf_r, _iprintf_r, _siprintf_r, _sniprintf_r, _asiprintf_r, _asniprintf_r
— format output (integer only)

The Red Hat newlib C Library 103 / 229

Synopsis

#include <stdio.h>

int iprintf(const char *format);(...);
int fiprintf(FILE *fd, const char *format);(...);
int siprintf(char *str, const char *format);(...);
int sniprintf(char *str, size_t size, const char *format);(...);
int asiprintf(char **strp, const char *format);(...);
char *asniprintf(char *str, size_t *size, const char *format);(...);
int _iprintf_r(struct _reent *ptr, const char *format);(...);
int _fiprintf_r(struct _reent *ptr, FILE *fd, const char *format);(...);
int _siprintf_r(struct _reent *ptr, char *str, const char *format);(...);
int _sniprintf_r(struct _reent *ptr, char *str, size_t size, const char *format);(...);
int _asiprintf_r(struct _reent *ptr, char **strp, const char *format);(...);
char *_asniprintf_r(struct _reent *ptr, char *str, size_t *size, const char *format);(...);

Description

iprintf, fiprintf, siprintf, sniprintf, asiprintf, and asniprintf are the same as printf, fprintf,
sprintf, snprintf, asprintf, and asnprintf, respectively, except that they restrict usage to non-floating-point format
specifiers.

_iprintf_r, _fiprintf_r, _asiprintf_r, _siprintf_r, _sniprintf_r, _asniprintf_r are simply reen-
trant versions of the functions above.

Returns

Similar to printf, fprintf, sprintf, snprintf, asprintf, and asnprintf.

Portability

iprintf, fiprintf, siprintf, sniprintf, asiprintf, and asniprintf are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.60 siscanf

siscanf, fiscanf, iscanf, _iscanf_r, _fiscanf_r, _siscanf_r — scan and format non-floating input

Synopsis

#include <stdio.h>

int iscanf(const char *format);(...);
int fiscanf(FILE *fd, const char *format);(...);
int siscanf(const char *str, const char *format);(...);
int _iscanf_r(struct _reent *ptr, const char *format);(...);
int _fiscanf_r(struct _reent *ptr, FILE *fd, const char *format);(...);
int _siscanf_r(struct _reent *ptr, const char *str, const char *format);(...);

The Red Hat newlib C Library 104 / 229

Description

iscanf, fiscanf, and siscanf are the same as scanf, fscanf, and sscanf respectively, only that they restrict the
available formats to non-floating-point format specifiers.

The routines _iscanf_r, _fiscanf_r, and _siscanf_r are reentrant versions of iscanf, fiscanf, and siscanf
that take an additional first argument pointing to a reentrancy structure.

Returns

iscanf returns the number of input fields successfully scanned, converted and stored; the return value does not include scanned
fields which were not stored.

If iscanf attempts to read at end-of-file, the return value is EOF.

If no fields were stored, the return value is 0.

Portability

iscanf, fiscanf, and siscanf are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.61 sprintf

sprintf, fprintf, printf, snprintf, asprintf, asnprintf, _fprintf_r, _printf_r, _asprintf_r, _sprintf_r, _snprintf_r, _asnprintf_r — format
output

Synopsis

#include <stdio.h>

int printf(const char *restrict format);(...);
int fprintf(FILE *restrict fd, const char *restrict format);(...);
int sprintf(char *restrict str, const char *restrict format);(...);
int snprintf(char *restrict str, size_t size, const char *restrict format);(...);
int asprintf(char **restrict strp, const char *restrict format);(...);
char *asnprintf(char *restrict str, size_t *restrict size, const char *restrict format);(...);
int _printf_r(struct _reent *ptr, const char *restrict format);(...);
int _fprintf_r(struct _reent *ptr, FILE *restrict fd, const char *restrict format);(...);
int _sprintf_r(struct _reent *ptr, char *restrict str, const char *restrict format);(...);
int _snprintf_r(struct _reent *ptr, char *restrict str, size_t size, const char *restrict format);(...);
int _asprintf_r(struct _reent *ptr, char **restrict strp, const char *restrict format);(...);
char *_asnprintf_r(struct _reent *ptr, char *restrict str, size_t *restrict size, const char *restrict format);(...);

Description

printf accepts a series of arguments, applies to each a format specifier from *format, and writes the formatted data to
stdout, without a terminating NUL character. The behavior of printf is undefined if there are not enough arguments for
the format. printf returns when it reaches the end of the format string. If there are more arguments than the format requires,
excess arguments are ignored.

fprintf is like printf, except that output is directed to the stream fd rather than stdout.

The Red Hat newlib C Library 105 / 229

sprintf is like printf, except that output is directed to the buffer str, and a terminating NUL is output. Behavior is
undefined if more output is generated than the buffer can hold.

snprintf is like sprintf, except that output is limited to at most size bytes, including the terminating NUL. As a special
case, if size is 0, str can be NULL, and snprintf merely calculates how many bytes would be printed.

asprintf is like sprintf, except that the output is stored in a dynamically allocated buffer, pstr, which should be freed
later with free.

asnprintf is like sprintf, except that the return type is either the original str if it was large enough, or a dynamically
allocated string if the output exceeds *size; the length of the result is returned in *size. When dynamic allocation occurs, the
contents of the original str may have been modified.

For sprintf, snprintf, and asnprintf, the behavior is undefined if the output *str overlaps with one of the arguments.
Behavior is also undefined if the argument for %n within *format overlaps another argument.

format is a pointer to a character string containing two types of objects: ordinary characters (other than %), which are copied
unchanged to the output, and conversion specifications, each of which is introduced by %. (To include % in the output, use %% in
the format string.) A conversion specification has the following form:

%[pos][flags][width][.prec][size]type

The fields of the conversion specification have the following meanings:

• pos

Conversions normally consume arguments in the order that they are presented. However, it is possible to consume arguments
out of order, and reuse an argument for more than one conversion specification (although the behavior is undefined if the same
argument is requested with different types), by specifying pos, which is a decimal integer followed by ’$’. The integer must
be between 1 and <NL_ARGMAX> from limits.h, and if argument %n$ is requested, all earlier arguments must be requested
somewhere within format. If positional parameters are used, then all conversion specifications except for %% must specify a
position. This positional parameters method is a POSIX extension to the C standard definition for the functions.

• flags

flags is an optional sequence of characters which control output justification, numeric signs, decimal points, trailing zeros,
and octal and hex prefixes. The flag characters are minus (-), plus (+), space (), zero (0), sharp (#), and quote (’). They can
appear in any combination, although not all flags can be used for all conversion specification types.

’

A POSIX extension to the C standard. However, this
implementation presently treats it as a no-op, which is the
default behavior for the C locale, anyway. (If it did what it
is supposed to, when type were i, d, u, f, F, g, or G, the
integer portion of the conversion would be formatted with
thousands’ grouping wide characters.)

-

The result of the conversion is left justified, and the right
is padded with blanks. If you do not use this flag, the
result is right justified, and padded on the left.

+

The result of a signed conversion (as determined by type
of d, i, a, A, e, E, f, F, g, or G) will always begin with a
plus or minus sign. (If you do not use this flag, positive
values do not begin with a plus sign.)

" " (space)

If the first character of a signed conversion specification is
not a sign, or if a signed conversion results in no
characters, the result will begin with a space. If the space (
) flag and the plus (+) flag both appear, the space flag is
ignored.

The Red Hat newlib C Library 106 / 229

0

If the type character is d, i, o, u, x, X, a, A, e, E, f, F,
g, or G: leading zeros are used to pad the field width
(following any indication of sign or base); no spaces are
used for padding. If the zero (0) and minus (-) flags both
appear, the zero (0) flag will be ignored. For d, i, o, u, x,
and X conversions, if a precision prec is specified, the
zero (0) flag is ignored.
Note that 0 is interpreted as a flag, not as the beginning of
a field width.

#
The result is to be converted to an alternative form,
according to the type character.

The alternative form output with the # flag depends on the type character:

o
Increases precision to force the first digit of the result to
be a zero.

x
A non-zero result will have a 0x prefix.

X
A non-zero result will have a 0X prefix.

a, A, e, E, f, or F

The result will always contain a decimal point even if no
digits follow the point. (Normally, a decimal point appears
only if a digit follows it.) Trailing zeros are removed.

g or G
The result will always contain a decimal point even if no
digits follow the point. Trailing zeros are not removed.

all others
Undefined.

• width

width is an optional minimum field width. You can either specify it directly as a decimal integer, or indirectly by using
instead an asterisk (*), in which case an int argument is used as the field width. If positional arguments are used, then the
width must also be specified positionally as *m$, with m as a decimal integer. Negative field widths are treated as specifying
the minus (-) flag for left justfication, along with a positive field width. The resulting format may be wider than the specified
width.

• prec

prec is an optional field; if present, it is introduced with `.’ (a period). You can specify the precision either directly as a
decimal integer or indirectly by using an asterisk (*), in which case an int argument is used as the precision. If positional
arguments are used, then the precision must also be specified positionally as *m$, with m as a decimal integer. Supplying a
negative precision is equivalent to omitting the precision. If only a period is specified the precision is zero. The effect depends
on the conversion type.

d, i, o, u, x, or X
Minimum number of digits to appear. If no precision is
given, defaults to 1.

a or A

Number of digits to appear after the decimal point. If no
precision is given, the precision defaults to the minimum
needed for an exact representation.

e, E, f or F
Number of digits to appear after the decimal point. If no
precision is given, the precision defaults to 6.

The Red Hat newlib C Library 107 / 229

g or G

Maximum number of significant digits. A precision of 0 is
treated the same as a precision of 1. If no precision is
given, the precision defaults to 6.

s or S
Maximum number of characters to print from the string. If
no precision is given, the entire string is printed.

all others
undefined.

• size

size is an optional modifier that changes the data type that the corresponding argument has. Behavior is unspecified if a size
is given that does not match the type.

hh

With d, i, o, u, x, or X, specifies that the argument should
be converted to a signed char or unsigned char
before printing.
With n, specifies that the argument is a pointer to a
signed char.

h

With d, i, o, u, x, or X, specifies that the argument should
be converted to a short or unsigned short before
printing.
With n, specifies that the argument is a pointer to a
short.

l

With d, i, o, u, x, or X, specifies that the argument is a
long or unsigned long.
With c, specifies that the argument has type wint_t.
With s, specifies that the argument is a pointer to
wchar_t.
With n, specifies that the argument is a pointer to a long.
With a, A, e, E, f, F, g, or G, has no effect (because of
vararg promotion rules, there is no need to distinguish
between float and double).

ll

With d, i, o, u, x, or X, specifies that the argument is a
long long or unsigned long long.
With n, specifies that the argument is a pointer to a long
long.

j

With d, i, o, u, x, or X, specifies that the argument is an
intmax_t or uintmax_t.
With n, specifies that the argument is a pointer to an
intmax_t.

z

With d, i, o, u, x, or X, specifies that the argument is a
size_t.
With n, specifies that the argument is a pointer to a
size_t.

t

With d, i, o, u, x, or X, specifies that the argument is a
ptrdiff_t.
With n, specifies that the argument is a pointer to a
ptrdiff_t.

The Red Hat newlib C Library 108 / 229

L
With a, A, e, E, f, F, g, or G, specifies that the argument
is a long double.

• type

type specifies what kind of conversion printf performs. Here is a table of these:

%
Prints the percent character (%).

c
Prints arg as single character. If the l size specifier is in
effect, a multibyte character is printed.

C
Short for %lc. A POSIX extension to the C standard.

s

Prints the elements of a pointer to char until the
precision or a null character is reached. If the l size
specifier is in effect, the pointer is to an array of
wchar_t, and the string is converted to multibyte
characters before printing.

S
Short for %ls. A POSIX extension to the C standard.

d or i

Prints a signed decimal integer; takes an int. Leading
zeros are inserted as necessary to reach the precision. A
value of 0 with a precision of 0 produces an empty string.

D
Newlib extension, short for %ld.

o

Prints an unsigned octal integer; takes an unsigned.
Leading zeros are inserted as necessary to reach the
precision. A value of 0 with a precision of 0 produces an
empty string.

O
Newlib extension, short for %lo.

u

Prints an unsigned decimal integer; takes an unsigned.
Leading zeros are inserted as necessary to reach the
precision. A value of 0 with a precision of 0 produces an
empty string.

U
Newlib extension, short for %lu.

x

Prints an unsigned hexadecimal integer (using abcdef as
digits beyond 9); takes an unsigned. Leading zeros are
inserted as necessary to reach the precision. A value of 0
with a precision of 0 produces an empty string.

X
Like x, but uses ABCDEF as digits beyond 9.

The Red Hat newlib C Library 109 / 229

f

Prints a signed value of the form [-]9999.9999, with
the precision determining how many digits follow the
decimal point; takes a double (remember that float
promotes to double as a vararg). The low order digit is
rounded to even. If the precision results in at most
DECIMAL_DIG digits, the result is rounded correctly; if
more than DECIMAL_DIG digits are printed, the result is
only guaranteed to round back to the original value.
If the value is infinite, the result is inf, and no zero
padding is performed. If the value is not a number, the
result is nan, and no zero padding is performed.

F
Like f, but uses INF and NAN for non-finite numbers.

e

Prints a signed value of the form [-]9.9999e[+|-
]999; takes a double. The digit before the decimal
point is non-zero if the value is non-zero. The precision
determines how many digits appear between . and e, and
the exponent always contains at least two digits. The
value zero has an exponent of zero. If the value is not
finite, it is printed like f.

E
Like e, but using E to introduce the exponent, and like F
for non-finite values.

g

Prints a signed value in either f or e form, based on the
given value and precision---an exponent less than -4 or
greater than the precision selects the e form. Trailing
zeros and the decimal point are printed only if necessary;
takes a double.

G
Like g, except use F or E form.

a

Prints a signed value of the form [-]0x1.ffffp[+|-
]9; takes a double. The letters abcdef are used for
digits beyond 9. The precision determines how many
digits appear after the decimal point. The exponent
contains at least one digit, and is a decimal value
representing the power of 2; a value of 0 has an exponent
of 0. Non-finite values are printed like f.

A
Like a, except uses X, P, and ABCDEF instead of lower
case.

n
Takes a pointer to int, and stores a count of the number
of bytes written so far. No output is created.

p

Takes a pointer to void, and prints it in an
implementation-defined format. This implementation is
similar to %#tx), except that 0x appears even for the
NULL pointer.

m
Prints the output of strerror(errno); no argument is
required. A GNU extension.

_printf_r, _fprintf_r, _asprintf_r, _sprintf_r, _snprintf_r, _asnprintf_r are simply reentrant ver-

The Red Hat newlib C Library 110 / 229

sions of the functions above.

Returns

On success, sprintf and asprintf return the number of bytes in the output string, except the concluding NUL is not counted.
snprintf returns the number of bytes that would be in the output string, except the concluding NUL is not counted. printf
and fprintf return the number of characters transmitted. asnprintf returns the original str if there was enough room,
otherwise it returns an allocated string.

If an error occurs, the result of printf, fprintf, snprintf, and asprintf is a negative value, and the result of asnpri
ntf is NULL. No error returns occur for sprintf. For printf and fprintf, errno may be set according to fputc. For
asprintf and asnprintf, errno may be set to ENOMEM if allocation fails, and for snprintf, errno may be set to
EOVERFLOW if size or the output length exceeds INT_MAX.

Bugs

The ``”’ (quote) flag does not work when locale’s thousands_sep is not empty.

Portability

ANSI C requires printf, fprintf, sprintf, and snprintf. asprintf and asnprintf are newlib extensions.

The ANSI C standard specifies that implementations must support at least formatted output of up to 509 characters. This
implementation has no inherent limit.

Depending on how newlib was configured, not all format specifiers are supported.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.62 sscanf

sscanf, fscanf, scanf, _scanf_r, _fscanf_r, _sscanf_r — scan and format input

Synopsis

#include <stdio.h>

int scanf(const char *restrict format);(...);
int fscanf(FILE *restrict fd, const char *restrict format);(...);
int sscanf(const char *restrict str, const char *restrict format);(...);
int _scanf_r(struct _reent *ptr, const char *restrict format);(...);
int _fscanf_r(struct _reent *ptr, FILE *restrict fd, const char *restrict format);(...);
int _sscanf_r(struct _reent *ptr, const char *restrict str, const char *restrict format);(...);

Description

scanf scans a series of input fields from standard input, one character at a time. Each field is interpreted according to a format
specifier passed to scanf in the format string at *format. scanf stores the interpreted input from each field at the address
passed to it as the corresponding argument following format. You must supply the same number of format specifiers and
address arguments as there are input fields.

There must be sufficient address arguments for the given format specifiers; if not the results are unpredictable and likely disas-
terous. Excess address arguments are merely ignored.

The Red Hat newlib C Library 111 / 229

scanf often produces unexpected results if the input diverges from an expected pattern. Since the combination of gets or
fgets followed by sscanf is safe and easy, that is the preferred way to be certain that a program is synchronized with input
at the end of a line.

fscanf and sscanf are identical to scanf, other than the source of input: fscanf reads from a file, and sscanf from a
string.

The routines _scanf_r, _fscanf_r, and _sscanf_r are reentrant versions of scanf, fscanf, and sscanf that take an
additional first argument pointing to a reentrancy structure.

The string at *format is a character sequence composed of zero or more directives. Directives are composed of one or more
whitespace characters, non-whitespace characters, and format specifications.

Whitespace characters are blank (), tab (\t), or newline (\n). When scanf encounters a whitespace character in the format
string it will read (but not store) all consecutive whitespace characters up to the next non-whitespace character in the input.

Non-whitespace characters are all other ASCII characters except the percent sign (%). When scanf encounters a non-whitespace
character in the format string it will read, but not store a matching non-whitespace character.

Format specifications tell scanf to read and convert characters from the input field into specific types of values, and store then
in the locations specified by the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format string.

The format specifiers must begin with a percent sign (%) and have the following form:

%[*][width][size]type

Each format specification begins with the percent character (%). The other fields are:

• *

an optional marker; if present, it suppresses interpretation and assignment of this input field.

• width

an optional maximum field width: a decimal integer, which controls the maximum number of characters that will be read
before converting the current input field. If the input field has fewer than width characters, scanf reads all the characters in
the field, and then proceeds with the next field and its format specification.

If a whitespace or a non-convertable character occurs before width character are read, the characters up to that character are
read, converted, and stored. Then scanf proceeds to the next format specification.

• size

h, j, l, L, t, and z are optional size characters which override the default way that scanf interprets the data type of the
corresponding argument.

Modifier Type(s)

hh d, i, o, u, x, n convert input to char, store in char object

h d, i, o, u, x, n convert input to short, store in short object

h D, I, O, U, X, e, f, c, s, p no effect

j d, i, o, u, x, n convert input to intmax_t, store in intmax_t object

j all others no effect

l d, i, o, u, x, n convert input to long, store in long object

l e, f, g convert input to double, store in a double object

The Red Hat newlib C Library 112 / 229

Modifier Type(s)

l D, I, O, U, X, c, s, p no effect

ll d, i, o, u, x, n convert to long long, store in long long object

L d, i, o, u, x, n convert to long long, store in long long object

L e, f, g, E, G convert to long double, store in long double object

L all others no effect

t d, i, o, u, x, n convert input to ptrdiff_t, store in ptrdiff_t object

t all others no effect

z d, i, o, u, x, n convert input to size_t, store in size_t object

z all others no effect

• type

A character to specify what kind of conversion scanf performs. Here is a table of the conversion characters:

%
No conversion is done; the percent character (%) is stored.

c
Scans one character. Corresponding arg: (char
*arg).

s
Reads a character string into the array supplied.
Corresponding arg: (char arg[]).

[pattern]

Reads a non-empty character string into memory starting
at arg. This area must be large enough to accept the
sequence and a terminating null character which will be
added automatically. (pattern is discussed in the
paragraph following this table). Corresponding arg:
(char *arg).

d
Reads a decimal integer into the corresponding arg:
(int *arg).

D
Reads a decimal integer into the corresponding arg:
(long *arg).

o
Reads an octal integer into the corresponding arg: (int
*arg).

O
Reads an octal integer into the corresponding arg:
(long *arg).

u
Reads an unsigned decimal integer into the corresponding
arg: (unsigned int *arg).

U
Reads an unsigned decimal integer into the corresponding
arg: (unsigned long *arg).

The Red Hat newlib C Library 113 / 229

x,X
Read a hexadecimal integer into the corresponding arg:
(int *arg).

e, f, g
Read a floating-point number into the corresponding arg:
(float *arg).

E, F, G
Read a floating-point number into the corresponding arg:
(double *arg).

i
Reads a decimal, octal or hexadecimal integer into the
corresponding arg: (int *arg).

I
Reads a decimal, octal or hexadecimal integer into the
corresponding arg: (long *arg).

n
Stores the number of characters read in the corresponding
arg: (int *arg).

p

Stores a scanned pointer. ANSI C leaves the details to
each implementation; this implementation treats %p
exactly the same as %U. Corresponding arg: (void
**arg).

A pattern of characters surrounded by square brackets can be used instead of the s type character. pattern is a set
of characters which define a search set of possible characters making up the scanf input field. If the first character in the
brackets is a caret (ˆ), the search set is inverted to include all ASCII characters except those between the brackets. There is
also a range facility which you can use as a shortcut. %[0-9] matches all decimal digits. The hyphen must not be the first
or last character in the set. The character prior to the hyphen must be lexically less than the character after it.

Here are some pattern examples:

%[abcd]
matches strings containing only a, b, c, and d.

%[ˆabcd]
matches strings containing any characters except a, b, c,
or d

%[A-DW-Z] matches strings containing A, B, C, D, W, X, Y, Z
%[z-a] matches the characters z, -, and a

Floating point numbers (for field types e, f, g, E, F, G) must correspond to the following general form:

[+/-] ddddd[.]ddd [E|e[+|-]ddd]

where objects inclosed in square brackets are optional, and ddd represents decimal, octal, or hexadecimal digits.

Returns

scanf returns the number of input fields successfully scanned, converted and stored; the return value does not include scanned
fields which were not stored.

If scanf attempts to read at end-of-file, the return value is EOF.

If no fields were stored, the return value is 0.

scanf might stop scanning a particular field before reaching the normal field end character, or may terminate entirely.

scanf stops scanning and storing the current field and moves to the next input field (if any) in any of the following situations:

The Red Hat newlib C Library 114 / 229

• The assignment suppressing character (*) appears after the % in the format specification; the current input field is scanned but
not stored.

• width characters have been read (width is a width specification, a positive decimal integer).

• The next character read cannot be converted under the the current format (for example, if a Z is read when the format is
decimal).

• The next character in the input field does not appear in the search set (or does appear in the inverted search set).

When scanf stops scanning the current input field for one of these reasons, the next character is considered unread and used as
the first character of the following input field, or the first character in a subsequent read operation on the input.

scanf will terminate under the following circumstances:

• The next character in the input field conflicts with a corresponding non-whitespace character in the format string.

• The next character in the input field is EOF.

• The format string has been exhausted.

