The X Font Service Protocol

X Consortium Standard

Jim Fulton, Network Computing Devices, Inc.

The X Font Service Protocol: X Consortium Standard
by Jim Fulton

X Version 11, Release 7.7

Version 2.0
Copyright © 1991 Network Computing Devices, Inc.

Permission to use, copy, modify, distribute, and sell this documentation for any purpose is hereby granted without fee, provided that the above
copyright notice and this permission notice appear in all copies. Network Computing Devices, Inc. makes no representations about the suitability
for any purpose of the information in this document. This documentation is provided “asis’ without express or implied warranty.

Copyright © 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “ Software”),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGSIN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

Table of Contents

O g 11 oo 1 o o P 1
2. ArchiteCtural IMOOEooeie e et e e et e et e e et eean e ees 2
3. FONE SEIVEr NAIMING ..eeitieieiii ettt ettt e e et et e et r et eabe e e eneans 4
TCP/IP NAIMES ...ttt ettt et et et e e e et e e e et 4
DECKNEL NAIMES ..ottt et ettt e e e e et e et ean et e e e e aeeans 4
(o]0 oo 5
(D ez Y o= TP PTPPN 5
ACCESSCONTEXT ittt e e e e e e e e e b 5
ALTERNATESERVER ...t 5
AU T H et 6
BITMAPFORMAT .ottt ettt e et e et e e eaba e eenes 6
BITMAPFORMATMASK .ttt 8
BIOOL .ttt et e et e e e e a e e et eeee 8
BY T e e e e e eee 8
CARDS, CARDI16, CARDS2ottt 9
CHARZB ..o 9
EVENTM A SK Lo ettt e et e s 9
FONTID ettt et e e et e et e e et ab e e e e naa s 9

L TP PP TR PPPPTTRPPPIN 10
INT8, INTLE, INT3B2 ...ttt ettt e e et e et e e e et e e eeraaeeees 10

(O S o G ¥ TSP SO PT TR POP PR 10
PROPINFO ..ottt et ettt e et e e et eeeena e aees 10
PROPOFFSET ..ottt e 10
RANGE ...t et e aee 11
RESOLUTION ..ttt ettt ettt ettt et e e e e e e eneans 11
STRINGS ...ttt ettt e e et e ettt e e e e e e e e e eees 12
TIMESTAMP Lo e 12
XCHARINFO .t eeaans 12
XFONTINFO .ottt eena s 12
REGUESES ...ttt 14
OPEN CONMMECTION ...ttt ettt e et e e et e e e e et e e e e raa s 15
.. 17

[N o © « RSP PTTRSPPPTTR 17
(IS G =T o E=T 0 1 T PP 17
QUET YEXT BNST ON ittt 17

Li STCAt @l OQUES .ottt e 18
SEECAt @l OQUES .ot 19

GRE Cat @l DQUES . 19
SEEEVENT MASK oo 19

GRE EVENT MBSK oot 19

O AL B AC e e e 20

B A e e 21

SEt AUL NOTT ZAE T ON oot e e 21
SEERESOI UL T ON e e 21

GRE RESOI UL T DN e e e e 21

[T 0 o S T PP 22

Li StFONt SW t hXI N O ceniii e 22
OPENBI T MBPFONT ot 23
QUET Y X NT O et 24
QUET YXEXT BNT S8 oot 24
QUET YXEXT ENTSLO ..ot e 24

The X Font Service Protocol

QUET YXBi T IMBPS8 oiniiiiiiiii e e e 25

QUET YXBi t IMBAPSLE .uuiiiiiiiii e e e e e e e e e e e aaaas 25

Gl OSEFONT o 26

o [0S Sl wo 0] 0= ot 1] o 26

Ol S e e 27

0 1= PSP 27

O ... 27

O e 27

RN . e 28
Y= 0111 = PSP 28
ACCESSCONIEXE v vvititiete ettt et et et et et et e e e e e 28

10T 3o o= 28

N BITIE L e 28

=== 0] 1011 o P 28

N 1 oo 29

=0T |1 T 29
10001100101 1 o o 29

(L= 15T 0] 1 29

B IS oo e 29
[GCT=Y oA I TV - PP 30

Cat al 0guUELi STNOL T fY oo 30

FONT Li SENOT i f Y oo e e 30

(L= 115 T 0] 1 30

LI = oo oTo I =g Toro o (1 oo PP 31
[= R 1Y = T PP 31
REOUESES ...ttt 35
Ol S e e 42