When the format string contains a character sequence that is not part of a format specification, the same character sequence must
appear in the input; scanf will scan but not store the matched characters. If a conflict occurs, the first conflicting character
remains in the input as if it had never been read.

Portability

scanf is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.63 stdio_ext

stdio_ext, __fbufsize, __fpending, __flbf, __freadable, __fwritable, __freading, __fwriting — access internals of FILE structure

Synopsis

#include <stdio.h>

#include <stdio_ext.h>

size_t __fbufsize(FILE *fp);
size_t __fpending(FILE *fp);
int __flbf(FILE *fp);
int __freadable(FILE *fp);
int __fwritable(FILE *fp);
int __freading(FILE *fp);
int __fwriting(FILE *fp);

Description

These functions provides access to the internals of the FILE structure fp.

The Red Hat newlib C Library 115 / 229

Returns

__fbufsize returns the number of bytes in the buffer of stream fp.

__fpending returns the number of bytes in the output buffer of stream fp.

__flbf returns nonzero if stream fp is line-buffered, and 0 if not.

__freadable returns nonzero if stream fp may be read, and 0 if not.

__fwritable returns nonzero if stream fp may be written, and 0 if not.

__freading returns nonzero if stream fp if the last operation on it was a read, or if it read-only, and 0 if not.

__fwriting returns nonzero if stream fp if the last operation on it was a write, or if it write-only, and 0 if not.

Portability

These functions originate from Solaris and are also provided by GNU libc.

No supporting OS subroutines are required.

3.64 swprintf

swprintf, fwprintf, wprintf, _fwprintf_r, _wprintf_r, _swprintf_r — wide character format output

Synopsis

#include <wchar.h>

int wprintf(const wchar_t *format);(...);
int fwprintf(FILE *__restrict fd, const wchar_t *__restrict format);(...);
int swprintf(wchar_t *__restrict str, size_t size, const wchar_t *__restrict format);(...);
int _wprintf_r(struct _reent *ptr, const wchar_t *format);(...);
int _fwprintf_r(struct _reent *ptr, FILE *fd, const wchar_t *format);(...);
int _swprintf_r(struct _reent *ptr, wchar_t *str, size_t size, const wchar_t *format);(...);

Description

wprintf accepts a series of arguments, applies to each a format specifier from *format, and writes the formatted data to
stdout, without a terminating NUL wide character. The behavior of wprintf is undefined if there are not enough arguments
for the format or if any argument is not the right type for the corresponding conversion specifier. wprintf returns when it
reaches the end of the format string. If there are more arguments than the format requires, excess arguments are ignored.

fwprintf is like wprintf, except that output is directed to the stream fd rather than stdout.

swprintf is like wprintf, except that output is directed to the buffer str with a terminating wide NUL, and the resulting
string length is limited to at most size wide characters, including the terminating NUL. It is considered an error if the output
(including the terminating wide-NULL) does not fit into size wide characters. (This error behavior is not the same as for
snprintf, which swprintf is otherwise completely analogous to. While snprintf allows the needed size to be known
simply by giving size=0, swprintf does not, giving an error instead.)

For swprintf the behavior is undefined if the output *str overlaps with one of the arguments. Behavior is also undefined if
the argument for %n within *format overlaps another argument.

format is a pointer to a wide character string containing two types of objects: ordinary characters (other than %), which are
copied unchanged to the output, and conversion specifications, each of which is introduced by %. (To include % in the output, use
%% in the format string.) A conversion specification has the following form:

The Red Hat newlib C Library 116 / 229

%[pos][flags][width][.prec][size]type

The fields of the conversion specification have the following meanings:

• pos

Conversions normally consume arguments in the order that they are presented. However, it is possible to consume arguments
out of order, and reuse an argument for more than one conversion specification (although the behavior is undefined if the same
argument is requested with different types), by specifying pos, which is a decimal integer followed by ’$’. The integer must
be between 1 and <NL_ARGMAX> from limits.h, and if argument %n$ is requested, all earlier arguments must be requested
somewhere within format. If positional parameters are used, then all conversion specifications except for %% must specify a
position. This positional parameters method is a POSIX extension to the C standard definition for the functions.

• flags

flags is an optional sequence of characters which control output justification, numeric signs, decimal points, trailing zeros,
and octal and hex prefixes. The flag characters are minus (-), plus (+), space (), zero (0), sharp (#), and quote (’). They can
appear in any combination, although not all flags can be used for all conversion specification types.

’

A POSIX extension to the C standard. However, this
implementation presently treats it as a no-op, which is the
default behavior for the C locale, anyway. (If it did what it
is supposed to, when type were i, d, u, f, F, g, or G, the
integer portion of the conversion would be formatted with
thousands’ grouping wide characters.)

-

The result of the conversion is left justified, and the right
is padded with blanks. If you do not use this flag, the
result is right justified, and padded on the left.

+

The result of a signed conversion (as determined by type
of d, i, a, A, e, E, f, F, g, or G) will always begin with a
plus or minus sign. (If you do not use this flag, positive
values do not begin with a plus sign.)

" " (space)

If the first character of a signed conversion specification is
not a sign, or if a signed conversion results in no
characters, the result will begin with a space. If the space (
) flag and the plus (+) flag both appear, the space flag is
ignored.

0

If the type character is d, i, o, u, x, X, a, A, e, E, f, F,
g, or G: leading zeros are used to pad the field width
(following any indication of sign or base); no spaces are
used for padding. If the zero (0) and minus (-) flags both
appear, the zero (0) flag will be ignored. For d, i, o, u, x,
and X conversions, if a precision prec is specified, the
zero (0) flag is ignored.
Note that 0 is interpreted as a flag, not as the beginning of
a field width.

#
The result is to be converted to an alternative form,
according to the type character.

The alternative form output with the # flag depends on the type character:

The Red Hat newlib C Library 117 / 229

o
Increases precision to force the first digit of the result to
be a zero.

x
A non-zero result will have a 0x prefix.

X
A non-zero result will have a 0X prefix.

a, A, e, E, f, or F

The result will always contain a decimal point even if no
digits follow the point. (Normally, a decimal point appears
only if a digit follows it.) Trailing zeros are removed.

g or G
The result will always contain a decimal point even if no
digits follow the point. Trailing zeros are not removed.

all others
Undefined.

• width

width is an optional minimum field width. You can either specify it directly as a decimal integer, or indirectly by using
instead an asterisk (*), in which case an int argument is used as the field width. If positional arguments are used, then the
width must also be specified positionally as *m$, with m as a decimal integer. Negative field widths are treated as specifying
the minus (-) flag for left justfication, along with a positive field width. The resulting format may be wider than the specified
width.

• prec

prec is an optional field; if present, it is introduced with `.’ (a period). You can specify the precision either directly as a
decimal integer or indirectly by using an asterisk (*), in which case an int argument is used as the precision. If positional
arguments are used, then the precision must also be specified positionally as *m$, with m as a decimal integer. Supplying a
negative precision is equivalent to omitting the precision. If only a period is specified the precision is zero. The effect depends
on the conversion type.

d, i, o, u, x, or X
Minimum number of digits to appear. If no precision is
given, defaults to 1.

a or A

Number of digits to appear after the decimal point. If no
precision is given, the precision defaults to the minimum
needed for an exact representation.

e, E, f or F
Number of digits to appear after the decimal point. If no
precision is given, the precision defaults to 6.

g or G

Maximum number of significant digits. A precision of 0 is
treated the same as a precision of 1. If no precision is
given, the precision defaults to 6.

s or S
Maximum number of characters to print from the string. If
no precision is given, the entire string is printed.

all others
undefined.

• size

size is an optional modifier that changes the data type that the corresponding argument has. Behavior is unspecified if a size
is given that does not match the type.

The Red Hat newlib C Library 118 / 229

hh

With d, i, o, u, x, or X, specifies that the argument should
be converted to a signed char or unsigned char
before printing.
With n, specifies that the argument is a pointer to a
signed char.

h

With d, i, o, u, x, or X, specifies that the argument should
be converted to a short or unsigned short before
printing.
With n, specifies that the argument is a pointer to a
short.

l

With d, i, o, u, x, or X, specifies that the argument is a
long or unsigned long.
With c, specifies that the argument has type wint_t.
With s, specifies that the argument is a pointer to
wchar_t.
With n, specifies that the argument is a pointer to a long.
With a, A, e, E, f, F, g, or G, has no effect (because of
vararg promotion rules, there is no need to distinguish
between float and double).

ll

With d, i, o, u, x, or X, specifies that the argument is a
long long or unsigned long long.
With n, specifies that the argument is a pointer to a long
long.

j

With d, i, o, u, x, or X, specifies that the argument is an
intmax_t or uintmax_t.
With n, specifies that the argument is a pointer to an
intmax_t.

z

With d, i, o, u, x, or X, specifies that the argument is a
size_t.
With n, specifies that the argument is a pointer to a
size_t.

t

With d, i, o, u, x, or X, specifies that the argument is a
ptrdiff_t.
With n, specifies that the argument is a pointer to a
ptrdiff_t.

L
With a, A, e, E, f, F, g, or G, specifies that the argument
is a long double.

• type

type specifies what kind of conversion wprintf performs. Here is a table of these:

%
Prints the percent character (%).

The Red Hat newlib C Library 119 / 229

c

If no l qualifier is present, the int argument shall be
converted to a wide character as if by calling the btowc()
function and the resulting wide character shall be written.
Otherwise, the wint_t argument shall be converted to
wchar_t, and written.

C
Short for %lc. A POSIX extension to the C standard.

s

If no l qualifier is present, the application shall ensure
that the argument is a pointer to a character array
containing a character sequence beginning in the initial
shift state. Characters from the array shall be converted as
if by repeated calls to the mbrtowc() function, with the
conversion state described by an mbstate_t object
initialized to zero before the first character is converted,
and written up to (but not including) the terminating null
wide character. If the precision is specified, no more than
that many wide characters shall be written. If the
precision is not specified, or is greater than the size of the
array, the application shall ensure that the array contains a
null wide character.
If an l qualifier is present, the application shall ensure
that the argument is a pointer to an array of type wchar_t.
Wide characters from the array shall be written up to (but
not including) a terminating null wide character. If no
precision is specified, or is greater than the size of the
array, the application shall ensure that the array contains a
null wide character. If a precision is specified, no more
than that many wide characters shall be written.

S
Short for %ls. A POSIX extension to the C standard.

d or i

Prints a signed decimal integer; takes an int. Leading
zeros are inserted as necessary to reach the precision. A
value of 0 with a precision of 0 produces an empty string.

o

Prints an unsigned octal integer; takes an unsigned.
Leading zeros are inserted as necessary to reach the
precision. A value of 0 with a precision of 0 produces an
empty string.

u

Prints an unsigned decimal integer; takes an unsigned.
Leading zeros are inserted as necessary to reach the
precision. A value of 0 with a precision of 0 produces an
empty string.

x

Prints an unsigned hexadecimal integer (using abcdef as
digits beyond 9); takes an unsigned. Leading zeros are
inserted as necessary to reach the precision. A value of 0
with a precision of 0 produces an empty string.

X
Like x, but uses ABCDEF as digits beyond 9.

The Red Hat newlib C Library 120 / 229

f

Prints a signed value of the form [-]9999.9999, with
the precision determining how many digits follow the
decimal point; takes a double (remember that float
promotes to double as a vararg). The low order digit is
rounded to even. If the precision results in at most
DECIMAL_DIG digits, the result is rounded correctly; if
more than DECIMAL_DIG digits are printed, the result is
only guaranteed to round back to the original value.
If the value is infinite, the result is inf, and no zero
padding is performed. If the value is not a number, the
result is nan, and no zero padding is performed.

F
Like f, but uses INF and NAN for non-finite numbers.

e

Prints a signed value of the form [-]9.9999e[+|-
]999; takes a double. The digit before the decimal
point is non-zero if the value is non-zero. The precision
determines how many digits appear between . and e, and
the exponent always contains at least two digits. The
value zero has an exponent of zero. If the value is not
finite, it is printed like f.

E
Like e, but using E to introduce the exponent, and like F
for non-finite values.

g

Prints a signed value in either f or e form, based on the
given value and precision---an exponent less than -4 or
greater than the precision selects the e form. Trailing
zeros and the decimal point are printed only if necessary;
takes a double.

G
Like g, except use F or E form.

a

Prints a signed value of the form [-]0x1.ffffp[+|-
]9; takes a double. The letters abcdef are used for
digits beyond 9. The precision determines how many
digits appear after the decimal point. The exponent
contains at least one digit, and is a decimal value
representing the power of 2; a value of 0 has an exponent
of 0. Non-finite values are printed like f.

A
Like a, except uses X, P, and ABCDEF instead of lower
case.

n
Takes a pointer to int, and stores a count of the number
of bytes written so far. No output is created.

p

Takes a pointer to void, and prints it in an
implementation-defined format. This implementation is
similar to %#tx), except that 0x appears even for the
NULL pointer.

m
Prints the output of strerror(errno); no argument is
required. A GNU extension.

_wprintf_r, _fwprintf_r, _swprintf_r, are simply reentrant versions of the functions above.

The Red Hat newlib C Library 121 / 229

Returns

On success, swprintf return the number of wide characters in the output string, except the concluding NUL is not counted.
wprintf and fwprintf return the number of characters transmitted.

If an error occurs, the result of wprintf, fwprintf, and swprintf is a negative value. For wprintf and fwprintf,
errno may be set according to fputwc. For swprintf, errno may be set to EOVERFLOW if size is greater than
INT_MAX / sizeof (wchar_t), or when the output does not fit into size wide characters (including the terminating wide NULL).

Bugs

The ``”’ (quote) flag does not work when locale’s thousands_sep is not empty.

Portability

POSIX-1.2008 with extensions; C99 (compliant except for POSIX extensions).

Depending on how newlib was configured, not all format specifiers are supported.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.65 swscanf

swscanf, fwscanf, wscanf, _wscanf_r, _fwscanf_r, _swscanf_r — scan and format wide character input

Synopsis

#include <stdio.h>

int wscanf(const wchar_t *__restrict format);(...);
int fwscanf(FILE *__restrict fd, const wchar_t *__restrict format);(...);
int swscanf(const wchar_t *__restrict str, const wchar_t *__restrict format);(...);
int _wscanf_r(struct _reent *ptr, const wchar_t *format);(...);
int _fwscanf_r(struct _reent *ptr, FILE *fd, const wchar_t *format);(...);
int _swscanf_r(struct _reent *ptr, const wchar_t *str, const wchar_t *format);(...);

Description

wscanf scans a series of input fields from standard input, one wide character at a time. Each field is interpreted according to a
format specifier passed to wscanf in the format string at *format. wscanf stores the interpreted input from each field at the
address passed to it as the corresponding argument following format. You must supply the same number of format specifiers
and address arguments as there are input fields.

There must be sufficient address arguments for the given format specifiers; if not the results are unpredictable and likely disas-
terous. Excess address arguments are merely ignored.

wscanf often produces unexpected results if the input diverges from an expected pattern. Since the combination of gets or
fgets followed by swscanf is safe and easy, that is the preferred way to be certain that a program is synchronized with input
at the end of a line.

fwscanf and swscanf are identical to wscanf, other than the source of input: fwscanf reads from a file, and swscanf
from a string.

The routines _wscanf_r, _fwscanf_r, and _swscanf_r are reentrant versions of wscanf, fwscanf, and swscanf
that take an additional first argument pointing to a reentrancy structure.

The Red Hat newlib C Library 122 / 229

The string at *format is a wide character sequence composed of zero or more directives. Directives are composed of one or
more whitespace characters, non-whitespace characters, and format specifications.

Whitespace characters are blank (), tab (\t), or newline (\n). When wscanf encounters a whitespace character in the format
string it will read (but not store) all consecutive whitespace characters up to the next non-whitespace character in the input.

Non-whitespace characters are all other ASCII characters except the percent sign (%). When wscanf encounters a non-
whitespace character in the format string it will read, but not store a matching non-whitespace character.

Format specifications tell wscanf to read and convert characters from the input field into specific types of values, and store then
in the locations specified by the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format string.

The format specifiers must begin with a percent sign (%) and have the following form:

%[*][width][size]type

Each format specification begins with the percent character (%). The other fields are:

• *

an optional marker; if present, it suppresses interpretation and assignment of this input field.

• width

an optional maximum field width: a decimal integer, which controls the maximum number of characters that will be read
before converting the current input field. If the input field has fewer than width characters, wscanf reads all the characters
in the field, and then proceeds with the next field and its format specification.

If a whitespace or a non-convertable wide character occurs before width character are read, the characters up to that character
are read, converted, and stored. Then wscanf proceeds to the next format specification.

• size

h, j, l, L, t, and z are optional size characters which override the default way that wscanf interprets the data type of the
corresponding argument.

Modifier Type(s)

hh d, i, o, u, x, n convert input to char, store in char object

h d, i, o, u, x, n convert input to short, store in short object

h e, f, c, s, p no effect

j d, i, o, u, x, n convert input to intmax_t, store in intmax_t object

j all others no effect

l d, i, o, u, x, n convert input to long, store in long object

l e, f, g convert input to double, store in a double object

l c, s, [the input is stored in a wchar_t object

l p no effect

ll d, i, o, u, x, n convert to long long, store in long long object

L d, i, o, u, x, n convert to long long, store in long long object

The Red Hat newlib C Library 123 / 229

Modifier Type(s)

L e, f, g, E, G convert to long double, store in long double object

L all others no effect

t d, i, o, u, x, n convert input to ptrdiff_t, store in ptrdiff_t object

t all others no effect

z d, i, o, u, x, n convert input to size_t, store in size_t object

z all others no effect

• type

A character to specify what kind of conversion wscanf performs. Here is a table of the conversion characters:

%
No conversion is done; the percent character (%) is stored.

c

Scans one wide character. Corresponding arg: (char
*arg). Otherwise, if an l specifier is present, the
corresponding arg is a (wchar_t *arg).

s

Reads a character string into the array supplied.
Corresponding arg: (char arg[]). If an l specifier
is present, the corresponding arg is a (wchar_t
*arg).

[pattern]

Reads a non-empty character string into memory starting
at arg. This area must be large enough to accept the
sequence and a terminating null character which will be
added automatically. (pattern is discussed in the
paragraph following this table). Corresponding arg:
(char *arg). If an l specifier is present, the
corresponding arg is a (wchar_t *arg).

d
Reads a decimal integer into the corresponding arg:
(int *arg).

o
Reads an octal integer into the corresponding arg: (int
*arg).

u
Reads an unsigned decimal integer into the corresponding
arg: (unsigned int *arg).

x,X
Read a hexadecimal integer into the corresponding arg:
(int *arg).

e, f, g
Read a floating-point number into the corresponding arg:
(float *arg).

E, F, G
Read a floating-point number into the corresponding arg:
(double *arg).

The Red Hat newlib C Library 124 / 229

i
Reads a decimal, octal or hexadecimal integer into the
corresponding arg: (int *arg).

n
Stores the number of characters read in the corresponding
arg: (int *arg).

p

Stores a scanned pointer. ANSI C leaves the details to
each implementation; this implementation treats %p
exactly the same as %U. Corresponding arg: (void
**arg).

A pattern of characters surrounded by square brackets can be used instead of the s type character. pattern is a set of
characters which define a search set of possible characters making up the wscanf input field. If the first character in the
brackets is a caret (ˆ), the search set is inverted to include all ASCII characters except those between the brackets. There is
no range facility as is defined in the corresponding non-wide character scanf functions. Ranges are not part of the POSIX
standard.

Here are some pattern examples:

%[abcd]
matches wide character strings containing only a, b, c,
and d.

%[ˆabcd]
matches wide character strings containing any characters
except a, b, c, or d.

%[A-DW-Z]
Note: No wide character ranges, so this expression
matches wide character strings containing A, -, D, W, Z.

Floating point numbers (for field types e, f, g, E, F, G) must correspond to the following general form:

[+/-] ddddd[.]ddd [E|e[+|-]ddd]

where objects inclosed in square brackets are optional, and ddd represents decimal, octal, or hexadecimal digits.

Returns

wscanf returns the number of input fields successfully scanned, converted and stored; the return value does not include scanned
fields which were not stored.

If wscanf attempts to read at end-of-file, the return value is EOF.

If no fields were stored, the return value is 0.

wscanf might stop scanning a particular field before reaching the normal field end character, or may terminate entirely.

wscanf stops scanning and storing the current field and moves to the next input field (if any) in any of the following situations:

• The assignment suppressing character (*) appears after the % in the format specification; the current input field is scanned but
not stored.

• width characters have been read (width is a width specification, a positive decimal integer).

• The next wide character read cannot be converted under the the current format (for example, if a Z is read when the format is
decimal).

• The next wide character in the input field does not appear in the search set (or does appear in the inverted search set).

The Red Hat newlib C Library 125 / 229

When wscanf stops scanning the current input field for one of these reasons, the next character is considered unread and used
as the first character of the following input field, or the first character in a subsequent read operation on the input.

wscanf will terminate under the following circumstances:

• The next wide character in the input field conflicts with a corresponding non-whitespace character in the format string.

• The next wide character in the input field is WEOF.

• The format string has been exhausted.

When the format string contains a wide character sequence that is not part of a format specification, the same wide character
sequence must appear in the input; wscanfwill scan but not store the matched characters. If a conflict occurs, the first conflicting
wide character remains in the input as if it had never been read.

Portability

wscanf is C99, POSIX-1.2008.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.66 tmpfile

tmpfile, _tmpfile_r — create a temporary file

Synopsis

#include <stdio.h>

FILE *tmpfile(void);
FILE *_tmpfile_r(struct _reent *reent);

Description

Create a temporary file (a file which will be deleted automatically), using a name generated by tmpnam. The temporary file is
opened with the mode "wb+", permitting you to read and write anywhere in it as a binary file (without any data transformations
the host system may perform for text files).

The alternate function _tmpfile_r is a reentrant version. The argument reent is a pointer to a reentrancy structure.

Returns

tmpfile normally returns a pointer to the temporary file. If no temporary file could be created, the result is NULL, and errno
records the reason for failure.

Portability

Both ANSI C and the System V Interface Definition (Issue 2) require tmpfile.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek, open, read, sbrk, write.

tmpfile also requires the global pointer environ.

The Red Hat newlib C Library 126 / 229

3.67 tmpnam

tmpnam, tempnam, _tmpnam_r, _tempnam_r — name for a temporary file

Synopsis

#include <stdio.h>

char *tmpnam(char *s);
char *tempnam(char *dir, char *pfx);
char *_tmpnam_r(struct _reent *reent, char *s);
char *_tempnam_r(struct _reent *reent, char *dir, char *pfx);

Description

Use either of these functions to generate a name for a temporary file. The generated name is guaranteed to avoid collision with
other files (for up to TMP_MAX calls of either function).

tmpnam generates file names with the value of P_tmpdir (defined in `stdio.h’) as the leading directory component of the
path.

You can use the tmpnam argument s to specify a suitable area of memory for the generated filename; otherwise, you can call
tmpnam(NULL) to use an internal static buffer.

tempnam allows you more control over the generated filename: you can use the argument dir to specify the path to a directory
for temporary files, and you can use the argument pfx to specify a prefix for the base filename.

If dir is NULL, tempnam will attempt to use the value of environment variable TMPDIR instead; if there is no such value,
tempnam uses the value of P_tmpdir (defined in `stdio.h’).

If you don’t need any particular prefix to the basename of temporary files, you can pass NULL as the pfx argument to tempnam.

_tmpnam_r and _tempnam_r are reentrant versions of tmpnam and tempnam respectively. The extra argument reent is
a pointer to a reentrancy structure.

Warnings

The generated filenames are suitable for temporary files, but do not in themselves make files temporary. Files with these names
must still be explicitly removed when you no longer want them.

If you supply your own data area s for tmpnam, you must ensure that it has room for at least L_tmpnam elements of type
char.

Returns

Both tmpnam and tempnam return a pointer to the newly generated filename.

Portability

ANSI C requires tmpnam, but does not specify the use of P_tmpdir. The System V Interface Definition (Issue 2) requires
both tmpnam and tempnam.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek, open, read, sbrk, write.

The global pointer environ is also required.

The Red Hat newlib C Library 127 / 229

3.68 ungetc

ungetc, _ungetc_r — push data back into a stream

Synopsis

#include <stdio.h>

int ungetc(int c, FILE *stream);
int _ungetc_r(struct _reent *reent, int c, FILE *stream);

Description

ungetc is used to return bytes back to stream to be read again. If c is EOF, the stream is unchanged. Otherwise, the unsigned
char c is put back on the stream, and subsequent reads will see the bytes pushed back in reverse order. Pushed byes are lost if the
stream is repositioned, such as by fseek, fsetpos, or rewind.

The underlying file is not changed, but it is possible to push back something different than what was originally read. Ungetting a
character will clear the end-of-stream marker, and decrement the file position indicator. Pushing back beyond the beginning of a
file gives unspecified behavior.

The alternate function _ungetc_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

The character pushed back, or EOF on error.

Portability

ANSI C requires ungetc, but only requires a pushback buffer of one byte; although this implementation can handle multiple
bytes, not all can. Pushing back a signed char is a common application bug.

Supporting OS subroutines required: sbrk.

3.69 ungetwc

ungetwc, _ungetwc_r — push wide character data back into a stream

Synopsis

#include <stdio.h>

#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);
wint_t _ungetwc_r(struct _reent *reent, wint_t wc, FILE *stream);

The Red Hat newlib C Library 128 / 229

Description

ungetwc is used to return wide characters back to stream to be read again. If wc is WEOF, the stream is unchanged.
Otherwise, the wide character wc is put back on the stream, and subsequent reads will see the wide chars pushed back in reverse
order. Pushed wide chars are lost if the stream is repositioned, such as by fseek, fsetpos, or rewind.

The underlying file is not changed, but it is possible to push back something different than what was originally read. Ungetting a
character will clear the end-of-stream marker, and decrement the file position indicator. Pushing back beyond the beginning of a
file gives unspecified behavior.

The alternate function _ungetwc_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

The wide character pushed back, or WEOF on error.

Portability

C99

3.70 vfprintf

vfprintf, vprintf, vsprintf, vsnprintf, vasprintf, vasnprintf, _vfprintf_r, _vprintf_r, _vsprintf_r, _vsnprintf_r, _vasprintf_r, _vas-
nprintf_r — format argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vprintf(const char *fmt, va_list list);
int vfprintf(FILE *fp, const char *fmt, va_list list);
int vsprintf(char *str, const char *fmt, va_list list);
int vsnprintf(char *str, size_t size, const char *fmt, va_list list);
int vasprintf(char **strp, const char *fmt, va_list list);
char *vasnprintf(char *str, size_t *size, const char *fmt, va_list list);
int _vprintf_r(struct _reent *reent, const char *fmt, va_list list);
int _vfprintf_r(struct _reent *reent, FILE *fp, const char *fmt, va_list list);
int _vsprintf_r(struct _reent *reent, char *str, const char *fmt, va_list list);
int _vasprintf_r(struct _reent *reent, char **str, const char *fmt, va_list list);
int _vsnprintf_r(struct _reent *reent, char *str, size_t size, const char *fmt, va_list list);
char *_vasnprintf_r(struct _reent *reent, char *str, size_t *size, const char *fmt, va_list list);

Description

vprintf, vfprintf, vasprintf, vsprintf, vsnprintf, and vasnprintf are (respectively) variants of printf,
fprintf, asprintf, sprintf, snprintf, and asnprintf. They differ only in allowing their caller to pass the variable
argument list as a va_list object (initialized by va_start) rather than directly accepting a variable number of arguments.
The caller is responsible for calling va_end.

_vprintf_r, _vfprintf_r, _vasprintf_r, _vsprintf_r, _vsnprintf_r, and _vasnprintf_r are reentrant
versions of the above.

The Red Hat newlib C Library 129 / 229

Returns

The return values are consistent with the corresponding functions.

Portability

ANSI C requires vprintf, vfprintf, vsprintf, and vsnprintf. The remaining functions are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.71 vfscanf

vfscanf, vscanf, vsscanf, _vfscanf_r, _vscanf_r, _vsscanf_r — format argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vscanf(const char *fmt, va_list list);
int vfscanf(FILE *fp, const char *fmt, va_list list);
int vsscanf(const char *str, const char *fmt, va_list list);
int _vscanf_r(struct _reent *reent, const char *fmt, va_list list);
int _vfscanf_r(struct _reent *reent, FILE *fp, const char *fmt, va_list list);
int _vsscanf_r(struct _reent *reent, const char *str, const char *fmt, va_list list);

Description

vscanf, vfscanf, and vsscanf are (respectively) variants of scanf, fscanf, and sscanf. They differ only in allowing
their caller to pass the variable argument list as a va_list object (initialized by va_start) rather than directly accepting a
variable number of arguments.

Returns

The return values are consistent with the corresponding functions: vscanf returns the number of input fields successfully
scanned, converted, and stored; the return value does not include scanned fields which were not stored.

If vscanf attempts to read at end-of-file, the return value is EOF.

If no fields were stored, the return value is 0.

The routines _vscanf_r, _vfscanf_f, and _vsscanf_r are reentrant versions which take an additional first parameter
which points to the reentrancy structure.

Portability

These are GNU extensions.

Supporting OS subroutines required:

The Red Hat newlib C Library 130 / 229

3.72 vfwprintf

vfwprintf, vwprintf, vswprintf, _vfwprintf_r, _vwprintf_r, _vswprintf_r — wide character format argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

#include <wchar.h>

int vwprintf(const wchar_t *__restrict fmt, va_list list);
int vfwprintf(FILE *__restrict fp, const wchar_t *__restrict fmt, va_list list);
int vswprintf(wchar_t * __restrict str, size_t size, const wchar_t *__ restrict fmt, va_list list);
int _vwprintf_r(struct _reent *reent, const wchar_t *fmt, va_list list);
int _vfwprintf_r(struct _reent *reent, FILE *fp, const wchar_t *fmt, va_list list);
int _vswprintf_r(struct _reent *reent, wchar_t *str, size_t size, const wchar_t *fmt, va_list list);

Description

vwprintf, vfwprintf and vswprintf are (respectively) variants of wprintf, fwprintf and swprintf. They differ
only in allowing their caller to pass the variable argument list as a va_list object (initialized by va_start) rather than
directly accepting a variable number of arguments. The caller is responsible for calling va_end.

_vwprintf_r, _vfwprintf_r and _vswprintf_r are reentrant versions of the above.

Returns

The return values are consistent with the corresponding functions.

Portability

POSIX-1.2008 with extensions; C99 (compliant except for POSIX extensions).

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

See Also

wprintf, fwprintf and swprintf.

3.73 vfwscanf

vfwscanf, vwscanf, vswscanf, _vfwscanf, _vwscanf, _vswscanf — scan and format argument list from wide character input

The Red Hat newlib C Library 131 / 229

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vwscanf(const wchar_t *__restrict fmt, va_list list);
int vfwscanf(FILE *__restrict fp, const wchar_t *__restrict fmt, va_list list);
int vswscanf(const wchar_t *__restrict str, const wchar_t *__restrict fmt, va_list list);
int _vwscanf(struct _reent *reent, const wchar_t *fmt, va_list list);
int _vfwscanf(struct _reent *reent, FILE *fp, const wchar_t *fmt, va_list list);
int _vswscanf(struct _reent *reent, const wchar_t *str, const wchar_t *fmt, va_list list);

Description

vwscanf, vfwscanf, and vswscanf are (respectively) variants of wscanf, fwscanf, and swscanf. They differ only
in allowing their caller to pass the variable argument list as a va_list object (initialized by va_start) rather than directly
accepting a variable number of arguments.

Returns

The return values are consistent with the corresponding functions: vwscanf returns the number of input fields successfully
scanned, converted, and stored; the return value does not include scanned fields which were not stored.

If vwscanf attempts to read at end-of-file, the return value is EOF.

If no fields were stored, the return value is 0.

The routines _vwscanf, _vfwscanf, and _vswscanf are reentrant versions which take an additional first parameter which
points to the reentrancy structure.

Portability

C99, POSIX-1.2008

3.74 viprintf

viprintf, vfiprintf, vsiprintf, vsniprintf, vasiprintf, vasniprintf, _viprintf_r, _vfiprintf_r, _vsiprintf_r, _vsniprintf_r, _vasiprintf_r,
_vasniprintf_r — format argument list (integer only)

Synopsis

#include <stdio.h>

#include <stdarg.h>

int viprintf(const char *fmt, va_list list);
int vfiprintf(FILE *fp, const char *fmt, va_list list);
int vsiprintf(char *str, const char *fmt, va_list list);
int vsniprintf(char *str, size_t size, const char *fmt, va_list list);
int vasiprintf(char **strp, const char *fmt, va_list list);
char *vasniprintf(char *str, size_t *size, const char *fmt, va_list list);

The Red Hat newlib C Library 132 / 229

int _viprintf_r(struct _reent *reent, const char *fmt, va_list list);
int _vfiprintf_r(struct _reent *reent, FILE *fp, const char *fmt, va_list list);
int _vsiprintf_r(struct _reent *reent, char *str, const char *fmt, va_list list);
int _vsniprintf_r(struct _reent *reent, char *str, size_t size, const char *fmt, va_list list);
int _vasiprintf_r(struct _reent *reent, char **str, const char *fmt, va_list list);
char *_vasniprintf_r(struct _reent *reent, char *str, size_t *size, const char *fmt, va_list list);

Description

viprintf, vfiprintf, vasiprintf, vsiprintf, vsniprintf, and vasniprintf are (respectively) variants of
iprintf, fiprintf, asiprintf, siprintf, sniprintf, and asniprintf. They differ only in allowing their caller
to pass the variable argument list as a va_list object (initialized by va_start) rather than directly accepting a variable
number of arguments. The caller is responsible for calling va_end.

_viprintf_r, _vfiprintf_r, _vasiprintf_r, _vsiprintf_r, _vsniprintf_r, and _vasniprintf_r are
reentrant versions of the above.

Returns

The return values are consistent with the corresponding functions:

Portability

All of these functions are newlib extensions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

3.75 viscanf

viscanf, vfiscanf, vsiscanf, _viscanf_r, _vfiscanf_r, _vsiscanf_r — format argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int viscanf(const char *fmt, va_list list);
int vfiscanf(FILE *fp, const char *fmt, va_list list);
int vsiscanf(const char *str, const char *fmt, va_list list);
int _viscanf_r(struct _reent *reent, const char *fmt, va_list list);
int _vfiscanf_r(struct _reent *reent, FILE *fp, const char *fmt, va_list list);
int _vsiscanf_r(struct _reent *reent, const char *str, const char *fmt, va_list list);

Description

viscanf, vfiscanf, and vsiscanf are (respectively) variants of iscanf, fiscanf, and siscanf. They differ only
in allowing their caller to pass the variable argument list as a va_list object (initialized by va_start) rather than directly
accepting a variable number of arguments.

The Red Hat newlib C Library 133 / 229

Returns

The return values are consistent with the corresponding functions: viscanf returns the number of input fields successfully
scanned, converted, and stored; the return value does not include scanned fields which were not stored.

If viscanf attempts to read at end-of-file, the return value is EOF.

If no fields were stored, the return value is 0.

The routines _viscanf_r, _vfiscanf_f, and _vsiscanf_r are reentrant versions which take an additional first param-
eter which points to the reentrancy structure.

Portability

These are newlib extensions.

Supporting OS subroutines required:

The Red Hat newlib C Library 134 / 229

Chapter 4

Large File Input and Output (stdio.h)

This chapter comprises additional functions to manage large files which are potentially larger than 2GB.

The underlying facilities for input and output depend on the host system, but these functions provide a uniform interface.

The corresponding declarations are in stdio.h.

4.1 fdopen64

fdopen64, _fdopen64_r — turn open large file into a stream

Synopsis

#include <stdio.h>

FILE *fdopen64(int fd, const char *mode);
FILE *_fdopen64_r(void *reent, int fd, const char *mode);

Description

fdopen64 produces a file descriptor of type FILE *, from a descriptor for an already-open file (returned, for example, by the
system subroutine open rather than by fopen). The mode argument has the same meanings as in fopen.

Returns

File pointer or NULL, as for fopen.

4.2 fopen64

fopen64, _fopen64_r — open a large file

Synopsis

#include <stdio.h>

FILE *fopen64(const char *file, const char *mode);
FILE *_fopen64_r(void *reent, const char *file, const char *mode);

The Red Hat newlib C Library 135 / 229

Description

fopen64 is identical to fopen except it opens a large file that is potentially >2GB in size. See fopen for further details.

Returns

fopen64 return a file pointer which you can use for other file operations, unless the file you requested could not be opened; in
that situation, the result is NULL. If the reason for failure was an invalid string at mode, errno is set to EINVAL.

Portability

fopen64 is a glibc extension.

Supporting OS subroutines required: close, fstat64, isatty, lseek64, open64, read, sbrk, write.

4.3 freopen64

freopen64, _freopen64_r — open a large file using an existing file descriptor

Synopsis

#include <stdio.h>

FILE *freopen64(const char *file, const char *mode, FILE *fp);
FILE *_freopen64_r(struct _reent *ptr, const char *file, const char *mode, FILE *fp);

Description

Use this variant of fopen64 if you wish to specify a particular file descriptor fp (notably stdin, stdout, or stderr) for
the file.

If fp was associated with another file or stream, freopen64 closes that other file or stream (but ignores any errors while
closing it).

file and mode are used just as in fopen.

If file is NULL, the underlying stream is modified rather than closed. The file cannot be given a more permissive access mode
(for example, a mode of "w" will fail on a read-only file descriptor), but can change status such as append or binary mode. If
modification is not possible, failure occurs.

Returns

If successful, the result is the same as the argument fp. If the file cannot be opened as specified, the result is NULL.

Portability

freopen is a glibc extension.

Supporting OS subroutines required: close, fstat, isatty, lseek64, open64, read, sbrk, write.

The Red Hat newlib C Library 136 / 229

4.4 ftello64

ftello64, _ftello64_r — return position in a stream or file

Synopsis

#include <stdio.h>

_off64_t ftello64(FILE *fp);
_off64_t _ftello64_r(struct _reent *ptr, FILE *fp);

Description

Objects of type FILE can have a ``position” that records how much of the file your program has already read. Many of the
stdio functions depend on this position, and many change it as a side effect.

The result of ftello64 is the current position for a large file identified by fp. If you record this result, you can later use it with
fseeko64 to return the file to this position. The difference between ftello and ftello64 is that ftello returns off_t
and ftello64 is designed to work for large files (>2GB) and returns _off64_t.

In the current implementation, ftello64 simply uses a character count to represent the file position; this is the same number
that would be recorded by fgetpos64.

The function exists only if the __LARGE64_FILES flag is defined. An error occurs if the fp was not opened via fopen64.

Returns

ftello64 returns the file position, if possible. If it cannot do this, it returns -1. Failure occurs on streams that do not support
positioning or not opened via fopen64; the global errno indicates this condition with the value ESPIPE.

Portability

ftello64 is a glibc extension.

No supporting OS subroutines are required.

4.5 fseeko64

fseeko64, _fseeko64_r — set file position for large file

Synopsis

#include <stdio.h>

int fseeko64(FILE *fp, _off64_t offset, int whence);
int _fseeko64_r(struct _reent *ptr, FILE *fp, _off64_t offset, int whence);

The Red Hat newlib C Library 137 / 229

Description

Objects of type FILE can have a ``position” that records how much of the file your program has already read. Many of the
stdio functions depend on this position, and many change it as a side effect.

You can use fseeko64 to set the position for the file identified by fp that was opened via fopen64. The value of offset
determines the new position, in one of three ways selected by the value of whence (defined as macros in `stdio.h’):

SEEK_SET---offset is the absolute file position (an offset from the beginning of the file) desired. offset must be positive.

SEEK_CUR---offset is relative to the current file position. offset can meaningfully be either positive or negative.

SEEK_END---offset is relative to the current end of file. offset can meaningfully be either positive (to increase the size of
the file) or negative.

See ftello64 to determine the current file position.

Returns

fseeko64 returns 0 when successful. On failure, the result is EOF. The reason for failure is indicated in errno: either
ESPIPE (the stream identified by fp doesn’t support repositioning or wasn’t opened via fopen64) or EINVAL (invalid file
position).

Portability

fseeko64 is a glibc extension.

Supporting OS subroutines required: close, fstat64, isatty, lseek64, read, sbrk, write.

4.6 fgetpos64

fgetpos64, _fgetpos64_r — record position in a large stream or file

Synopsis

#include <stdio.h>

int fgetpos64(FILE *fp, _fpos64_t *pos);
int _fgetpos64_r(struct _reent *ptr, FILE *fp, _fpos64_t *pos);

Description

Objects of type FILE can have a ``position” that records how much of the file your program has already read. Many of the
stdio functions depend on this position, and many change it as a side effect.

You can use fgetpos64 to report on the current position for a file identified by fp that was opened by fopen64; fgetpos
will write a value representing that position at *pos. Later, you can use this value with fsetpos64 to return the file to this
position.

In the current implementation, fgetpos64 simply uses a character count to represent the file position; this is the same number
that would be returned by ftello64.

Returns

fgetpos64 returns 0 when successful. If fgetpos64 fails, the result is 1. Failure occurs on streams that do not support
positioning or streams not opened via fopen64; the global errno indicates these conditions with the value ESPIPE.

The Red Hat newlib C Library 138 / 229

Portability

fgetpos64 is a glibc extension.

No supporting OS subroutines are required.

4.7 fsetpos64

fsetpos64, _fsetpos64_r — restore position of a large stream or file

Synopsis

#include <stdio.h>

int fsetpos64(FILE *fp, const _fpos64_t *pos);
int _fsetpos64_r(struct _reent *ptr, FILE *fp, const _fpos64_t *pos);

Description

Objects of type FILE can have a ``position” that records how much of the file your program has already read. Many of the
stdio functions depend on this position, and many change it as a side effect.

You can use fsetpos64 to return the large file identified by fp to a previous position *pos (after first recording it with
fgetpos64).

See fseeko64 for a similar facility.

Returns

fgetpos64 returns 0 when successful. If fgetpos64 fails, the result is 1. The reason for failure is indicated in errno:
either ESPIPE (the stream identified by fp doesn’t support 64-bit repositioning) or EINVAL (invalid file position).

Portability

fsetpos64 is a glibc extension.

Supporting OS subroutines required: close, fstat, isatty, lseek64, read, sbrk, write.

4.8 tmpfile64

tmpfile64, _tmpfile64_r — create a large temporary file

Synopsis

#include <stdio.h>

FILE *tmpfile64(void);
FILE *_tmpfile64_r(void *reent);

The Red Hat newlib C Library 139 / 229

Description

Create a large temporary file (a file which will be deleted automatically), using a name generated by tmpnam. The temporary file
is opened with the mode "wb+", permitting you to read and write anywhere in it as a binary file (without any data transformations
the host system may perform for text files). The file may be larger than 2GB.

The alternate function _tmpfile64_r is a reentrant version. The argument reent is a pointer to a reentrancy structure.

Both tmpfile64 and _tmpfile64_r are only defined if __LARGE64_FILES is defined.

Returns

tmpfile64 normally returns a pointer to the temporary file. If no temporary file could be created, the result is NULL, and
errno records the reason for failure.

Portability

tmpfile64 is a glibc extension.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek64, open64, read, sbrk, write.

tmpfile64 also requires the global pointer environ.

The Red Hat newlib C Library 140 / 229

Chapter 5

Strings and Memory (string.h)

This chapter describes string-handling functions and functions for managing areas of memory. The corresponding declarations
are in string.h.

5.1 bcmp

bcmp — compare two memory areas

Synopsis

#include <strings.h>

int bcmp(const void *s1, const void *s2, size_t n);

Description

This function compares not more than n bytes of the object pointed to by s1 with the object pointed to by s2.

This function is identical to memcmp.

Returns

The function returns an integer greater than, equal to or less than zero according to whether the object pointed to by s1 is greater
than, equal to or less than the object pointed to by s2.

Portability

bcmp requires no supporting OS subroutines.

5.2 bcopy

bcopy — copy memory regions

The Red Hat newlib C Library 141 / 229

Synopsis

#include <strings.h>

void bcopy(const void *in, void *out, size_t n);

Description

This function copies n bytes from the memory region pointed to by in to the memory region pointed to by out.

This function is implemented in term of memmove.

Portability

bcopy requires no supporting OS subroutines.

5.3 bzero

bzero — initialize memory to zero

Synopsis

#include <strings.h>

void bzero(void *b, size_t length);

Description

bzero initializes length bytes of memory, starting at address b, to zero.

Returns

bzero does not return a result.

Portability

bzero is in the Berkeley Software Distribution. Neither ANSI C nor the System V Interface Definition (Issue 2) require bzero.

bzero requires no supporting OS subroutines.

5.4 index

index — search for character in string

Synopsis

#include <strings.h>

char * index(const char *string, int c);

The Red Hat newlib C Library 142 / 229

Description

This function finds the first occurence of c (converted to a char) in the string pointed to by string (including the terminating
null character).

This function is identical to strchr.

Returns

Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability

index requires no supporting OS subroutines.

5.5 memccpy

memccpy — copy memory regions with end-token check

Synopsis

#include <string.h>

void* memccpy(void *restrict out, const void *restrict in, int endchar, size_t n);

Description

This function copies up to n bytes from the memory region pointed to by in to the memory region pointed to by out. If a byte
matching the endchar is encountered, the byte is copied and copying stops.

If the regions overlap, the behavior is undefined.

Returns

memccpy returns a pointer to the first byte following the endchar in the out region. If no byte matching endchar was
copied, then NULL is returned.

Portability

memccpy is a GNU extension.

memccpy requires no supporting OS subroutines.

5.6 memchr

memchr — find character in memory

The Red Hat newlib C Library 143 / 229

Synopsis

#include <string.h>

void *memchr(const void *src, int c, size_t length);

Description

This function searches memory starting at *src for the character c. The search only ends with the first occurrence of c, or after
length characters; in particular, NUL does not terminate the search.

Returns

If the character c is found within length characters of *src, a pointer to the character is returned. If c is not found, then
NULL is returned.

Portability

memchr is ANSI C.

memchr requires no supporting OS subroutines.

5.7 memcmp

memcmp — compare two memory areas

Synopsis

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Description

This function compares not more than n characters of the object pointed to by s1 with the object pointed to by s2.

Returns

The function returns an integer greater than, equal to or less than zero according to whether the object pointed to by s1 is greater
than, equal to or less than the object pointed to by s2.

Portability

memcmp is ANSI C.

memcmp requires no supporting OS subroutines.

5.8 memcpy

memcpy — copy memory regions

The Red Hat newlib C Library 144 / 229

Synopsis

#include <string.h>

void* memcpy(void *restrict out, const void *restrict in, size_t n);

Description

This function copies n bytes from the memory region pointed to by in to the memory region pointed to by out.

If the regions overlap, the behavior is undefined.

Returns

memcpy returns a pointer to the first byte of the out region.

Portability

memcpy is ANSI C.

memcpy requires no supporting OS subroutines.

5.9 memmem

memmem — find memory segment

Synopsis

#include <string.h>

char *memmem(const void *s1, size_t l1, const void *s2, size_t l2);

Description

Locates the first occurrence in the memory region pointed to by s1 with length l1 of the sequence of bytes pointed to by s2 of
length l2. If you already know the lengths of your haystack and needle, memmem can be much faster than strstr.

Returns

Returns a pointer to the located segment, or a null pointer if s2 is not found. If l2 is 0, s1 is returned.

Portability

memmem is a newlib extension.

memmem requires no supporting OS subroutines.

5.10 memmove

memmove — move possibly overlapping memory

The Red Hat newlib C Library 145 / 229

Synopsis

#include <string.h>

void *memmove(void *dst, const void *src, size_t length);

Description

This function moves length characters from the block of memory starting at *src to the memory starting at *dst. memmove
reproduces the characters correctly at *dst even if the two areas overlap.

Returns

The function returns dst as passed.

Portability

memmove is ANSI C.

memmove requires no supporting OS subroutines.

5.11 mempcpy

mempcpy — copy memory regions and return end pointer

Synopsis

#include <string.h>

void* mempcpy(void *out, const void *in, size_t n);

Description

This function copies n bytes from the memory region pointed to by in to the memory region pointed to by out.

If the regions overlap, the behavior is undefined.

Returns

mempcpy returns a pointer to the byte following the last byte copied to the out region.

Portability

mempcpy is a GNU extension.

mempcpy requires no supporting OS subroutines.

5.12 memrchr

memrchr — reverse search for character in memory

The Red Hat newlib C Library 146 / 229

Synopsis

#include <string.h>

void *memrchr(const void *src, int c, size_t length);

Description

This function searches memory starting at length bytes beyond *src backwards for the character c. The search only ends
with the first occurrence of c; in particular, NUL does not terminate the search.

Returns

If the character c is found within length characters of *src, a pointer to the character is returned. If c is not found, then
NULL is returned.

Portability

memrchr is a GNU extension.

memrchr requires no supporting OS subroutines.

5.13 memset

memset — set an area of memory

Synopsis

#include <string.h>

void *memset(void *dst, int c, size_t length);

Description

This function converts the argument c into an unsigned char and fills the first length characters of the array pointed to by dst
to the value.

Returns

memset returns the value of dst.

Portability

memset is ANSI C.

memset requires no supporting OS subroutines.

5.14 rawmemchr

rawmemchr — find character in memory

The Red Hat newlib C Library 147 / 229

Synopsis

#include <string.h>

void *rawmemchr(const void *src, int c);

Description

This function searches memory starting at *src for the character c. The search only ends with the first occurrence of c; in
particular, NUL does not terminate the search. No bounds checking is performed, so this function should only be used when it is
certain that the character c will be found.

Returns

A pointer to the first occurance of character c.

Portability

rawmemchr is a GNU extension.

rawmemchr requires no supporting OS subroutines.

5.15 rindex

rindex — reverse search for character in string

Synopsis

#include <string.h>

char * rindex(const char *string, int c);

Description

This function finds the last occurence of c (converted to a char) in the string pointed to by string (including the terminating
null character).

This function is identical to strrchr.

Returns

Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability

rindex requires no supporting OS subroutines.

5.16 stpcpy

stpcpy — copy string returning a pointer to its end

The Red Hat newlib C Library 148 / 229

Synopsis

#include <string.h>

char *stpcpy(char *restrict dst, const char *restrict src);

Description

stpcpy copies the string pointed to by src (including the terminating null character) to the array pointed to by dst.

Returns

This function returns a pointer to the end of the destination string, thus pointing to the trailing ’\0’.

Portability

stpcpy is a GNU extension, candidate for inclusion into POSIX/SUSv4.

stpcpy requires no supporting OS subroutines.

5.17 stpncpy

stpncpy — counted copy string returning a pointer to its end

Synopsis

#include <string.h>

char *stpncpy(char *restrict dst, const char *restrict src, size_t length);

Description

stpncpy copies not more than length characters from the the string pointed to by src (including the terminating null
character) to the array pointed to by dst. If the string pointed to by src is shorter than length characters, null characters are
appended to the destination array until a total of length characters have been written.

Returns

This function returns a pointer to the end of the destination string, thus pointing to the trailing ’\0’, or, if the destination string is
not null-terminated, pointing to dst + n.

Portability

stpncpy is a GNU extension, candidate for inclusion into POSIX/SUSv4.

stpncpy requires no supporting OS subroutines.

5.18 strcasecmp

strcasecmp — case-insensitive character string compare

The Red Hat newlib C Library 149 / 229

Synopsis

#include <strings.h>

int strcasecmp(const char *a, const char *b);

Description

strcasecmp compares the string at a to the string at b in a case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to lowercase), strcasecmp returns a number greater than zero.
If the two strings match, strcasecmp returns zero. If *a sorts lexicographically before *b, strcasecmp returns a number
less than zero.

Portability

strcasecmp is in the Berkeley Software Distribution.

strcasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in this library.

5.19 strcasestr

strcasestr — case-insensitive character string search

Synopsis

#include <string.h>

char *strcasestr(const char *s, const char *find);

Description

strcasestr searchs the string s for the first occurrence of the sequence find. strcasestr is identical to strstr except
the search is case-insensitive.

Returns

A pointer to the first case-insensitive occurrence of the sequence find or NULL if no match was found.

Portability

strcasestr is in the Berkeley Software Distribution.

strcasestr requires no supporting OS subroutines. It uses tolower() from elsewhere in this library.

5.20 strcat

strcat — concatenate strings

The Red Hat newlib C Library 150 / 229

Synopsis

#include <string.h>

char *strcat(char *restrict dst, const char *restrict src);

Description

strcat appends a copy of the string pointed to by src (including the terminating null character) to the end of the string pointed
to by dst. The initial character of src overwrites the null character at the end of dst.

Returns

This function returns the initial value of dst

Portability

strcat is ANSI C.

strcat requires no supporting OS subroutines.

5.21 strchr

strchr — search for character in string

Synopsis

#include <string.h>

char * strchr(const char *string, int c);

Description

This function finds the first occurence of c (converted to a char) in the string pointed to by string (including the terminating
null character).

Returns

Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability

strchr is ANSI C.

strchr requires no supporting OS subroutines.

5.22 strchrnul

strchrnul — search for character in string

The Red Hat newlib C Library 151 / 229

Synopsis

#include <string.h>

char * strchrnul(const char *string, int c);

Description

This function finds the first occurence of c (converted to a char) in the string pointed to by string (including the terminating
null character).

Returns

Returns a pointer to the located character, or a pointer to the concluding null byte if c does not occur in string.

Portability

strchrnul is a GNU extension.

strchrnul requires no supporting OS subroutines. It uses strchr() and strlen() from elsewhere in this library.

5.23 strcmp

strcmp — character string compare

Synopsis

#include <string.h>

int strcmp(const char *a, const char *b);

Description

strcmp compares the string at a to the string at b.

Returns

If *a sorts lexicographically after *b, strcmp returns a number greater than zero. If the two strings match, strcmp returns
zero. If *a sorts lexicographically before *b, strcmp returns a number less than zero.

Portability

strcmp is ANSI C.

strcmp requires no supporting OS subroutines.

5.24 strcoll

strcoll — locale-specific character string compare

The Red Hat newlib C Library 152 / 229

Synopsis

#include <string.h>

int strcoll(const char *stra, const char * strb);

Description

strcoll compares the string pointed to by stra to the string pointed to by strb, using an interpretation appropriate to the
current LC_COLLATE state.

Returns

If the first string is greater than the second string, strcoll returns a number greater than zero. If the two strings are equivalent,
strcoll returns zero. If the first string is less than the second string, strcoll returns a number less than zero.

Portability

strcoll is ANSI C.

strcoll requires no supporting OS subroutines.

5.25 strcpy

strcpy — copy string

Synopsis

#include <string.h>

char *strcpy(char *dst, const char *src);

Description

strcpy copies the string pointed to by src (including the terminating null character) to the array pointed to by dst.

Returns

This function returns the initial value of dst.

Portability

strcpy is ANSI C.

strcpy requires no supporting OS subroutines.

5.26 strcspn

strcspn — count characters not in string

The Red Hat newlib C Library 153 / 229

Synopsis

size_t strcspn(const char *s1, const char *s2);

Description

This function computes the length of the initial part of the string pointed to by s1 which consists entirely of characters NOT from
the string pointed to by s2 (excluding the terminating null character).

Returns

strcspn returns the length of the substring found.

Portability

strcspn is ANSI C.

strcspn requires no supporting OS subroutines.

5.27 strerror

strerror — convert error number to string

Synopsis

#include <string.h>

char *strerror(int errnum);
char *_strerror_r(struct _reent ptr, int errnum, int internal, int *error);

Description

strerror converts the error number errnum into a string. The value of errnum is usually a copy of errno. If errnum is
not a known error number, the result points to an empty string.

This implementation of strerror prints out the following strings for each of the values defined in `errno.h’:

0
Success

E2BIG
Arg list too long

EACCES
Permission denied

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Address not available

EADV
Advertise error

EAFNOSUPPORT
Address family not supported by protocol family

The Red Hat newlib C Library 154 / 229

EAGAIN
No more processes

EALREADY
Socket already connected

EBADF
Bad file number

EBADMSG
Bad message

EBUSY
Device or resource busy

ECANCELED
Operation canceled

ECHILD
No children

ECOMM
Communication error

ECONNABORTED
Software caused connection abort

ECONNREFUSED
Connection refused

ECONNRESET
Connection reset by peer

EDEADLK
Deadlock

EDESTADDRREQ
Destination address required

EEXIST
File exists

EDOM
Mathematics argument out of domain of function

EFAULT
Bad address

EFBIG
File too large

EHOSTDOWN
Host is down

EHOSTUNREACH
Host is unreachable

EIDRM
Identifier removed

EILSEQ
Illegal byte sequence

EINPROGRESS
Connection already in progress

EINTR
Interrupted system call

EINVAL
Invalid argument

EIO
I/O error

EISCONN
Socket is already connected

EISDIR
Is a directory

ELIBACC
Cannot access a needed shared library

The Red Hat newlib C Library 155 / 229

ELIBBAD
Accessing a corrupted shared library

ELIBEXEC
Cannot exec a shared library directly

ELIBMAX
Attempting to link in more shared libraries than system
limit

ELIBSCN
.lib section in a.out corrupted

EMFILE
File descriptor value too large

EMLINK
Too many links

EMSGSIZE
Message too long

EMULTIHOP
Multihop attempted

ENAMETOOLONG
File or path name too long

ENETDOWN
Network interface is not configured

ENETRESET
Connection aborted by network

ENETUNREACH
Network is unreachable

ENFILE
Too many open files in system

ENOBUFS
No buffer space available

ENODATA
No data

ENODEV
No such device

ENOENT
No such file or directory

ENOEXEC
Exec format error

ENOLCK
No lock

ENOLINK
Virtual circuit is gone

ENOMEM
Not enough space

ENOMSG
No message of desired type

ENONET
Machine is not on the network

ENOPKG
No package

ENOPROTOOPT
Protocol not available

ENOSPC
No space left on device

ENOSR
No stream resources

ENOSTR
Not a stream

The Red Hat newlib C Library 156 / 229

ENOSYS
Function not implemented

ENOTBLK
Block device required

ENOTCONN
Socket is not connected

ENOTDIR
Not a directory

ENOTEMPTY
Directory not empty

ENOTRECOVERABLE
State not recoverable

ENOTSOCK
Socket operation on non-socket

ENOTSUP
Not supported

ENOTTY
Not a character device

ENXIO
No such device or address

EOPNOTSUPP
Operation not supported on socket

EOVERFLOW
Value too large for defined data type

EOWNERDEAD
Previous owner died

EPERM
Not owner

EPIPE
Broken pipe

EPROTO
Protocol error

EPROTOTYPE
Protocol wrong type for socket

EPROTONOSUPPORT
Unknown protocol

ERANGE
Result too large

EREMOTE
Resource is remote

EROFS
Read-only file system

ESHUTDOWN
Can’t send after socket shutdown

ESOCKTNOSUPPORT
Socket type not supported

ESPIPE
Illegal seek

ESRCH
No such process

ESRMNT
Srmount error

ESTRPIPE
Strings pipe error

ETIME
Stream ioctl timeout

The Red Hat newlib C Library 157 / 229

ETIMEDOUT
Connection timed out

ETXTBSY
Text file busy

EWOULDBLOCK
Operation would block (usually same as EAGAIN)

EXDEV
Cross-device link

_strerror_r is a reentrant version of the above.

Returns

This function returns a pointer to a string. Your application must not modify that string.

Portability

ANSI C requires strerror, but does not specify the strings used for each error number.

Although this implementation of strerror is reentrant (depending on _user_strerror), ANSI C declares that subsequent
calls to strerror may overwrite the result string; therefore portable code cannot depend on the reentrancy of this subroutine.

Although this implementation of strerror guarantees a non-null result with a NUL-terminator, some implementations return
NULL on failure. Although POSIX allows strerror to set errno to EINVAL on failure, this implementation does not do so
(unless you provide _user_strerror).

POSIX recommends that unknown errnum result in a message including that value, however it is not a requirement and this
implementation does not provide that information (unless you provide _user_strerror).

This implementation of strerror provides for user-defined extensibility. errno.h defines __ELASTERROR, which can be
used as a base for user-defined error values. If the user supplies a routine named _user_strerror, and errnum passed
to strerror does not match any of the supported values, _user_strerror is called with three arguments. The first is
of type int, and is the errnum value unknown to strerror. The second is of type int, and matches the internal
argument of _strerror_r; this should be zero if called from strerror and non-zero if called from any other function;
_user_strerror can use this information to satisfy the POSIX rule that no other standardized function can overwrite a static
buffer reused by strerror. The third is of type int *, and matches the error argument of _strerror_r; if a non-zero
value is stored into that location (usually EINVAL), then strerror will set errno to that value, and the XPG variant of
strerror_r will return that value instead of zero or ERANGE. _user_strerror returns a char * value; returning NULL
implies that the user function did not choose to handle errnum. The default _user_strerror returns NULL for all input
values. Note that _user_sterror must be thread-safe, and only denote errors via the third argument rather than modifying
errno, if strerror and strerror_r are are to comply with POSIX.

strerror requires no supporting OS subroutines.

5.28 strerror_r

strerror_r — convert error number to string and copy to buffer

Synopsis

#include <string.h>

#ifdef _GNU_SOURCE

The Red Hat newlib C Library 158 / 229

char *strerror_r(int errnum, char *buffer, size_t n);

#else

int strerror_r(int errnum, char *buffer, size_t n);

#endif

Description

strerror_r converts the error number errnum into a string and copies the result into the supplied buffer for a length up
to n, including the NUL terminator. The value of errnum is usually a copy of errno. If errnum is not a known error number,
the result is the empty string.

See strerror for how strings are mapped to errnum.

Returns

There are two variants: the GNU version always returns a NUL-terminated string, which is buffer if all went well, but which is
another pointer if n was too small (leaving buffer untouched). If the return is not buffer, your application must not modify
that string. The POSIX version returns 0 on success, EINVAL if errnum was not recognized, and ERANGE if n was too small.
The variant chosen depends on macros that you define before inclusion of string.h.

Portability

strerror_r with a char * result is a GNU extension. strerror_r with an int result is required by POSIX 2001. This
function is compliant only if _user_strerror is not provided, or if it is thread-safe and uses separate storage according
to whether the second argument of that function is non-zero. For more details on _user_strerror, see the strerror
documentation.

POSIX states that the contents of buf are unspecified on error, although this implementation guarantees a NUL-terminated string
for all except n of 0.

POSIX recommends that unknown errnum result in a message including that value, however it is not a requirement and this
implementation provides only an empty string (unless you provide _user_strerror). POSIX also recommends that unknown
errnum fail with EINVAL even when providing such a message, however it is not a requirement and this implementation will
return success if _user_strerror provided a non-empty alternate string without assigning into its third argument.

strerror_r requires no supporting OS subroutines.

5.29 strlen

strlen — character string length

Synopsis

#include <string.h>

size_t strlen(const char *str);

The Red Hat newlib C Library 159 / 229

Description

The strlen function works out the length of the string starting at *str by counting chararacters until it reaches a NULL
character.

Returns

strlen returns the character count.

Portability

strlen is ANSI C.

strlen requires no supporting OS subroutines.

5.30 strlwr

strlwr — force string to lowercase

Synopsis

#include <string.h>

char *strlwr(char *a);

Description

strlwr converts each character in the string at a to lowercase.

Returns

strlwr returns its argument, a.

Portability

strlwr is not widely portable.

strlwr requires no supporting OS subroutines.

5.31 strncasecmp

strncasecmp — case-insensitive character string compare

Synopsis

#include <strings.h>

int strncasecmp(const char *a, const char * b, size_t length);

The Red Hat newlib C Library 160 / 229

Description

strncasecmp compares up to length characters from the string at a to the string at b in a case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to lowercase), strncasecmp returns a number greater than
zero. If the two strings are equivalent, strncasecmp returns zero. If *a sorts lexicographically before *b, strncasecmp
returns a number less than zero.

Portability

strncasecmp is in the Berkeley Software Distribution.

strncasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in this library.

5.32 strncat

strncat — concatenate strings

Synopsis

#include <string.h>

char *strncat(char *restrict dst, const char *restrict src, size_t length);

Description

strncat appends not more than length characters from the string pointed to by src (including the terminating null character)
to the end of the string pointed to by dst. The initial character of src overwrites the null character at the end of dst. A
terminating null character is always appended to the result

Warnings

Note that a null is always appended, so that if the copy is limited by the length argument, the number of characters appended
to dst is n + 1.

Returns

This function returns the initial value of dst

Portability

strncat is ANSI C.

strncat requires no supporting OS subroutines.

5.33 strncmp

strncmp — character string compare

The Red Hat newlib C Library 161 / 229

Synopsis

#include <string.h>

int strncmp(const char *a, const char * b, size_t length);

Description

strncmp compares up to length characters from the string at a to the string at b.

Returns

If *a sorts lexicographically after *b, strncmp returns a number greater than zero. If the two strings are equivalent, strncmp
returns zero. If *a sorts lexicographically before *b, strncmp returns a number less than zero.

Portability

strncmp is ANSI C.

strncmp requires no supporting OS subroutines.

5.34 strncpy

strncpy — counted copy string

Synopsis

#include <string.h>

char *strncpy(char *restrict dst, const char *restrict src, size_t length);

Description

strncpy copies not more than length characters from the the string pointed to by src (including the terminating null
character) to the array pointed to by dst. If the string pointed to by src is shorter than length characters, null characters are
appended to the destination array until a total of length characters have been written.

Returns

This function returns the initial value of dst.

Portability

strncpy is ANSI C.

strncpy requires no supporting OS subroutines.

5.35 strnlen

strnlen — character string length

The Red Hat newlib C Library 162 / 229

Synopsis

#include <string.h>

size_t strnlen(const char *str, size_t n);

Description

The strnlen function works out the length of the string starting at *str by counting chararacters until it reaches a NUL
character or the maximum: n number of characters have been inspected.

Returns

strnlen returns the character count or n.

Portability

strnlen is a GNU extension.

strnlen requires no supporting OS subroutines.

5.36 strpbrk

strpbrk — find characters in string

Synopsis

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

Description

This function locates the first occurence in the string pointed to by s1 of any character in string pointed to by s2 (excluding the
terminating null character).

Returns

strpbrk returns a pointer to the character found in s1, or a null pointer if no character from s2 occurs in s1.

Portability

strpbrk requires no supporting OS subroutines.

5.37 strrchr

strrchr — reverse search for character in string

The Red Hat newlib C Library 163 / 229

Synopsis

#include <string.h>

char * strrchr(const char *string, int c);

Description

This function finds the last occurence of c (converted to a char) in the string pointed to by string (including the terminating
null character).

Returns

Returns a pointer to the located character, or a null pointer if c does not occur in string.

Portability

strrchr is ANSI C.

strrchr requires no supporting OS subroutines.

5.38 strsignal

strsignal — convert signal number to string

Synopsis

#include <string.h>

char *strsignal(int signal);

Description

strsignal converts the signal number signal into a string. If signal is not a known signal number, the result will be of
the form "Unknown signal NN" where NN is the signal is a decimal number.

Returns

This function returns a pointer to a string. Your application must not modify that string.

Portability

POSIX.1-2008 C requires strsignal, but does not specify the strings used for each signal number.

strsignal requires no supporting OS subroutines.

5.39 strspn

strspn — find initial match

The Red Hat newlib C Library 164 / 229

Synopsis

#include <string.h>

size_t strspn(const char *s1, const char *s2);

Description

This function computes the length of the initial segment of the string pointed to by s1 which consists entirely of characters from
the string pointed to by s2 (excluding the terminating null character).

Returns

strspn returns the length of the segment found.

Portability

strspn is ANSI C.

strspn requires no supporting OS subroutines.

5.40 strstr

strstr — find string segment

Synopsis

#include <string.h>

char *strstr(const char *s1, const char *s2);

Description

Locates the first occurrence in the string pointed to by s1 of the sequence of characters in the string pointed to by s2 (excluding
the terminating null character).

Returns

Returns a pointer to the located string segment, or a null pointer if the string s2 is not found. If s2 points to a string with zero
length, s1 is returned.

Portability

strstr is ANSI C.

strstr requires no supporting OS subroutines.

5.41 strtok

strtok, strtok_r, strsep — get next token from a string

The Red Hat newlib C Library 165 / 229

Synopsis

#include <string.h>

char *strtok(char *restrict source, const char *restrict delimiters);
char *strtok_r(char *restrict source, const char *restrict delimiters, char **lasts);
char *strsep(char **source_ptr, const char *delimiters);

Description

The strtok function is used to isolate sequential tokens in a null-terminated string, *source. These tokens are delimited in the
string by at least one of the characters in *delimiters. The first time that strtok is called, *source should be specified;
subsequent calls, wishing to obtain further tokens from the same string, should pass a null pointer instead. The separator string,
*delimiters, must be supplied each time and may change between calls.

The strtok function returns a pointer to the beginning of each subsequent token in the string, after replacing the separator
character itself with a null character. When no more tokens remain, a null pointer is returned.

The strtok_r function has the same behavior as strtok, except a pointer to placeholder *lasts must be supplied by the
caller.

The strsep function is similar in behavior to strtok, except a pointer to the string pointer must be supplied source_ptr
and the function does not skip leading delimiters. When the string starts with a delimiter, the delimiter is changed to the null
character and the empty string is returned. Like strtok_r and strtok, the *source_ptr is updated to the next character
following the last delimiter found or NULL if the end of string is reached with no more delimiters.

Returns

strtok, strtok_r, and strsep all return a pointer to the next token, or NULL if no more tokens can be found. For strsep,
a token may be the empty string.

Notes

strtok is unsafe for multi-threaded applications. strtok_r and strsep are thread-safe and should be used instead.

Portability

strtok is ANSI C. strtok_r is POSIX. strsep is a BSD extension.

strtok, strtok_r, and strsep require no supporting OS subroutines.

5.42 strupr

strupr — force string to uppercase

Synopsis

#include <string.h>

char *strupr(char *a);

The Red Hat newlib C Library 166 / 229

Description

strupr converts each character in the string at a to uppercase.

Returns

strupr returns its argument, a.

Portability

strupr is not widely portable.

strupr requires no supporting OS subroutines.

5.43 strxfrm

strxfrm — transform string

Synopsis

#include <string.h>

size_t strxfrm(char *restrict s1, const char *restrict s2, size_t n);

Description

This function transforms the string pointed to by s2 and places the resulting string into the array pointed to by s1. The transfor-
mation is such that if the strcmp function is applied to the two transformed strings, it returns a value greater than, equal to, or
less than zero, correspoinding to the result of a strcoll function applied to the same two original strings.

No more than n characters are placed into the resulting array pointed to by s1, including the terminating null character. If n is
zero, s1 may be a null pointer. If copying takes place between objects that overlap, the behavior is undefined.

With a C locale, this function just copies.

Returns

The strxfrm function returns the length of the transformed string (not including the terminating null character). If the value
returned is n or more, the contents of the array pointed to by s1 are indeterminate.

Portability

strxfrm is ANSI C.

strxfrm requires no supporting OS subroutines.

5.44 swab

swab — swap adjacent bytes

The Red Hat newlib C Library 167 / 229

Synopsis

#include <unistd.h>

void swab(const void *in, void *out, ssize_t n);

Description

This function copies n bytes from the memory region pointed to by in to the memory region pointed to by out, exchanging
adjacent even and odd bytes.

Portability

swab requires no supporting OS subroutines.

5.45 wcscasecmp

wcscasecmp — case-insensitive wide character string compare

Synopsis

#include <wchar.h>

int wcscasecmp(const wchar_t *a, const wchar_t *b);

Description

wcscasecmp compares the wide character string at a to the wide character string at b in a case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to uppercase), wcscasecmp returns a number greater than zero.
If the two strings match, wcscasecmp returns zero. If *a sorts lexicographically before *b, wcscasecmp returns a number
less than zero.

Portability

POSIX-1.2008

wcscasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in this library.

5.46 wcsdup

wcsdup, _wcsdup_r — wide character string duplicate

The Red Hat newlib C Library 168 / 229

Synopsis

#include <wchar.h>

wchar_t *wcsdup(const wchar_t *str);

#include <wchar.h>

wchar_t *_wcsdup_r(struct _reent *ptr, const wchar_t *str);

Description

wcsdup allocates a new wide character string using malloc, and copies the content of the argument str into the newly
allocated string, thus making a copy of str.

Returns

wcsdup returns a pointer to the copy of str if enough memory for the copy was available. Otherwise it returns NULL and
errno is set to ENOMEM.

Portability

POSIX-1.2008

5.47 wcsncasecmp

wcsncasecmp — case-insensitive wide character string compare

Synopsis

#include <wchar.h>

int wcsncasecmp(const wchar_t *a, const wchar_t * b, size_t length);

Description

wcsncasecmp compares up to length wide characters from the string at a to the string at b in a case-insensitive manner.

Returns

If *a sorts lexicographically after *b (after both are converted to uppercase), wcsncasecmp returns a number greater than
zero. If the two strings are equivalent, wcsncasecmp returns zero. If *a sorts lexicographically before *b, wcsncasecmp
returns a number less than zero.

Portability

POSIX-1.2008

wcsncasecmp requires no supporting OS subroutines. It uses tolower() from elsewhere in this library.

The Red Hat newlib C Library 169 / 229

Chapter 6

Wide Character Strings (wchar.h)

This chapter describes wide-character string-handling functions and managing areas of memory containing wide characters. The
corresponding declarations are in wchar.h.

6.1 wmemchr

wmemchr — find a wide character in memory

Synopsis

#include <wchar.h>

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

Description

The wmemchr function locates the first occurrence of c in the initial n wide characters of the object pointed to be s. This
function is not affected by locale and all wchar_t values are treated identically. The null wide character and wchar_t values not
corresponding to valid characters are not treated specially.

If n is zero, s must be a valid pointer and the function behaves as if no valid occurrence of c is found.

Returns

The wmemchr function returns a pointer to the located wide character, or a null pointer if the wide character does not occur in
the object.

Portability

wmemchr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.2 wmemcmp

wmemcmp — compare wide characters in memory

The Red Hat newlib C Library 170 / 229

Synopsis

#include <wchar.h>

int wmemcmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wmemcmp function compares the first n wide characters of the object pointed to by s1 to the first n wide characters of the
object pointed to by s2. This function is not affected by locale and all wchar_t values are treated identically. The null wide
character and wchar_t values not corresponding to valid characters are not treated specially.

If n is zero, s1 and s2 must be a valid pointers and the function behaves as if the two objects compare equal.

Returns

The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly as the object pointed to by s1 is
greater than, equal to, or less than the object pointed to by s2.

Portability

wmemcmp is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.3 wmemcpy

wmemcpy — copy wide characters in memory

Synopsis

#include <wchar.h>

wchar_t *wmemcpy(wchar_t *__restrict d, const wchar_t *__restrict s, size_t n);

Description

The wmemcpy function copies nwide characters from the object pointed to by s to the object pointed to be d. This function is not
affected by locale and all wchar_t values are treated identically. The null wide character and wchar_t values not corresponding
to valid characters are not treated specially.

If n is zero, d and s must be a valid pointers, and the function copies zero wide characters.

Returns

The wmemcpy function returns the value of d.

Portability

wmemcpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

The Red Hat newlib C Library 171 / 229

6.4 wmemmove

wmemmove — copy wide characters in memory with overlapping areas

Synopsis

#include <wchar.h>

wchar_t *wmemmove(wchar_t *d, const wchar_t *s, size_t n);

Description

The wmemmove function copies n wide characters from the object pointed to by s to the object pointed to by d. Copying takes
place as if the n wide characters from the object pointed to by s are first copied into a temporary array of n wide characters that
does not overlap the objects pointed to by d or s, and then the n wide characters from the temporary array are copied into the
object pointed to by d.

This function is not affected by locale and all wchar_t values are treated identically. The null wide character and wchar_t values
not corresponding to valid characters are not treated specially.

If n is zero, d and s must be a valid pointers, and the function copies zero wide characters.

Returns

The wmemmove function returns the value of d.

Portability

wmemmove is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.5 wmemset

wmemset — set wide characters in memory

Synopsis

#include <wchar.h>

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Description

The wmemset function copies the value of c into each of the first nwide characters of the object pointed to by s. This function is
not affected by locale and all wchar_t values are treated identically. The null wide character and wchar_t values not corresponding
to valid characters are not treated specially.

If n is zero, s must be a valid pointer and the function copies zero wide characters.

The Red Hat newlib C Library 172 / 229

Returns

The wmemset function returns the value of s.

Portability

wmemset is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.6 wcscat

wcscat — concatenate two wide-character strings

Synopsis

#include <wchar.h>

wchar_t *wcscat(wchar_t *__restrict s1, const wchar_t *__restrict s2);

Description

The wcscat function appends a copy of the wide-character string pointed to by s2 (including the terminating null wide-
character code) to the end of the wide-character string pointed to by s1. The initial wide-character code of s2 overwrites the
null wide-character code at the end of s1. If copying takes place between objects that overlap, the behaviour is undefined.

Returns

The wcscat function returns s1; no return value is reserved to indicate an error.

Portability

wcscat is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.7 wcschr

wcschr — wide-character string scanning operation

Synopsis

#include <wchar.h>

wchar_t *wcschr(const wchar_t *s, wchar_t c);

The Red Hat newlib C Library 173 / 229

Description

The wcschr function locates the first occurrence of c in the wide-character string pointed to by s. The value of c must be a
character representable as a type wchar_t and must be a wide-character code corresponding to a valid character in the current
locale. The terminating null wide-character string.

Returns

Upon completion, wcschr returns a pointer to the wide-character code, or a null pointer if the wide-character code is not found.

Portability

wcschr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.8 wcscmp

wcscmp — compare two wide-character strings

Synopsis

#include <wchar.h>

int wcscmp(const wchar_t *s1, *s2);

Description

The wcscmp function compares the wide-character string pointed to by s1 to the wide-character string pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the values of the first pair of wide-character
codes that differ in the objects being compared.

Returns

Upon completion, wcscmp returns an integer greater than, equal to or less than 0, if the wide-character string pointed to by s1
is greater than, equal to or less than the wide-character string pointed to by s2 respectively.

Portability

wcscmp is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.9 wcscoll

wcscoll — locale-specific wide-character string compare

The Red Hat newlib C Library 174 / 229

Synopsis

#include <wchar.h>

int wcscoll(const wchar_t *stra, const wchar_t * strb);

Description

wcscoll compares the wide-character string pointed to by stra to the wide-character string pointed to by strb, using an
interpretation appropriate to the current LC_COLLATE state.

The current implementation of wcscoll simply uses wcscmp and does not support any language-specific sorting.

Returns

If the first string is greater than the second string, wcscoll returns a number greater than zero. If the two strings are equivalent,
wcscoll returns zero. If the first string is less than the second string, wcscoll returns a number less than zero.

Portability

wcscoll is ISO/IEC 9899/AMD1:1995 (ISO C).

6.10 wcscpy

wcscpy — copy a wide-character string

Synopsis

#include <wchar.h>

wchar_t *wcscpy(wchar_t *__restrict s1, const wchar_t *__restrict s2);

Description

The wcscpy function copies the wide-character string pointed to by s2 (including the terminating null wide-character code)
into the array pointed to by s1. If copying takes place between objects that overlap, the behaviour is undefined.

Returns

The wcscpy function returns s1; no return value is reserved to indicate an error.

Portability

wcscpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.11 wcpcpy

wcpcpy — copy a wide-character string returning a pointer to its end

The Red Hat newlib C Library 175 / 229

Synopsis

#include <wchar.h>

wchar_t *wcpcpy(wchar_t *s1, const wchar_t *s2);

Description

The wcpcpy function copies the wide-character string pointed to by s2 (including the terminating null wide-character code)
into the array pointed to by s1. If copying takes place between objects that overlap, the behaviour is undefined.

Returns

This function returns a pointer to the end of the destination string, thus pointing to the trailing ’\0’.

Portability

wcpcpy is a GNU extension.

No supporting OS subroutines are required.

6.12 wcscspn

wcscspn — get length of a complementary wide substring

Synopsis

#include <wchar.h>

size_t wcscspn(const wchar_t *s, wchar_t *set);

Description

The wcscspn function computes the length of the maximum initial segment of the wide-character string pointed to by s which
consists entirely of wide-character codes not from the wide-character string pointed to by set.

Returns

The wcscspn function returns the length of the initial substring of s1; no return value is reserved to indicate an error.

Portability

wcscspn is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.13 wcsftime

wcsftime — convert date and time to a formatted wide-character string

The Red Hat newlib C Library 176 / 229

Synopsis

#include <time.h>

#include <wchar.h>

size_t wcsftime(wchar_t *s, size_t maxsize, const wchar_t *format, const struct tm *timp);

Description

wcsftime is equivalent to strftime, except that:

• The argument s points to the initial element of an array of wide characters into which the generated output is to be placed.

• The argument maxsize indicates the limiting number of wide characters.

• The argument format is a wide-character string and the conversion specifiers are replaced by corresponding sequences of wide
characters.

• The return value indicates the number of wide characters.

(The difference in all of the above being wide characters versus regular characters.) See strftime for the details of the format
specifiers.

Returns

When the formatted time takes up no more than maxsize wide characters, the result is the length of the formatted wide string.
Otherwise, if the formatting operation was abandoned due to lack of room, the result is 0, and the wide-character string starting
at s corresponds to just those parts of *format that could be completely filled in within the maxsize limit.

Portability

C99 and POSIX require wcsftime, but do not specify the contents of *s when the formatted string would require more than
maxsize characters. Unrecognized specifiers and fields of timp that are out of range cause undefined results. Since some
formats expand to 0 bytes, it is wise to set *s to a nonzero value beforehand to distinguish between failure and an empty string.
This implementation does not support s being NULL, nor overlapping s and format.

wcsftime requires no supporting OS subroutines.

See Also

strftime

6.14 wcslcat

wcslcat — concatenate wide-character strings to specified length

Synopsis

#include <wchar.h>

size_t wcslcat(wchar_t *dst, const wchar_t *src, size_t siz);

The Red Hat newlib C Library 177 / 229

Description

The wcslcat function appends wide characters from src to end of the dst wide-character string so that the resultant wide-
character string is not more than siz wide characters including the terminating null wide-character code. A terminating null
wide character is always added unless siz is 0. Thus, the maximum number of wide characters that can be appended from src
is siz - 1. If copying takes place between objects that overlap, the behaviour is undefined.

Returns

Wide-character string length of initial dst plus the wide-character string length of src (does not include terminating null wide-
characters). If the return value is greater than or equal to siz, then truncation occurred and not all wide characters from src
were appended.

Portability

No supporting OS subroutines are required.

6.15 wcslcpy

wcslcpy — copy a wide-character string to specified length

Synopsis

#include <wchar.h>

size_t wcslcpy(wchar_t *dst, const wchar_t *src, size_t siz);

Description

wcslcpy copies wide characters from src to dst such that up to siz - 1 characters are copied. A terminating null is appended
to the result, unless siz is zero.

Returns

wcslcpy returns the number of wide characters in src, not including the terminating null wide character. If the return value is
greater than or equal to siz, then not all wide characters were copied from src and truncation occurred.

Portability

No supporting OS subroutines are required.

6.16 wcslen

wcslen — get wide-character string length

The Red Hat newlib C Library 178 / 229

Synopsis

#include <wchar.h>

size_t wcslen(const wchar_t *s);

Description

The wcslen function computes the number of wide-character codes in the wide-character string to which s points, not including
the terminating null wide-character code.

Returns

The wcslen function returns the length of s; no return value is reserved to indicate an error.

Portability

wcslen is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.17 wcsncat

wcsncat — concatenate part of two wide-character strings

Synopsis

#include <wchar.h>

wchar_t *wcsncat(wchar_t *__restrict s1, const wchar_t *__restrict s2, size_t n);

Description

The wcsncat function appends not more than n wide-character codes (a null wide-character code and wide-character codes
that follow it are not appended) from the array pointed to by s2 to the end of the wide-character string pointed to by s1. The
initial wide-character code of s2 overwrites the null wide-character code at the end of s1. A terminating null wide-character
code is always appended to the result. If copying takes place between objects that overlap, the behaviour is undefined.

Returns

The wcsncat function returns s1; no return value is reserved to indicate an error.

Portability

wcsncat is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

The Red Hat newlib C Library 179 / 229

6.18 wcsncmp

wcsncmp — compare part of two wide-character strings

Synopsis

#include <wchar.h>

int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

Description

The wcsncmp function compares not more than n wide-character codes (wide-character codes that follow a null wide-character
code are not compared) from the array pointed to by s1 to the array pointed to by s2.

The sign of a non-zero return value is determined by the sign of the difference between the values of the first pair of wide-character
codes that differ in the objects being compared.

Returns

Upon successful completion, wcsncmp returns an integer greater than, equal to or less than 0, if the possibly null-terminated
array pointed to by s1 is greater than, equal to or less than the possibly null-terminated array pointed to by s2 respectively.

Portability

wcsncmp is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.19 wcsncpy

wcsncpy — copy part of a wide-character string

Synopsis

#include <wchar.h>

wchar_t *wcsncpy(wchar_t *__restrict s1, const wchar_t *__restrict s2, size_t n);

Description

The wcsncpy function copies not more than n wide-character codes (wide-character codes that follow a null wide-character
code are not copied) from the array pointed to by s2 to the array pointed to by s1. If copying takes place between objects that
overlap, the behaviour is undefined. Note that if s1 contains more than n wide characters before its terminating null, the result
is not null-terminated.

If the array pointed to by s2 is a wide-character string that is shorter than n wide-character codes, null wide-character codes are
appended to the copy in the array pointed to by s1, until n wide-character codes in all are written.

The Red Hat newlib C Library 180 / 229

Returns

The wcsncpy function returns s1; no return value is reserved to indicate an error.

Portability

ISO/IEC 9899; POSIX.1.

No supporting OS subroutines are required.

6.20 wcpncpy

wcpncpy — copy part of a wide-character string returning a pointer to its end

Synopsis

#include <wchar.h>

wchar_t *wcpncpy(wchar_t *__restrict s1, const wchar_t *__restrict s2, size_t n);

Description

The wcpncpy function copies not more than n wide-character codes (wide-character codes that follow a null wide-character
code are not copied) from the array pointed to by s2 to the array pointed to by s1. If copying takes place between objects that
overlap, the behaviour is undefined.

If the array pointed to by s2 is a wide-character string that is shorter than n wide-character codes, null wide-character codes are
appended to the copy in the array pointed to by s1, until n wide-character codes in all are written.

Returns

The wcpncpy function returns s1; no return value is reserved to indicate an error.

Portability

wcpncpy is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.21 wcsnlen

wcsnlen — get fixed-size wide-character string length

Synopsis

#include <wchar.h>

size_t wcsnlen(const wchar_t *s, size_t maxlen);

The Red Hat newlib C Library 181 / 229

Description

The wcsnlen function computes the number of wide-character codes in the wide-character string pointed to by s not including
the terminating L’\0’ wide character but at most maxlen wide characters.

Returns

wcsnlen returns the length of s if it is less then maxlen, or maxlen if there is no L’\0’ wide character in first maxlen
characters.

Portability

wcsnlen is a GNU extension.

wcsnlen requires no supporting OS subroutines.

6.22 wcspbrk

wcspbrk — -scan wide-character string for a wide-character code

Synopsis

#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *s, const wchar_t *set);

Description

The wcspbrk function locates the first occurrence in the wide-character string pointed to by s of any wide-character code from
the wide-character string pointed to by set.

Returns

Upon successful completion, wcspbrk returns a pointer to the wide-character code or a null pointer if no wide-character code
from set occurs in s.

Portability

wcspbrk is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.23 wcsrchr

wcsrchr — wide-character string scanning operation

Synopsis

#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

The Red Hat newlib C Library 182 / 229

Description

The wcsrchr function locates the last occurrence of c in the wide-character string pointed to by s. The value of c must be
a character representable as a type wchar_t and must be a wide-character code corresponding to a valid character in the current
locale. The terminating null wide-character code is considered to be part of the wide-character string.

Returns

Upon successful completion, wcsrchr returns a pointer to the wide-character code or a null pointer if c does not occur in the
wide-character string.

Portability

wcsrchr is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.24 wcsspn

wcsspn — get length of a wide substring

Synopsis

#include <wchar.h>

size_t wcsspn(const wchar_t *s, const wchar_t *set);

Description

The wcsspn function computes the length of the maximum initial segment of the wide-character string pointed to by s which
consists entirely of wide-character codes from the wide-character string pointed to by set.

Returns

The wcsspn() function returns the length s1; no return value is reserved to indicate an error.

Portability

wcsspn is ISO/IEC 9899/AMD1:1995 (ISO C).

No supporting OS subroutines are required.

6.25 wcsstr

wcsstr — find a wide-character substring

Synopsis

#include <wchar.h>

wchar_t *wcsstr(const wchar_t *__restrict big, const wchar_t *__restrict little);

The Red Hat newlib C Library 183 / 229

Description

The wcsstr function locates the first occurrence in the wide-character string pointed to by big of the sequence of wide
characters (excluding the terminating null wide character) in the wide-character string pointed to by little.

Returns

On successful completion, wcsstr returns a pointer to the located wide-character string, or a null pointer if the wide-character
string is not found.

If little points to a wide-character string with zero length, the function returns big.

Portability

wcsstr is ISO/IEC 9899/AMD1:1995 (ISO C).

6.26 wcstok

wcstok — get next token from a string

Synopsis

#include <wchar.h>

wchar_t *wcstok(wchar_t *__restrict source, const wchar_t *__restrict delimiters, wchar_t **__restrict lasts);

Description

The wcstok function is the wide-character equivalent of the strtok_r function (which in turn is the same as the strtok
function with an added argument to make it thread-safe).

The wcstok function is used to isolate (one at a time) sequential tokens in a null-terminated wide-character string, *source.
A token is defined as a substring not containing any wide-characters from *delimiters.

The first time that wcstok is called, *source should be specified with the wide-character string to be searched, and *lasts-
-but not lasts, which must be non-NULL--may be random; subsequent calls, wishing to obtain further tokens from the same
string, should pass a null pointer for *source instead but must supply *lasts unchanged from the last call. The separator
wide-character string, *delimiters, must be supplied each time and may change between calls. A pointer to placeholder
*lasts must be supplied by the caller, and is set each time as needed to save the state by wcstok. Every call to wcstok with
*source == NULL must pass the value of *lasts as last set by wcstok.

The wcstok function returns a pointer to the beginning of each subsequent token in the string, after replacing the separator
wide-character itself with a null wide-character. When no more tokens remain, a null pointer is returned.

Returns

wcstok returns a pointer to the first wide character of a token, or NULL if there is no token.

Notes

wcstok is thread-safe (unlike strtok, but like strtok_r). wcstok writes into the string being searched.

The Red Hat newlib C Library 184 / 229

Portability

wcstok is C99 and POSIX.1-2001.

wcstok requires no supporting OS subroutines.

6.27 wcswidth

wcswidth — number of column positions of a wide-character string

Synopsis

#include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

Description

The wcswidth function shall determine the number of column positions required for n wide-character codes (or fewer than
n wide-character codes if a null wide-character code is encountered before n wide-character codes are exhausted) in the string
pointed to by pwcs.

Returns

The wcswidth function either shall return 0 (if pwcs points to a null wide-character code), or return the number of column
positions to be occupied by the wide-character string pointed to by pwcs, or return -1 (if any of the first n wide-character codes
in the wide-character string pointed to by pwcs is not a printable wide-character code).

Portability

wcswidth has been introduced in the Single UNIX Specification Volume 2. wcswidth has been marked as an extension in
the Single UNIX Specification Volume 3.

6.28 wcsxfrm

wcsxfrm — locale-specific wide-character string transformation

Synopsis

#include <wchar.h>

int wcsxfrm(wchar_t *__restrict stra, const wchar_t *__restrict strb, size_t n);

Description

wcsxfrm transforms the wide-character string pointed to by strb to the wide-character string pointed to by stra, Comparing
two transformed wide strings with wcscmp should return the same result as comparing the original strings with wcscoll. No
more than n wide characters are transformed, including the trailing null character.

If n is 0, stra may be a NULL pointer.

The current implementation of wcsxfrm simply uses wcslcpy and does not support any language-specific transformations.

The Red Hat newlib C Library 185 / 229

Returns

wcsxfrm returns the length of the transformed wide character string. if the return value is greater or equal to n, the content of
stra is undefined.

Portability

wcsxfrm is ISO/IEC 9899/AMD1:1995 (ISO C).

6.29 wcwidth

wcwidth — number of column positions of a wide-character code

Synopsis

#include <wchar.h>

int wcwidth(const wchar_t wc);

Description

The wcwidth function shall determine the number of column positions required for the wide character wc. The application
shall ensure that the value of wc is a character representable as a wchar_t, and is a wide-character code corresponding to a valid
character in the current locale.

Returns

The wcwidth function shall either return 0 (if wc is a null wide-character code), or return the number of column positions to be
occupied by the wide-character code wc, or return -1 (if wc does not correspond to a printable wide-character code).

Portability

wcwidth has been introduced in the Single UNIX Specification Volume 2. wcwidth has been marked as an extension in the
Single UNIX Specification Volume 3.

The Red Hat newlib C Library 186 / 229

Chapter 7

Signal Handling (signal.h)

A signal is an event that interrupts the normal flow of control in your program. Your operating environment normally defines the
full set of signals available (see sys/signal.h), as well as the default means of dealing with them---typically, either printing
an error message and aborting your program, or ignoring the signal.

All systems support at least the following signals:

SIGABRT
Abnormal termination of a program; raised by the abort
function.

SIGFPE
A domain error in arithmetic, such as overflow, or division
by zero.

SIGILL Attempt to execute as a function data that is not executable.
SIGINT Interrupt; an interactive attention signal.

SIGSEGV
An attempt to access a memory location that is not
available.

SIGTERM A request that your program end execution.

Two functions are available for dealing with asynchronous signals---one to allow your program to send signals to itself (this
is called raising a signal), and one to specify subroutines (called handlers to handle particular signals that you anticipate may
occur---whether raised by your own program or the operating environment.

To support these functions, signal.h defines three macros:

SIG_DFL
Used with the signal function in place of a pointer to a
handler subroutine, to select the operating environment’s
default handling of a signal.

SIG_IGN
Used with the signal function in place of a pointer to a
handler, to ignore a particular signal.

SIG_ERR
Returned by the signal function in place of a pointer to a
handler, to indicate that your request to set up a handler
could not be honored for some reason.

signal.h also defines an integral type, sig_atomic_t. This type is not used in any function declarations; it exists only to
allow your signal handlers to declare a static storage location where they may store a signal value. (Static storage is not otherwise
reliable from signal handlers.)

7.1 psignal

psignal — print a signal message on standard error

The Red Hat newlib C Library 187 / 229

Synopsis

#include <stdio.h>

void psignal(int signal, const char *prefix);

Description

Use psignal to print (on standard error) a signal message corresponding to the value of the signal number signal. Unless
you use NULL as the value of the argument prefix, the signal message will begin with the string at prefix, followed by a
colon and a space (:). The remainder of the signal message is one of the strings described for strsignal.

Returns

psignal returns no result.

Portability

POSIX.1-2008 requires psignal, but the strings issued vary from one implementation to another.

Supporting OS subroutines required: close, fstat, isatty, lseek, read, sbrk, write.

7.2 raise

raise, _raise_r — send a signal

Synopsis

#include <signal.h>

int raise(int sig);
int _raise_r(void *reent, int sig);

Description

Send the signal sig (one of the macros from `sys/signal.h’). This interrupts your program’s normal flow of execution, and
allows a signal handler (if you’ve defined one, using signal) to take control.

The alternate function _raise_r is a reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

The result is 0 if sig was successfully raised, 1 otherwise. However, the return value (since it depends on the normal flow of
execution) may not be visible, unless the signal handler for sig terminates with a return or unless SIG_IGN is in effect for
this signal.

Portability

ANSI C requires raise, but allows the full set of signal numbers to vary from one implementation to another.

Required OS subroutines: getpid, kill.

The Red Hat newlib C Library 188 / 229

7.3 signal

signal, _signal_r — specify handler subroutine for a signal

Synopsis

#include <signal.h>

void (*signal(int sig, void(*func)(int))) (int);
void (*_signal_r(void *reent, int sig, void(*func)(int))) (int);

Description

signal provides a simple signal-handling implementation for embedded targets.

signal allows you to request changed treatment for a particular signal sig. You can use one of the predefined macros
SIG_DFL (select system default handling) or SIG_IGN (ignore this signal) as the value of func; otherwise, func is a function
pointer that identifies a subroutine in your program as the handler for this signal.

Some of the execution environment for signal handlers is unpredictable; notably, the only library function required to work
correctly from within a signal handler is signal itself, and only when used to redefine the handler for the current signal value.

Static storage is likewise unreliable for signal handlers, with one exception: if you declare a static storage location as `volatile
sig_atomic_t’, then you may use that location in a signal handler to store signal values.

If your signal handler terminates using return (or implicit return), your program’s execution continues at the point where it
was when the signal was raised (whether by your program itself, or by an external event). Signal handlers can also use functions
such as exit and abort to avoid returning.

The alternate function _signal_r is the reentrant version. The extra argument reent is a pointer to a reentrancy structure.

Returns

If your request for a signal handler cannot be honored, the result is SIG_ERR; a specific error number is also recorded in errno.

Otherwise, the result is the previous handler (a function pointer or one of the predefined macros).

Portability

ANSI C requires signal.

No supporting OS subroutines are required to link with signal, but it will not have any useful effects, except for software
generated signals, without an operating system that can actually raise exceptions.

The Red Hat newlib C Library 189 / 229

Chapter 8

Time Functions (time.h)

This chapter groups functions used either for reporting on time (elapsed, current, or compute time) or to perform calculations
based on time.

The header file time.h defines three types. clock_t and time_t are both used for representations of time particularly
suitable for arithmetic. (In this implementation, quantities of type clock_t have the highest resolution possible on your
machine, and quantities of type time_t resolve to seconds.) size_t is also defined if necessary for quantities representing
sizes.

time.h also defines the structure tm for the traditional representation of Gregorian calendar time as a series of numbers, with
the following fields:

tm_sec
Seconds, between 0 and 60 inclusive (60 allows for leap
seconds).

tm_min Minutes, between 0 and 59 inclusive.
tm_hour Hours, between 0 and 23 inclusive.
tm_mday Day of the month, between 1 and 31 inclusive.
tm_mon Month, between 0 (January) and 11 (December).
tm_year Year (since 1900), can be negative for earlier years.
tm_wday Day of week, between 0 (Sunday) and 6 (Saturday).

tm_yday
Number of days elapsed since last January 1, between 0
and 365 inclusive.

tm_isdst

Daylight Savings Time flag: positive means DST in effect,
zero means DST not in effect, negative means no
information about DST is available. Although for
mktime(), negative means that it should decide if DST is in
effect or not.

8.1 asctime

asctime, _asctime_r — format time as string

Synopsis

#include <time.h>

char *asctime(const struct tm *clock);
char *_asctime_r(const struct tm *clock, char *buf);

The Red Hat newlib C Library 190 / 229

Description

Format the time value at clock into a string of the form

Wed Jun 15 11:38:07 1988\n\0

The string is generated in a static buffer; each call to asctime overwrites the string generated by previous calls.

Returns

A pointer to the string containing a formatted timestamp.

Portability

ANSI C requires asctime.

asctime requires no supporting OS subroutines.

8.2 clock

clock — cumulative processor time

Synopsis

#include <time.h>

clock_t clock(void);

Description

Calculates the best available approximation of the cumulative amount of time used by your program since it started. To convert
the result into seconds, divide by the macro CLOCKS_PER_SEC.

Returns

The amount of processor time used so far by your program, in units defined by the machine-dependent macro CLOCKS_PER_
SEC. If no measurement is available, the result is (clock_t)-1.

Portability

ANSI C requires clock and CLOCKS_PER_SEC.

Supporting OS subroutine required: times.

8.3 ctime

ctime, ctime_r — convert time to local and format as string

The Red Hat newlib C Library 191 / 229

Synopsis

#include <time.h>

char *ctime(const time_t *clock);
char *ctime_r(const time_t *clock, char *buf);

Description

Convert the time value at clock to local time (like localtime) and format it into a string of the form

Wed Jun 15 11:38:07 1988\n\0

(like asctime).

Returns

A pointer to the string containing a formatted timestamp.

Portability

ANSI C requires ctime.

ctime requires no supporting OS subroutines.

8.4 difftime

difftime — subtract two times

Synopsis

#include <time.h>

double difftime(time_t tim1, time_t tim2);

Description

Subtracts the two times in the arguments: `tim1 -tim2’.

Returns

The difference (in seconds) between tim2 and tim1, as a double.

Portability

ANSI C requires difftime, and defines its result to be in seconds in all implementations.

difftime requires no supporting OS subroutines.

The Red Hat newlib C Library 192 / 229

8.5 gmtime

gmtime, gmtime_r — convert time to UTC traditional form

Synopsis

#include <time.h>

struct tm *gmtime(const time_t *clock);
struct tm *gmtime_r(const time_t *clock, struct tm *res);

Description

gmtime takes the time at clock representing the number of elapsed seconds since 00:00:00 on January 1, 1970, Universal
Coordinated Time (UTC, also known in some countries as GMT, Greenwich Mean time) and converts it to a struct tm
representation.

gmtime constructs the traditional time representation in static storage; each call to gmtime or localtime will overwrite the
information generated by previous calls to either function.

Returns

A pointer to the traditional time representation (struct tm).

Portability

ANSI C requires gmtime.

gmtime requires no supporting OS subroutines.

8.6 localtime

localtime, localtime_r — convert time to local representation

Synopsis

#include <time.h>

struct tm *localtime(time_t *clock);
struct tm *localtime_r(time_t *clock, struct tm *res);

Description

localtime converts the time at clock into local time, then converts its representation from the arithmetic representation to
the traditional representation defined by struct tm.

localtime constructs the traditional time representation in static storage; each call to gmtime or localtime will overwrite
the information generated by previous calls to either function.

mktime is the inverse of localtime.

The Red Hat newlib C Library 193 / 229

Returns

A pointer to the traditional time representation (struct tm).

Portability

ANSI C requires localtime.

localtime requires no supporting OS subroutines.

8.7 mktime

mktime — convert time to arithmetic representation

Synopsis

#include <time.h>

time_t mktime(struct tm *timp);

Description

mktime assumes the time at timp is a local time, and converts its representation from the traditional representation defined by
struct tm into a representation suitable for arithmetic.

localtime is the inverse of mktime.

Returns

If the contents of the structure at timp do not form a valid calendar time representation, the result is -1. Otherwise, the result is
the time, converted to a time_t value.

Portability

ANSI C requires mktime.

mktime requires no supporting OS subroutines.

8.8 strftime

strftime — convert date and time to a formatted string

Synopsis

#include <time.h>

size_t strftime(char *restrict s, size_t maxsize, const char *restrict format, const struct tm *restrict timp);

The Red Hat newlib C Library 194 / 229

Description

strftime converts a struct tm representation of the time (at timp) into a null-terminated string, starting at s and occupy-
ing no more than maxsize characters.

You control the format of the output using the string at format. *format can contain two kinds of specifications: text to be
copied literally into the formatted string, and time conversion specifications. Time conversion specifications are two- and three-
character sequences beginning with `%’ (use `%%’ to include a percent sign in the output). Each defined conversion specification
selects only the specified field(s) of calendar time data from *timp, and converts it to a string in one of the following ways:

%a
The abbreviated weekday name according to the current
locale. [tm_wday]

%A

The full weekday name according to the current locale. In
the default "C" locale, one of `Sunday’, `Monday’,
`Tuesday’, `Wednesday’, `Thursday’, `Friday’,
`Saturday’. [tm_wday]

%b
The abbreviated month name according to the current
locale. [tm_mon]

%B

The full month name according to the current locale. In the
default "C" locale, one of `January’, `February’,
`March’, `April’, `May’, `June’, `July’, `August’,
`September’, `October’, `November’, `December’.
[tm_mon]

%c

The preferred date and time representation for the current
locale. [tm_sec, tm_min, tm_hour, tm_mday, tm_mon,
tm_year, tm_wday]

%C

The century, that is, the year divided by 100 then truncated.
For 4-digit years, the result is zero-padded and exactly two
characters; but for other years, there may a negative sign or
more digits. In this way, `%C%y’ is equivalent to `%Y’.
[tm_year]

%d
The day of the month, formatted with two digits (from `01’
to `31’). [tm_mday]

%D
A string representing the date, in the form `"%m/%d/
%y"’. [tm_mday, tm_mon, tm_year]

%e
The day of the month, formatted with leading space if
single digit (from `1’ to `31’). [tm_mday]

%Ex

In some locales, the E modifier selects alternative
representations of certain modifiers x. In newlib, it is
ignored, and treated as %x.

%F
A string representing the ISO 8601:2000 date format, in the
form `"%Y-%m-%d"’. [tm_mday, tm_mon, tm_year]

%g
The last two digits of the week-based year, see specifier
%G (from `00’ to `99’). [tm_year, tm_wday, tm_yday]

The Red Hat newlib C Library 195 / 229

%G

The week-based year. In the ISO 8601:2000 calendar,
week 1 of the year includes January 4th, and begin on
Mondays. Therefore, if January 1st, 2nd, or 3rd falls on a
Sunday, that day and earlier belong to the last week of the
previous year; and if December 29th, 30th, or 31st falls on
Monday, that day and later belong to week 1 of the next
year. For consistency with %Y, it always has at least four
characters. Example: "%G" for Saturday 2nd January 1999
gives "1998", and for Tuesday 30th December 1997 gives
"1998". [tm_year, tm_wday, tm_yday]

%h
Synonym for "%b". [tm_mon]

%H
The hour (on a 24-hour clock), formatted with two digits
(from `00’ to `23’). [tm_hour]

%I
The hour (on a 12-hour clock), formatted with two digits
(from `01’ to `12’). [tm_hour]

%j
The count of days in the year, formatted with three digits
(from `001’ to `366’). [tm_yday]

%k

The hour (on a 24-hour clock), formatted with leading
space if single digit (from `0’ to `23’). Non-POSIX
extension (c.p. %I). [tm_hour]

%l

The hour (on a 12-hour clock), formatted with leading
space if single digit (from `1’ to `12’). Non-POSIX
extension (c.p. %H). [tm_hour]

%m
The month number, formatted with two digits (from `01’
to `12’). [tm_mon]

%M
The minute, formatted with two digits (from `00’ to `59’).
[tm_min]

%n
A newline character (`\n’).

%Ox

In some locales, the O modifier selects alternative digit
characters for certain modifiers x. In newlib, it is ignored,
and treated as %x.

%p
Either `AM’ or `PM’ as appropriate, or the corresponding
strings for the current locale. [tm_hour]

%P
Same as ’%p’, but in lowercase. This is a GNU extension.
[tm_hour]

%r

Replaced by the time in a.m. and p.m. notation. In the "C"
locale this is equivalent to "%I:%M:%S %p". In locales
which don’t define a.m./p.m. notations, the result is an
empty string. [tm_sec, tm_min, tm_hour]

%R
The 24-hour time, to the minute. Equivalent to "%H:%M".
[tm_min, tm_hour]

The Red Hat newlib C Library 196 / 229

%s
The time elapsed, in seconds, since the start of the Unix
epoch at 1970-01-01 00:00:00 UTC.

%S

The second, formatted with two digits (from `00’ to `60’).
The value 60 accounts for the occasional leap second.
[tm_sec]

%t
A tab character (`\t’).

%T
The 24-hour time, to the second. Equivalent to
"%H:%M:%S". [tm_sec, tm_min, tm_hour]

%u
The weekday as a number, 1-based from Monday (from `1’
to `7’). [tm_wday]

%U

The week number, where weeks start on Sunday, week 1
contains the first Sunday in a year, and earlier days are in
week 0. Formatted with two digits (from `00’ to `53’). See
also %W. [tm_wday, tm_yday]

%V

The week number, where weeks start on Monday, week 1
contains January 4th, and earlier days are in the previous
year. Formatted with two digits (from `01’ to `53’). See
also %G. [tm_year, tm_wday, tm_yday]

%w
The weekday as a number, 0-based from Sunday (from `0’
to `6’). [tm_wday]

%W

The week number, where weeks start on Monday, week 1
contains the first Monday in a year, and earlier days are in
week 0. Formatted with two digits (from `00’ to `53’).
[tm_wday, tm_yday]

%x

Replaced by the preferred date representation in the current
locale. In the "C" locale this is equivalent to "%m/%d/%y".
[tm_mon, tm_mday, tm_year]

%X

Replaced by the preferred time representation in the current
locale. In the "C" locale this is equivalent to
"%H:%M:%S". [tm_sec, tm_min, tm_hour]

%y

The last two digits of the year (from `00’ to `99’).
[tm_year] (Implementation interpretation: always positive,
even for negative years.)

%Y

The full year, equivalent to %C%y. It will always have at
least four characters, but may have more. The year is
accurate even when tm_year added to the offset of 1900
overflows an int. [tm_year]

The Red Hat newlib C Library 197 / 229

%z

The offset from UTC. The format consists of a sign
(negative is west of Greewich), two characters for hour,
then two characters for minutes (-hhmm or +hhmm). If
tm_isdst is negative, the offset is unknown and no output is
generated; if it is zero, the offset is the standard offset for
the current time zone; and if it is positive, the offset is the
daylight savings offset for the current timezone. The offset
is determined from the TZ environment variable, as if by
calling tzset(). [tm_isdst]

%Z

The time zone name. If tm_isdst is negative, no output is
generated. Otherwise, the time zone name is based on the
TZ environment variable, as if by calling tzset(). [tm_isdst]

%%
A single character, `%’.

Returns

When the formatted time takes up no more than maxsize characters, the result is the length of the formatted string. Otherwise,
if the formatting operation was abandoned due to lack of room, the result is 0, and the string starting at s corresponds to just
those parts of *format that could be completely filled in within the maxsize limit.

Portability

ANSI C requires strftime, but does not specify the contents of *s when the formatted string would require more than
maxsize characters. Unrecognized specifiers and fields of timp that are out of range cause undefined results. Since some
formats expand to 0 bytes, it is wise to set *s to a nonzero value beforehand to distinguish between failure and an empty string.
This implementation does not support s being NULL, nor overlapping s and format.

strftime requires no supporting OS subroutines.

Bugs

strftime ignores the LC_TIME category of the current locale, hard-coding the "C" locale settings.

8.9 time

time — get current calendar time (as single number)

Synopsis

#include <time.h>

time_t time(time_t *t);

Description

time looks up the best available representation of the current time and returns it, encoded as a time_t. It stores the same value
at t unless the argument is NULL.

The Red Hat newlib C Library 198 / 229

Returns

A -1 result means the current time is not available; otherwise the result represents the current time.

Portability

ANSI C requires time.

Supporting OS subroutine required: Some implementations require gettimeofday.

8.10 __tz_lock

__tz_lock, __tz_unlock — lock time zone global variables

Synopsis

#include "local.h"

void __tz_lock(void);
void __tz_unlock(void);

Description

The tzset facility functions call these functions when they need to ensure the values of global variables. The version of these
routines supplied in the library use the lock API defined in sys/lock.h. If multiple threads of execution can call the time functions
and give up scheduling in the middle, then you you need to define your own versions of these functions in order to safely lock the
time zone variables during a call. If you do not, the results of localtime, mktime, ctime, and strftime are undefined.

The lock __tz_lock may not be called recursively; that is, a call __tz_lock will always lock all subsequent __tz_lock
calls until the corresponding __tz_unlock call on the same thread is made.

8.11 tzset

tzset, _tzset_r — set timezone characteristics from TZ environment variable

Synopsis

#include <time.h>

void tzset(void);
void _tzset_r(struct _reent *reent_ptr);

Description

tzset examines the TZ environment variable and sets up the three external variables: _timezone, _daylight, and tzn
ame. The value of _timezone shall be the offset from the current time zone to GMT. The value of _daylight shall be 0 if
there is no daylight savings time for the current time zone, otherwise it will be non-zero. The tzname array has two entries: the
first is the name of the standard time zone, the second is the name of the daylight-savings time zone.

The TZ environment variable is expected to be in the following POSIX format:

The Red Hat newlib C Library 199 / 229

stdoffset1[dst[offset2][,start[/time1],end[/time2]]]

where: std is the name of the standard time-zone (minimum 3 chars) offset1 is the value to add to local time to arrive at Universal
time it has the form: hh[:mm[:ss]] dst is the name of the alternate (daylight-savings) time-zone (min 3 chars) offset2 is the value
to add to local time to arrive at Universal time it has the same format as the std offset start is the day that the alternate time-zone
starts time1 is the optional time that the alternate time-zone starts (this is in local time and defaults to 02:00:00 if not specified)
end is the day that the alternate time-zone ends time2 is the time that the alternate time-zone ends (it is in local time and defaults
to 02:00:00 if not specified)

Note that there is no white-space padding between fields. Also note that if TZ is null, the default is Universal GMT which has
no daylight-savings time. If TZ is empty, the default EST5EDT is used.

The function _tzset_r is identical to tzset only it is reentrant and is used for applications that use multiple threads.

Returns

There is no return value.

Portability

tzset is part of the POSIX standard.

Supporting OS subroutine required: None

The Red Hat newlib C Library 200 / 229

Chapter 9

Locale (locale.h)

A locale is the name for a collection of parameters (affecting collating sequences and formatting conventions) that may be
different depending on location or culture. The "C" locale is the only one defined in the ANSI C standard.

This is a minimal implementation, supporting only the required "C" value for locale; strings representing other locales are not
honored. ("" is also accepted; it represents the default locale for an implementation, here equivalent to "C").

locale.h defines the structure lconv to collect the information on a locale, with the following fields:

char *decimal_point
The decimal point character used to format ``ordinary”
numbers (all numbers except those referring to amounts of
money). "." in the C locale.

char *thousands_sep
The character (if any) used to separate groups of digits,
when formatting ordinary numbers. "" in the C locale.

char *grouping

Specifications for how many digits to group (if any
grouping is done at all) when formatting ordinary numbers.
The numeric value of each character in the string
represents the number of digits for the next group, and a
value of 0 (that is, the string’s trailing NULL) means to
continue grouping digits using the last value specified. Use
CHAR_MAX to indicate that no further grouping is desired.
"" in the C locale.

char *int_curr_symbol
The international currency symbol (first three characters),
if any, and the character used to separate it from numbers.
"" in the C locale.

char *currency_symbol The local currency symbol, if any. "" in the C locale.

char *mon_decimal_point
The symbol used to delimit fractions in amounts of money.
"" in the C locale.

char *mon_thousands_sep
Similar to thousands_sep, but used for amounts of
money. "" in the C locale.

char *mon_grouping
Similar to grouping, but used for amounts of money. ""
in the C locale.

char *positive_sign
A string to flag positive amounts of money when
formatting. "" in the C locale.

char *negative_sign
A string to flag negative amounts of money when
formatting. "" in the C locale.

char int_frac_digits
The number of digits to display when formatting amounts
of money to international conventions. CHAR_MAX (the
largest number representable as a char) in the C locale.

char frac_digits
The number of digits to display when formatting amounts
of money to local conventions. CHAR_MAX in the C locale.

The Red Hat newlib C Library 201 / 229

char p_cs_precedes

1 indicates the local currency symbol is used before a
positive or zero formatted amount of money; 0 indicates
the currency symbol is placed after the formatted number.
CHAR_MAX in the C locale.

char p_sep_by_space

1 indicates the local currency symbol must be separated
from positive or zero numbers by a space; 0 indicates that
it is immediately adjacent to numbers. CHAR_MAX in the C
locale.

char n_cs_precedes

1 indicates the local currency symbol is used before a
negative formatted amount of money; 0 indicates the
currency symbol is placed after the formatted number.
CHAR_MAX in the C locale.

char n_sep_by_space

1 indicates the local currency symbol must be separated
from negative numbers by a space; 0 indicates that it is
immediately adjacent to numbers. CHAR_MAX in the C
locale.

char p_sign_posn

Controls the position of the positive sign for numbers
representing money. 0 means parentheses surround the
number; 1 means the sign is placed before both the number
and the currency symbol; 2 means the sign is placed after
both the number and the currency symbol; 3 means the
sign is placed just before the currency symbol; and 4
means the sign is placed just after the currency symbol.
CHAR_MAX in the C locale.

char n_sign_posn
Controls the position of the negative sign for numbers
representing money, using the same rules as
p_sign_posn. CHAR_MAX in the C locale.

9.1 setlocale

setlocale, localeconv, _setlocale_r, _localeconv_r — select or query locale

Synopsis

#include <locale.h>

char *setlocale(int category, const char *locale);
lconv *localeconv(void);
char *_setlocale_r(void *reent, int category, const char *locale);
lconv *_localeconv_r(void *reent);

Description

setlocale is the facility defined by ANSI C to condition the execution environment for international collating and formatting
information; localeconv reports on the settings of the current locale.

This is a minimal implementation, supporting only the required "POSIX" and "C" values for locale; strings representing
other locales are not honored unless _MB_CAPABLE is defined.

If _MB_CAPABLE is defined, POSIX locale strings are allowed, following the form

language[_TERRITORY][.charset][@modifier]

"language" is a two character string per ISO 639, or, if not available for a given language, a three character string per ISO
639-3. "TERRITORY" is a country code per ISO 3166. For "charset" and "modifier" see below.

The Red Hat newlib C Library 202 / 229

Additionally to the POSIX specifier, the following extension is supported for backward compatibility with older implementations
using newlib: "C-charset". Instead of "C-", you can also specify "C.". Both variations allow to specify language neutral
locales while using other charsets than ASCII, for instance "C.UTF-8", which keeps all settings as in the C locale, but uses the
UTF-8 charset.

The following charsets are recognized: "UTF-8", "JIS", "EUCJP", "SJIS", "KOI8-R", "KOI8-U", "GEORGIAN-PS",
"PT154", "TIS-620", "ISO-8859-x" with 1 <= x <= 16, or "CPxxx" with xxx in [437, 720, 737, 775, 850, 852, 855,
857, 858, 862, 866, 874, 932, 1125, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258].

Charsets are case insensitive. For instance, "EUCJP" and "eucJP" are equivalent. Charset names with dashes can also be
written without dashes, as in "UTF8", "iso88591" or "koi8r". "EUCJP" and "EUCKR" are also recognized with dash,
"EUC-JP" and "EUC-KR".

Full support for all of the above charsets requires that newlib has been build with multibyte support and support for all ISO and
Windows Codepage. Otherwise all singlebyte charsets are simply mapped to ASCII. Right now, only newlib for Cygwin is built
with full charset support by default. Under Cygwin, this implementation additionally supports the charsets "GBK", "GB2312",
"eucCN", "eucKR", and "Big5". Cygwin does not support "JIS".

Cygwin additionally supports locales from the file /usr/share/locale/locale.alias.

("" is also accepted; if given, the settings are read from the corresponding LC_* environment variables and $LANG according
to POSIX rules.)

This implementation also supports the modifier "cjknarrow", which affects how the functions wcwidth and wcswidth
handle characters from the "CJK Ambiguous Width" category of characters described at http://www.unicode.org/reports/tr11/#Ambiguous.
These characters have a width of 1 for singlebyte charsets and a width of 2 for multibyte charsets other than UTF-8. For UTF-8,
their width depends on the language specifier: it is 2 for "zh" (Chinese), "ja" (Japanese), and "ko" (Korean), and 1 for
everything else. Specifying "cjknarrow" forces a width of 1, independent of charset and language.

If you use NULL as the locale argument, setlocale returns a pointer to the string representing the current locale. The
acceptable values for category are defined in `locale.h’ as macros beginning with "LC_".

localeconv returns a pointer to a structure (also defined in `locale.h’) describing the locale-specific conventions currently
in effect.

_localeconv_r and _setlocale_r are reentrant versions of localeconv and setlocale respectively. The extra
argument reent is a pointer to a reentrancy structure.

Returns

A successful call to setlocale returns a pointer to a string associated with the specified category for the new locale. The
string returned by setlocale is such that a subsequent call using that string will restore that category (or all categories in case
of LC_ALL), to that state. The application shall not modify the string returned which may be overwritten by a subsequent call to
setlocale. On error, setlocale returns NULL.

localeconv returns a pointer to a structure of type lconv, which describes the formatting and collating conventions in effect
(in this implementation, always those of the C locale).

Portability

ANSI C requires setlocale, but the only locale required across all implementations is the C locale.

Notes

There is no ISO-8859-12 codepage. It’s also refused by this implementation.

No supporting OS subroutines are required.

The Red Hat newlib C Library 203 / 229

Chapter 10

Reentrancy

Reentrancy is a characteristic of library functions which allows multiple processes to use the same address space with assurance
that the values stored in those spaces will remain constant between calls. The Red Hat newlib implementation of the library
functions ensures that whenever possible, these library functions are reentrant. However, there are some functions that can not
be trivially made reentrant. Hooks have been provided to allow you to use these functions in a fully reentrant fashion.

These hooks use the structure _reent defined in reent.h. A variable defined as struct _reent is called a reentrancy
structure. All functions which must manipulate global information are available in two versions. The first version has the usual
name, and uses a single global instance of the reentrancy structure. The second has a different name, normally formed by
prepending _ and appending _r, and takes a pointer to the particular reentrancy structure to use.

For example, the function fopen takes two arguments, file and mode, and uses the global reentrancy structure. The function
_fopen_r takes the arguments, struct_reent, which is a pointer to an instance of the reentrancy structure, file and
mode.

There are two versions of struct _reent, a normal one and one for small memory systems, controlled by the _REENT_SM
ALL definition from the (automatically included) <sys/config.h>.

Each function which uses the global reentrancy structure uses the global variable _impure_ptr, which points to a reentrancy
structure.

This means that you have two ways to achieve reentrancy. Both require that each thread of execution control initialize a unique
global variable of type struct _reent:

1. Use the reentrant versions of the library functions, after initializing a global reentrancy structure for each process. Use the
pointer to this structure as the extra argument for all library functions.

2. Ensure that each thread of execution control has a pointer to its own unique reentrancy structure in the global variable
_impure_ptr, and call the standard library subroutines.

The following functions are provided in both reentrant and non-reentrant versions.

Equivalent for errno variable: _errno_r

Locale functions: _localeconv_r _setlocale_r

Equivalents for stdio variables: _stdin_r _stdout_r _stderr_r

Stdio functions: _fdopen_r _perror_r _tempnam_r _fopen_r _putchar_r _tmpnam_r _getchar_r _puts_r _tmpfile_r _gets_r _re-
move_r _vfprintf_r _iprintf_r _rename_r _vsnprintf_r _mkstemp_r _snprintf_r _vsprintf_r _mktemp_t _sprintf_r

Signal functions: _init_signal_r _signal_r _kill_r __sigtramp_r _raise_r

Stdlib functions: _calloc_r _mblen_r _setenv_r _dtoa_r _mbstowcs_r _srand_r _free_r _mbtowc_r _strtod_r _getenv_r _mema-
lign_r _strtol_r _mallinfo_r _mstats_r _strtoul_r _malloc_r _putenv_r _system_r _malloc_r _rand_r _wcstombs_r _malloc_stats_r
_realloc_r _wctomb_r

The Red Hat newlib C Library 204 / 229

String functions: _strdup_r _strtok_r

System functions: _close_r _link_r _unlink_r _execve_r _lseek_r _wait_r _fcntl_r _open_r _write_r _fork_r _read_r _fstat_r
_sbrk_r _gettimeofday_r _stat_r _getpid_r _times_r

Additional 64-bit I/O System functions: _fstat64_r _lseek64_r _open64_r

Time function: _asctime_r

The Red Hat newlib C Library 205 / 229

Chapter 11

Miscellaneous Macros and Functions

This chapter describes miscellaneous routines not covered elsewhere.

11.1 ffs

ffs — find first bit set in a word

Synopsis

#include <strings.h>

int ffs(int word);

Description

ffs returns the first bit set in a word.

Returns

ffs returns 0 if c is 0, 1 if c is odd, 2 if c is a multiple of 2, etc.

Portability

ffs is not ANSI C.

No supporting OS subroutines are required.

11.2 unctrl

unctrl, unctrllen — get printable representation of a character

Synopsis

#include <unctrl.h>

char *unctrl(int c);
int unctrllen(int c);

The Red Hat newlib C Library 206 / 229

Description

unctrl is a macro which returns the printable representation of c as a string. unctrllen is a macro which returns the length
of the printable representation of c.

Returns

unctrl returns a string of the printable representation of c.

unctrllen returns the length of the string which is the printable representation of c.

Portability

unctrl and unctrllen are not ANSI C.

No supporting OS subroutines are required.

The Red Hat newlib C Library 207 / 229

Chapter 12

Posix Functions

This chapter groups several utility functions specified by POSIX, but not by C. Each function documents which header to use.

12.1 popen

popen, pclose — tie a stream to a command string

Synopsis

#include <stdio.h>

FILE *popen(const char *s, const char *mode);
int pclose(FILE *f);

Description

Use popen to create a stream to a child process executing a command string *s as processed by /bin/sh on your system. The
argument mode must start with either `r’, where the stream reads from the child’s stdout, or `w’, where the stream writes to
the child’s stdin. As an extension, mode may also contain `e’ to set the close-on-exec bit of the parent’s file descriptor. The
stream created by popen must be closed by pclose to avoid resource leaks.

Streams created by prior calls to popen are not visible in subsequent popen children, regardless of the close-on-exec bit.

Use ``system(NULL)” to test whether your system has /bin/sh available.

Returns

popen returns a file stream opened with the specified mode, or NULL if a child process could not be created. pclose returns
-1 if the stream was not created by popen or if the application used wait or similar to steal the status; otherwise it returns the
exit status of the child which can be interpreted in the same manner as a status obtained by waitpid.

Portability

POSIX.2 requires popen and pclose, but only specifies a mode of just r or w. Where sh is found is left unspecified.

Supporting OS subroutines required: _exit, _execve, _fork_r, _wait_r, pipe, fcntl, sbrk.

The Red Hat newlib C Library 208 / 229

12.2 posix_spawn

posix_spawn, posix_spawnp — spawn a process

Synopsis

#include <spawn.h>

int posix_spawn(pid_t *pid, const char *path, const posix_spawn_file_actions_t *file_actions, const posix_spawnattr_t *attrp,
char *const argv, char *const envp);
int posix_spawnp(pid_t *pid, const char *file, const posix_spawn_file_actions_t *file_actions, const posix_spawnattr_t *attrp,
char *const argv, char *const envp);

Description

Use posix_spawn and posix_spawnp to create a new child process from the specified process image file. argc is the
argument count and argv is an array of argument strings passed to the new program. envp is an array of stings, which are
passed as environment to the new program.

The path argument to posix_spawn identifies the new process image file to execute. The file argument to posix_spa
wnp is used to construct a pathname that identifies the new process image file by duplicating the actions of the shell in searching
for an executable file if the specified filename does not contain a `/’ character. The file is sought in the colon-separated list of
directory pathnames specified in the PATH environment variable.

The file descriptors remain open across posix_spawn and posix_spawnp except for those marked as close-on-exec. The
open file descriptors in the child process can be modified by the spawn file actions object pointed to by file_actions.

The spawn attributes object type pointed to by attrp argument may contain any of the attributes defined in spawn.h.

Returns

posix_spawn and posix_spawnp return the process ID of the newly spawned child process in the variable pointed by a
non-NULL *pid argument and zero as the function return value upon successful completion. Otherwise, posix_spawn and
posix_spawnp return an error number as the function return value to indicate the error; the value stored into the variable
pointed to by a non-NULL *pid argument is unspecified.

Portability

POSIX.1-2008 requires posix_spawn and posix_spawnp.

Supporting OS subroutines required: _close, dup2, _fcntl, _execve, execvpe, _exit, _open, sigaction, sigp
rocmask, waitpid, sched_setscheduler, sched_setparam, setegid, seteuid, setpgid, vfork.

The Red Hat newlib C Library 209 / 229

Chapter 13

System Calls

The C subroutine library depends on a handful of subroutine calls for operating system services. If you use the C library on a
system that complies with the POSIX.1 standard (also known as IEEE 1003.1), most of these subroutines are supplied with your
operating system.

If some of these subroutines are not provided with your system—in the extreme case, if you are developing software for a “bare
board” system, without an OS—you will at least need to provide do-nothing stubs (or subroutines with minimal functionality) to
allow your programs to link with the subroutines in libc.a.

13.1 Definitions for OS interface

This is the complete set of system definitions (primarily subroutines) required; the examples shown implement the minimal
functionality required to allow libc to link, and fail gracefully where OS services are not available.

Graceful failure is permitted by returning an error code. A minor complication arises here: the C library must be compatible
with development environments that supply fully functional versions of these subroutines. Such environments usually return
error codes in a global errno. However, the Red Hat newlib C library provides a macro definition for errno in the header file
errno.h, as part of its support for reentrant routines (see Chapter 10).

The bridge between these two interpretations of errno is straightforward: the C library routines with OS interface calls capture
the errno values returned globally, and record them in the appropriate field of the reentrancy structure (so that you can query
them using the errno macro from errno.h).

This mechanism becomes visible when you write stub routines for OS interfaces. You must include errno.h, then disable the
macro, like this:

#include <errno.h>
#undef errno
extern int errno;

The examples in this chapter include this treatment of errno.

_exit Exit a program without cleaning up files. If your system
doesn’t provide this, it is best to avoid linking with
subroutines that require it (exit, system).

close Close a file. Minimal implementation:

int close(int file) {
return -1;

}

The Red Hat newlib C Library 210 / 229

environ A pointer to a list of environment variables and their values.
For a minimal environment, this empty list is adequate:

char *__env[1] = { 0 };

char **environ = __env;

execve Transfer control to a new process. Minimal implementation
(for a system without processes):

#include <errno.h>
#undef errno
extern int errno;
int execve(char *name, char **argv, char ←↩

**env) {
errno = ENOMEM;
return -1;

}

fork Create a new process. Minimal implementation (for a
system without processes):

#include <errno.h>
#undef errno
extern int errno;
int fork(void) {

errno = EAGAIN;
return -1;

}

fstat Status of an open file. For consistency with other minimal
implementations in these examples, all files are regarded as
character special devices. The sys/stat.h header file
required is distributed in the include subdirectory for
this C library.

#include <sys/stat.h>
int fstat(int file, struct stat *st) {

st->st_mode = S_IFCHR;
return 0;

}

getpid Process-ID; this is sometimes used to generate strings
unlikely to conflict with other processes. Minimal
implementation, for a system without processes:

int getpid(void) {
return 1;

}

isatty Query whether output stream is a terminal. For consistency
with the other minimal implementations, which only
support output to stdout, this minimal implementation is
suggested:

int isatty(int file) {
return 1;

}

The Red Hat newlib C Library 211 / 229

kill Send a signal. Minimal implementation:

#include <errno.h>
#undef errno
extern int errno;
int kill(int pid, int sig) {

errno = EINVAL;
return -1;

}

link Establish a new name for an existing file. Minimal
implementation:

#include <errno.h>
#undef errno
extern int errno;
int link(char *old, char *new) {

errno = EMLINK;
return -1;

}

lseek Set position in a file. Minimal implementation:

int lseek(int file, int ptr, int dir) {
return 0;

}

open Open a file. Minimal implementation:

int open(const char *name, int flags, int ←↩
mode) {

return -1;

}

read Read from a file. Minimal implementation:

int read(int file, char *ptr, int len) {
return 0;

}

The Red Hat newlib C Library 212 / 229

sbrk Increase program data space. As malloc and related
functions depend on this, it is useful to have a working
implementation. The following suffices for a standalone
system; it exploits the symbol _end automatically defined
by the GNU linker.

caddr_t sbrk(int incr) {
extern char _end; /* Defined by the ←↩
linker */

static char *heap_end;
char *prev_heap_end;

if (heap_end == 0) {
heap_end = &_end;

}
prev_heap_end = heap_end;
if (heap_end + incr > stack_ptr) {
write (1, "Heap and stack collision\n ←↩
", 25);
abort ();

}

heap_end += incr;
return (caddr_t) prev_heap_end;

}

stat Status of a file (by name). Minimal implementation:

int stat(char *file, struct stat *st) {
st->st_mode = S_IFCHR;
return 0;

}

times Timing information for current process. Minimal
implementation:

int times(struct tms *buf) {
return -1;

}

unlink Remove a file’s directory entry. Minimal implementation:

#include <errno.h>
#undef errno
extern int errno;
int unlink(char *name) {

errno = ENOENT;
return -1;

}

wait Wait for a child process. Minimal implementation:

#include <errno.h>
#undef errno
extern int errno;
int wait(int *status) {

errno = ECHILD;
return -1;

}

The Red Hat newlib C Library 213 / 229

write Write to a file. libc subroutines will use this system
routine for output to all files, including stdout—so if you
need to generate any output, for example to a serial port for
debugging, you should make your minimal write capable
of doing this. The following minimal implementation is an
incomplete example; it relies on a outbyte subroutine
(not shown; typically, you must write this in assembler
from examples provided by your hardware manufacturer)
to actually perform the output.

int write(int file, char *ptr, int len) {
int todo;

for (todo = 0; todo < len; todo++) {
outbyte (*ptr++);

}
return len;

}

13.2 Reentrant covers for OS subroutines

Since the system subroutines are used by other library routines that require reentrancy, libc.a provides cover routines (for
example, the reentrant version of fork is _fork_r). These cover routines are consistent with the other reentrant subroutines
in this library, and achieve reentrancy by using a reserved global data block (see Chapter 10).

13.2.1 _close_r

_close_r — Reentrant version of close

Synopsis

#include <reent.h>

int _close_r(struct _reent *ptr, int fd);

Description

This is a reentrant version of close. It takes a pointer to the global data block, which holds errno.

13.2.2 _execve_r

_execve_r — Reentrant version of execve

Synopsis

#include <reent.h>

int _execve_r(struct _reent *ptr, const char *name, char *const argv[], char *const env[]);

The Red Hat newlib C Library 214 / 229

Description

This is a reentrant version of execve. It takes a pointer to the global data block, which holds errno.

13.2.3 _fork_r

_fork_r — Reentrant version of fork

Synopsis

#include <reent.h>

int _fork_r(struct _reent *ptr);

Description

This is a reentrant version of fork. It takes a pointer to the global data block, which holds errno.

13.2.4 _wait_r

_wait_r — Reentrant version of wait

Synopsis

#include <reent.h>

int _wait_r(struct _reent *ptr, int *status);

Description

This is a reentrant version of wait. It takes a pointer to the global data block, which holds errno.

13.2.5 _fstat_r

_fstat_r — Reentrant version of fstat

Synopsis

#include <reent.h>

int _fstat_r(struct _reent *ptr, int fd, struct stat *pstat);

Description

This is a reentrant version of fstat. It takes a pointer to the global data block, which holds errno.

13.2.6 _link_r

_link_r — Reentrant version of link

The Red Hat newlib C Library 215 / 229

Synopsis

#include <reent.h>

int _link_r(struct _reent *ptr, const char *old, const char *new);

Description

This is a reentrant version of link. It takes a pointer to the global data block, which holds errno.

13.2.7 _lseek_r

_lseek_r — Reentrant version of lseek

Synopsis

#include <reent.h>

off_t _lseek_r(struct _reent *ptr, int fd, off_t pos, int whence);

Description

This is a reentrant version of lseek. It takes a pointer to the global data block, which holds errno.

13.2.8 _open_r

_open_r — Reentrant version of open

Synopsis

#include <reent.h>

int _open_r(struct _reent *ptr, const char *file, int flags, int mode);

Description

This is a reentrant version of open. It takes a pointer to the global data block, which holds errno.

13.2.9 _read_r

_read_r — Reentrant version of read

Synopsis

#include <reent.h>

_ssize_t _read_r(struct _reent *ptr, int fd, void *buf, size_t cnt);

The Red Hat newlib C Library 216 / 229

Description

This is a reentrant version of read. It takes a pointer to the global data block, which holds errno.

13.2.10 _sbrk_r

_sbrk_r — Reentrant version of sbrk

Synopsis

#include <reent.h>

void *_sbrk_r(struct _reent *ptr, ptrdiff_t incr);

Description

This is a reentrant version of sbrk. It takes a pointer to the global data block, which holds errno.

13.2.11 _kill_r

_kill_r — Reentrant version of kill

Synopsis

#include <reent.h>

int _kill_r(struct _reent *ptr, int pid, int sig);

Description

This is a reentrant version of kill. It takes a pointer to the global data block, which holds errno.

13.2.12 _getpid_r

_getpid_r — Reentrant version of getpid

Synopsis

#include <reent.h>

int _getpid_r(struct _reent *ptr);

Description

This is a reentrant version of getpid. It takes a pointer to the global data block, which holds errno.

We never need errno, of course, but for consistency we still must have the reentrant pointer argument.

The Red Hat newlib C Library 217 / 229

13.2.13 _stat_r

_stat_r — Reentrant version of stat

Synopsis

#include <reent.h>

int _stat_r(struct _reent *ptr, const char *file, struct stat *pstat);

Description

This is a reentrant version of stat. It takes a pointer to the global data block, which holds errno.

13.2.14 _times_r

_times_r — Reentrant version of times

Synopsis

#include <reent.h>

#include <sys/times.h>

clock_t _times_r(struct _reent *ptr, struct tms *ptms);

Description

This is a reentrant version of times. It takes a pointer to the global data block, which holds errno.

13.2.15 _unlink_r

_unlink_r — Reentrant version of unlink

Synopsis

#include <reent.h>

int _unlink_r(struct _reent *ptr, const char *file);

Description

This is a reentrant version of unlink. It takes a pointer to the global data block, which holds errno.

13.2.16 _write_r

_write_r — Reentrant version of write

The Red Hat newlib C Library 218 / 229

Synopsis

#include <reent.h>

_ssize_t _write_r(struct _reent *ptr, int fd, const void *buf, size_t cnt);

Description

This is a reentrant version of write. It takes a pointer to the global data block, which holds errno.

The Red Hat newlib C Library 219 / 229

Chapter 14

Variable Argument Lists

The printf family of functions is defined to accept a variable number of arguments, rather than a fixed argument list. You can
define your own functions with a variable argument list, by using macro definitions from either stdarg.h (for compatibility
with ANSI C) or from varargs.h (for compatibility with a popular convention prior to ANSI C).

14.1 ANSI-standard macros (stdarg.h)

In ANSI C, a function has a variable number of arguments when its parameter list ends in an ellipsis (...). The parameter list
must also include at least one explicitly named argument; that argument is used to initialize the variable list data structure.

ANSI C defines three macros (va_start, va_arg, and va_end) to operate on variable argument lists. stdarg.h also
defines a special type to represent variable argument lists: this type is called va_list.

14.1.1 va_start

va_start — Initialize variable argument list

Synopsis

#include <stdarg.h>

void va_start(va_list ap, rightmost);

Description

Use va_start to initialize the variable argument list ap, so that va_arg can extract values from it. rightmost is the
name of the last explicit argument in the parameter list (the argument immediately preceding the ellipsis ... that flags variable
arguments in an ANSI C function header). You can only use va_start in a function declared using this ellipsis notation (not,
for example, in one of its subfunctions).

Returns

va_start does not return a result.

Portability

ANSI C requires va_start.

The Red Hat newlib C Library 220 / 229

14.1.2 va_arg

va_arg — Extract a value from argument list

Synopsis

#include <stdarg.h>

type va_args(va_list ap, type);

Description

va_arg returns the next unprocessed value from a variable argument list ap (which you must previously create with va_st
art). Specify the type for the value as the second parameter to the macro, type.

You may pass a va_list object ap to a subfunction, and use va_arg from the subfunction rather than from the function
actually declared with an ellipsis in the header; however, in that case you may only use va_arg from the subfunction. ANSI C
does not permit extracting successive values from a single variable-argument list from different levels of the calling stack.

There is no mechanism for testing whether there is actually a next argument available; you might instead pass an argument count
(or some other data that implies an argument count) as one of the fixed arguments in your function call.

Returns

va_arg returns the next argument, an object of type type.

Portability

ANSI C requires va_arg.

14.1.3 va_end

va_end — Abandon a variable argument list

Synopsis

#include <stdarg.h>

void va_end(va_list ap);

Description

Use va_end to declare that your program will not use the variable argument list ap any further.

Returns

va_end does not return a result.

The Red Hat newlib C Library 221 / 229

Portability

ANSI C requires va_end.

14.2 Traditional macros (varargs.h)

If your C compiler predates ANSI C, you may still be able to use variable argument lists using the macros from the varargs.h
header file. These macros resemble their ANSI counterparts, but have important differences in usage. In particular, since
traditional C has no declaration mechanism for variable argument lists, two additional macros are provided simply for the purpose
of defining functions with variable argument lists.

As with stdarg.h , the type va_list is used to hold a data structure representing a variable argument list.

14.2.1 va_alist

va_alist, va_dcl — Declare variable arguments

Synopsis

#include <varargs.h>

function (va_alist);

va_dcl

Description

To use the varargs.h version of variable argument lists, you must declare your function with a call to the macro va_alist
as its argument list, and use va_dcl as the declaration. Do not use a semicolon after va_dcl.

Returns

These macros cannot be used in a context where a return is syntactically possible.

Portability

va_alist and va_dcl were the most widespread method of declaring variable argument lists prior to ANSI C.

14.2.2 va_start

va_start_trad — Initialize variable argument list

Synopsis

#include <varargs.h>

va_start (va_list ap);

The Red Hat newlib C Library 222 / 229

Description

With the varargs.h macros, use va_start to initialize a data structure ap to permit manipulating a variable argument list.
ap must have the type va_list.

Returns

va_start does not return a result.

Portability

va_start is also defined as a macro in ANSI C, but the definitions are incompatible; the ANSI version has another parameter
besides ap.

14.2.3 va_arg

va_arg_trad — Extract a value from argument list

Synopsis

#include <varargs.h>

type va_arg(va_list ap, type);

Description

va_arg returns the next unprocessed value from a variable argument list ap (which you must previously create with va_st
art). Specify the type for the value as the second parameter to the macro, type.

Returns

va_arg returns the next argument, an object of type type.

Portability

The va_arg defined in varargs.h has the same syntax and usage as the ANSI C version from stdarg.h.

14.2.4 va_end

va_end_trad — Abandon a variable argument list

Synopsis

#include <varargs.h>

va_end (va_list ap);

The Red Hat newlib C Library 223 / 229

Description

Use va_end to declare that your program will not use the variable argument list ap any further.

Returns

va_end does not return a result.

Portability

The va_end defined in varargs.h has the same syntax and usage as the ANSI C version from stdarg.h.

The Red Hat newlib C Library 224 / 229

Chapter 15

Index

_
_Exit, 1
__env_lock, 11
__env_unlock, 11
__fbufsize, 114
__flbf, 114
__fpending, 114
__fpurge, 72
__freadable, 114
__freading, 114
__fsetlocking, 80
__fwritable, 114
__fwriting, 114
__malloc_lock, 17
__malloc_unlock, 17
__tz_lock, 198
__tz_unlock, 198
_asctime_r, 189
_asiprintf_r, 102
_asniprintf_r, 102
_asnprintf_r, 104
_asprintf_r, 104
_atoi_r, 6
_atol_r, 6
_atoll_r, 6
_calloc_r, 7
_close_r, 213
_diprintf_r, 57
_dprintf_r, 57
_execve_r, 213
_fclose_r, 58
_fcloseall_r, 59
_fdopen64_r, 134
_fdopen_r, 59
_fflush_r, 61
_fflush_unlocked_r, 61
_fgetc_r, 62
_fgetc_unlocked_r, 62
_fgetpos64_r, 137
_fgetpos_r, 64
_fgets_r, 64
_fgets_unlocked_r, 64
_fgetwc_r, 65

_fgetwc_unlocked_r, 65
_fgetws_r, 67
_fgetws_unlocked_r, 67
_fiprintf_r, 102
_fiscanf_r, 103
_fopen64_r, 134
_fopen_r, 69
_fork_r, 214
_fprintf_r, 104
_fpurge_r, 72
_fputc_r, 72
_fputc_unlocked_r, 72
_fputs_r, 74
_fputs_unlocked_r, 74
_fputwc_r, 75
_fputwc_unlocked_r, 75
_fputws_r, 76
_fputws_unlocked_r, 76
_fread_r, 77
_fread_unlocked_r, 77
_free_r, 15
_freopen64_r, 135
_freopen_r, 78
_fscanf_r, 110
_fseek_r, 79
_fseeko64_r, 136
_fseeko_r, 79
_fsetpos64_r, 138
_fsetpos_r, 80
_fstat_r, 214
_ftell_r, 81
_ftello64_r, 136
_ftello_r, 81
_fwide_r, 83
_fwprintf_r, 115
_fwrite_r, 83
_fwrite_unlocked_r, 83
_fwscanf_r, 121
_getc_r, 84
_getc_unlocked_r, 85
_getchar_r, 86
_getchar_unlocked_r, 87
_getpid_r, 216

The Red Hat newlib C Library 225 / 229

_gets_r, 88
_getwc_r, 65
_getwc_unlocked_r, 65
_getwchar_r, 89
_getwchar_unlocked_r, 89
_impure_ptr, 203
_iprintf_r, 102
_iscanf_r, 103
_kill_r, 216
_link_r, 214
_localeconv_r, 201
_lseek_r, 215
_mallinfo_r, 17
_malloc_r, 15
_malloc_stats_r, 17
_malloc_usable_size_r, 15
_mallopt_r, 17
_mbsnrtowcs_r, 18
_mbsrtowcs_r, 18
_memalign_r, 15
_mkdtemp_r, 90
_mkostemp_r, 90
_mkostemps_r, 90
_mkstemp_r, 90
_mkstemps_r, 90
_mktemp_r, 90
_open_r, 215
_perror_r, 92
_printf_r, 104
_putc_r, 93
_putc_unlocked_r, 94
_putchar_r, 94
_puts_r, 96
_putwc_r, 75
_putwc_unlocked_r, 75
_putwchar_r, 97
_putwchar_unlocked_r, 97
_raise_r, 187
_read_r, 215
_realloc_r, 15
_reallocf_r, 15
_reent, 203
_remove_r, 98
_rewind_r, 99
_sbrk_r, 216
_scanf_r, 110
_setlocale_r, 201
_signal_r, 188
_siprintf_r, 102
_siscanf_r, 103
_sniprintf_r, 102
_snprintf_r, 104
_sprintf_r, 104
_sscanf_r, 110
_stat_r, 217
_strtod_r, 24
_strtol_r, 25

_strtoll_r, 26
_strtoul_r, 27
_strtoull_r, 28
_swprintf_r, 115
_swscanf_r, 121
_system_r, 35
_tempnam_r, 126
_times_r, 217
_tmpfile64_r, 138
_tmpfile_r, 125
_tmpnam_r, 126
_tolower, 45
_toupper, 46
_tzset_r, 198
_ungetc_r, 127
_ungetwc_r, 127
_unlink_r, 217
_vasiprintf_r, 131
_vasniprintf_r, 131
_vasnprintf_r, 128
_vasprintf_r, 128
_vdiprintf_r, 57
_vdprintf_r, 57
_vfiprintf_r, 131
_vfiscanf_r, 132
_vfprintf_r, 128
_vfscanf_r, 129
_vfwprintf_r, 130
_vfwscanf, 130
_viprintf_r, 131
_viscanf_r, 132
_vprintf_r, 128
_vscanf_r, 129
_vsiprintf_r, 131
_vsiscanf_r, 132
_vsniprintf_r, 131
_vsnprintf_r, 128
_vsprintf_r, 128
_vsscanf_r, 129
_vswprintf_r, 130
_vswscanf, 130
_vwprintf_r, 130
_vwscanf, 130
_wait_r, 214
_wcsdup_r, 167
_wcsnrtombs_r, 29
_wcsrtombs_r, 29
_wcstod_r, 30
_wcstof_r, 30
_wcstol_r, 31
_wcstoll_r, 32
_wcstoul_r, 33
_wcstoull_r, 34
_wprintf_r, 115
_write_r, 217
_wscanf_r, 121

The Red Hat newlib C Library 226 / 229

A
a64l, 1
abort, 2
abs, 3
asctime, 189
asiprintf, 102
asniprintf, 102
asnprintf, 104
asprintf, 104
assert, 3
atexit, 4
atof, 5
atoff, 5
atoi, 6
atol, 6
atoll, 6

B
bcmp, 140
bsearch, 7
bzero, 141

C
calloc, 7
clearerr, 56
clearerr_unlocked, 56
clock, 190
ctime, 190
ctime_r, 190

D
difftime, 191
diprintf, 57
div, 8
dprintf, 57
drand48, 23

E
ecvt, 9
ecvtbuf, 10
ecvtf, 9
environ, 12
erand48, 23
errno global vs macro, 209
exit, 11
extra argument, reentrant fns, 203

F
fclose, 58
fcloseall, 59
fcvt, 9
fcvtbuf, 10
fcvtf, 9
fdopen, 59
fdopen64, 134
feof, 60
feof_unlocked, 60
ferror, 60

ferror_unlocked, 60
fflush, 61
fflush_unlocked, 61
ffs, 205
fgetc, 62
fgetc_unlocked, 62
fgetpos, 64
fgetpos64, 137
fgets, 64
fgets_unlocked, 64
fgetwc, 65
fgetwc_unlocked, 65
fgetws, 67
fgetws_unlocked, 67
fileno, 68
fileno_unlocked, 68
fiprintf, 102
fiscanf, 103
fmemopen, 69
fopen, 69
fopen64, 134
fopencookie, 71
fprintf, 104
fpurge, 72
fputc, 72
fputc_unlocked, 72
fputs, 74
fputs_unlocked, 74
fputwc, 75
fputwc_unlocked, 75
fputws, 76
fputws_unlocked, 76
fread, 77
fread_unlocked, 77
free, 15
freopen, 78
freopen64, 135
fropen, 82
fscanf, 110
fseek, 79
fseeko, 79
fseeko64, 136
fsetpos, 80
fsetpos64, 138
ftell, 81
ftello, 81
ftello64, 136
funopen, 82
fwide, 83
fwopen, 82
fwprintf, 115
fwrite, 83
fwrite_unlocked, 83
fwscanf, 121

G
gcvt, 9

The Red Hat newlib C Library 227 / 229

gcvtf, 9
getc, 84
getc_unlocked, 85
getchar, 86
getchar_unlocked, 87
getdelim, 87
getenv, 12
getline, 88
gets, 88
getw, 89
getwc, 65
getwc_unlocked, 65
getwchar, 89
getwchar_unlocked, 89
global reentrancy structure, 203
gmtime, 192
gmtime_r, 192

I
index, 141
iprintf, 102
isalnum, 38
isalpha, 39
isascii, 39
isblank, 40
iscanf, 103
iscntrl, 40
isdigit, 41
isgraph, 42
islower, 41
isprint, 42
ispunct, 42
isspace, 43
isupper, 44
iswalnum, 46
iswalpha, 47
iswblank, 48
iswcntrl, 47
iswctype, 52
iswdigit, 48
iswgraph, 49
iswlower, 49
iswprint, 50
iswpunct, 50
iswspace, 51
iswupper, 51
iswxdigit, 52
isxdigit, 44
itoa, 12

J
jrand48, 23

L
l64a, 1
labs, 13
lcong48, 23

ldiv, 13
linking the C library, 209
list of reentrant functions, 203
llabs, 14
lldiv, 14
localeconv, 201
localtime, 192
localtime_r, 192
lrand48, 23

M
mallinfo, 17
malloc, 15
malloc_stats, 17
malloc_usable_size, 15
mallopt, 17
mblen, 18
mbsnrtowcs, 18
mbsrtowcs, 18
mbstowcs, 19
mbtowc, 20
memalign, 15
memchr, 142
memcmp, 143
memmem, 144
memmove, 144
memrchr, 145
memset, 146
mkdtemp, 90
mkostemp, 90
mkostemps, 90
mkstemp, 90
mkstemps, 90
mktemp, 90
mktime, 193
mrand48, 23

N
nrand48, 23

O
on_exit, 21
open_memstream, 92
open_wmemstream, 92
OS interface subroutines, 209

P
pclose, 207
perror, 92
popen, 207
posix_spawn, 208
posix_spawnp, 208
printf, 104
psignal, 186
putc, 93
putc_unlocked, 94
putchar, 94

The Red Hat newlib C Library 228 / 229

putchar_unlocked, 95
puts, 96
putw, 96
putwc, 75
putwc_unlocked, 75
putwchar, 97
putwchar_unlocked, 97

Q
qsort, 21

R
raise, 187
rand, 22
rand48, 23
rand_r, 22
rawmemchr, 146
realloc, 15
reallocf, 15
reent.h, 203
reentrancy, 203
reentrancy structure, 203
reentrant function list, 203
remove, 98
rename, 98
rewind, 99
rindex, 147
rpmatch, 24

S
scanf, 110
seed48, 23
setbuf, 99
setbuffer, 100
setlinebuf, 101
setlocale, 201
setvbuf, 101
signal, 188
siprintf, 102
siscanf, 103
sniprintf, 102
snprintf, 104
sprintf, 104
srand, 22
srand48, 23
sscanf, 110
stpcpy, 147
stpncpy, 148
strcasecmp, 148
strcasestr, 149
strcat, 149
strchr, 150
strchrnul, 150
strcmp, 151
strcoll, 151
strcpy, 152
strcspn, 152

strerror, 153
strerror_r, 157
strftime, 193
strlen, 158
strlwr, 159
strncasecmp, 159
strncat, 160
strncmp, 160
strncpy, 161
strnlen, 161
strpbrk, 162
strrchr, 162
strsep, 164
strsignal, 163
strspn, 163
strstr, 164
strtod, 24
strtof, 24
strtok, 164
strtok_r, 164
strtol, 25
strtoll, 26
strtoul, 27
strtoull, 28
strupr, 165
strxfrm, 166
Stubs, 209
subroutines for OS interface, 209
swprintf, 115
swscanf, 121
system, 35

T
tempnam, 126
time, 197
tmpfile, 125
tmpfile64, 138
tmpnam, 126
toascii, 45
tolower, 45
toupper, 46
towctrans, 54
towlower, 53
towupper, 54
tzset, 198

U
unctrl, 205
unctrllen, 205
ungetc, 127
ungetwc, 127
utoa, 35

V
vasiprintf, 131
vasniprintf, 131
vasnprintf, 128

The Red Hat newlib C Library 229 / 229

vasprintf, 128
vdiprintf, 57
vdprintf, 57
vfiprintf, 131
vfiscanf, 132
vfprintf, 128
vfscanf, 129
vfwprintf, 130
vfwscanf, 130
viprintf, 131
viscanf, 132
vprintf, 128
vscanf, 129
vsiprintf, 131
vsiscanf, 132
vsniprintf, 131
vsnprintf, 128
vsprintf, 128
vsscanf, 129
vswprintf, 130
vswscanf, 130
vwprintf, 130
vwscanf, 130

W
wcscasecmp, 167
wcscat, 172
wcscoll, 173
wcsdup, 167
wcsftime, 175
wcsncasecmp, 168
wcsnlen, 180
wcsnrtombs, 29
wcsrtombs, 29
wcstod, 30
wcstof, 30
wcstok, 183
wcstol, 31
wcstoll, 32
wcstombs, 36
wcstoul, 33
wcstoull, 34
wcswidth, 184
wcsxfrm, 184
wctomb, 36
wctrans, 55
wctype, 53
wcwidth, 185
wprintf, 115
wscanf, 121

	Standard Utility Functions (stdlib.h)
	_Exit
	a64l
	abort
	abs
	assert
	atexit
	atof
	atoi
	atoll
	bsearch
	calloc
	div
	ecvt
	gcvt
	ecvtbuf
	__env_lock
	exit
	getenv
	itoa
	labs
	ldiv
	llabs
	lldiv
	malloc
	mallinfo
	__malloc_lock
	mblen
	mbsrtowcs
	mbstowcs
	mbtowc
	on_exit
	qsort
	rand
	rand48
	rpmatch
	strtod
	strtol
	strtoll
	strtoul
	strtoull
	wcsrtombs
	wcstod
	wcstol
	wcstoll
	wcstoul
	wcstoull
	system
	utoa
	wcstombs
	wctomb

	Character Type Macros and Functions (ctype.h)
	isalnum
	isalpha
	isascii
	isblank
	iscntrl
	isdigit
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	toascii
	tolower
	toupper
	iswalnum
	iswalpha
	iswcntrl
	iswblank
	iswdigit
	iswgraph
	iswlower
	iswprint
	iswpunct
	iswspace
	iswupper
	iswxdigit
	iswctype
	wctype
	towlower
	towupper
	towctrans
	wctrans

	Input and Output (stdio.h)
	clearerr
	diprintf
	dprintf
	fclose
	fcloseall
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fgetwc
	fgetws
	fileno
	fmemopen
	fopen
	fopencookie
	fpurge
	fputc
	fputs
	fputwc
	fputws
	fread
	freopen
	fseek
	__fsetlocking
	fsetpos
	ftell
	funopen
	fwide
	fwrite
	getc
	getc_unlocked
	getchar
	getchar_unlocked
	getdelim
	getline
	gets
	getw
	getwchar
	mktemp
	open_memstream
	perror
	putc
	putc_unlocked
	putchar
	putchar_unlocked
	puts
	putw
	putwchar
	remove
	rename
	rewind
	setbuf
	setbuffer
	setlinebuf
	setvbuf
	siprintf
	siscanf
	sprintf
	sscanf
	stdio_ext
	swprintf
	swscanf
	tmpfile
	tmpnam
	ungetc
	ungetwc
	vfprintf
	vfscanf
	vfwprintf
	vfwscanf
	viprintf
	viscanf

	Large File Input and Output (stdio.h)
	fdopen64
	fopen64
	freopen64
	ftello64
	fseeko64
	fgetpos64
	fsetpos64
	tmpfile64

	Strings and Memory (string.h)
	bcmp
	bcopy
	bzero
	index
	memccpy
	memchr
	memcmp
	memcpy
	memmem
	memmove
	mempcpy
	memrchr
	memset
	rawmemchr
	rindex
	stpcpy
	stpncpy
	strcasecmp
	strcasestr
	strcat
	strchr
	strchrnul
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strerror_r
	strlen
	strlwr
	strncasecmp
	strncat
	strncmp
	strncpy
	strnlen
	strpbrk
	strrchr
	strsignal
	strspn
	strstr
	strtok
	strupr
	strxfrm
	swab
	wcscasecmp
	wcsdup
	wcsncasecmp

	Wide Character Strings (wchar.h)
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmemset
	wcscat
	wcschr
	wcscmp
	wcscoll
	wcscpy
	wcpcpy
	wcscspn
	wcsftime
	wcslcat
	wcslcpy
	wcslen
	wcsncat
	wcsncmp
	wcsncpy
	wcpncpy
	wcsnlen
	wcspbrk
	wcsrchr
	wcsspn
	wcsstr
	wcstok
	wcswidth
	wcsxfrm
	wcwidth

	Signal Handling (signal.h)
	psignal
	raise
	signal

	Time Functions (time.h)
	asctime
	clock
	ctime
	difftime
	gmtime
	localtime
	mktime
	strftime
	time
	__tz_lock
	tzset

	Locale (locale.h)
	setlocale

	Reentrancy
	Miscellaneous Macros and Functions
	ffs
	unctrl

	Posix Functions
	popen
	posix_spawn

	System Calls
	Definitions for OS interface
	Reentrant covers for OS subroutines
	_close_r
	_execve_r
	_fork_r
	_wait_r
	_fstat_r
	_link_r
	_lseek_r
	_open_r
	_read_r
	_sbrk_r
	_kill_r
	_getpid_r
	_stat_r
	_times_r
	_unlink_r
	_write_r

	Variable Argument Lists
	ANSI-standard macros (stdarg.h)
	va_start
	va_arg
	va_end

	Traditional macros (varargs.h)
	va_alist
	va_start
	va_arg
	va_end

	Index