B S o e 44

6. ACKNOWIEAGEMENLSuiiiti i e e e e e e e e e et e e et e e e tt e e et e e et e e et eeanaees 46
L S =10 47
A. Suggested LiCeNSING POlICIESciiiiiii e e e e e e e 48
B. Implementation SUGGESHIONSuuiiiieiiie e e e e e e e e e e e e et e et e e e e e et e eaaeeanans 49
o = PN 50

List of Figures

2.1. CoNNECHING 10 8 FONE SEIVEY ...ttt et e e e et e e e e eeees
2.2. Where Font Data COmMES FrOMcvuiiiiiiiiee ettt e e e e e e e et e ans

Chapter 1. Introduction

The management of fontsin large, heterogeneous environmentsis one of the hardest aspects of using the X
Window System L Multi ple formats and the lack of a consistent mechanism for exporting font datato all
displays on a network prevent the transparent use of applications across different display platforms. The
X Font Service protocol is designed to address this and other issues, with specific emphasis on the needs
of the core X protocol. Upward-compatible changes (typically in the form of new requests) are expected
as consensus is reached on new features (particularly outline font support).

Currently, most X displays use network file protocols such asNFSand TFTPto obtain raw font datawhich
they parse directly. Since a common binary format for this data doesn't exist, displays must be able to
interpret avariety of formats if they are to be used with different application hosts. This leads to wasted
code and data space and aloss of interoperability as displays are used in unforeseen environments.

By moving the interpretation of font data out of the X server into a separate service on the network,
these problems can be greatly reduced. In addition, new technologies, such as dynamically generating
bitmaps from scaled or outline fonts, can be provided to al displays transparently. For horizontal text,
caching techniques and increased processor power can potentially make rasterization more efficient on
large, centralized hosts than on individual displays.

Each font server provides sets of fonts that may be listed and queried for header, property, glyph extents,
and bitmap information. This data is transmitted over the network using a binary format (with variations
to support different bit- and byte-orders) designed to minimize the amount of processing required by the
display. Since the font server, rather than the display, is responsible for parsing the raw font data, new
formats can be used by all displays by modifying asingle font server.

From the user's point of view, font servers are simply a new type of name in the X font path. Network
name services allow descriptive names (such as DEPARTMENT-FONTS or APPLICATION-FONTS) to
be trandated into proper network addresses. X displays send requests to and read replies from the font
server rather than reading directly fromfiles. Sincethe X Font Service protocol isdesigned to allow subsets
of the font data to be requested, displays may easily implement a variety of strategies for fine-grained
demand-loading of glyphs.

1 X Window System™ is atrademark of The Open Group.

Chapter 2. Architectural Model

In this document, the words client and server refer to the consumer and provider of afont, respectively,
unless otherwise indicated. It isimportant to note that in this context, the X server isaso afont client.

The X Font Service protocol does not require any changesto the core X protocol or to any applications. To
the user, font servers are simply additional types of font path elements. As such, X servers may connect to
multiple font servers, as shown in Figure 2.1. Although the font protocol is geared towards the X Window
System, it may be also used by other consumers of font data (such as printer drivers).

Figure 2.1. Connecting to a Font Server

HitH R HHtHH R R R R

X1 HitH SRR R R

Server # # Font Server

HitH R G 1 #
HHtHH R R R R

HitH R #

X2 HitH] HHtHH R R R R

Server #H#tH##HHHHHHHHRHHY

HHHHH R # Font Server #
G 2 #

HitH R R # HHtHH R R R R

other #

clients #i##H###

HitH R R

Clients communicate with the font server using the request/reply/event model over any mutually-under-
stood virtual stream connection (such as TCP/IP, DECnet, 1 etc.). Font servers are responsible for provid-
ing data in the bit and byte orders requested by the client. The set of requests and events provided in the
first version of the X Font Service protocol is limited to supporting the needs of the bitmap-oriented core
X Window System protocol. Extensions are expected as new needs evolve.

A font server reads raw font data from a variety of sources (possibly including other font servers) and
converts it into a common format that is transmitted to the client using the protocol described in Section
4. New font formats are handled by adding new convertersto afont server, as shown in Figure 2.2.

1 DECnet™ is a trademark of Digital Equipment Corporation.

Architectural Model

Figure 2.2. Where Font Data Comes From

HERHHHH R
client
(X server)

HUHBHBHHBHRSHE
#
net wor k
#
HUHBHHHHAHH BB HBH RS H BB H R H R
#
font server 1
#
HUHBHHHHAHH BB HBH RS H BB H R H R
bdf # snf # pcf # atm# f3 # dwf # # # ...
HUHBHHHHAHH BB HBH RS H BB H R H R
#
net wor k
#
HUHBHHHHRHHE

f ont
server 2
G

The server may choose to provide named sets of fonts called catal ogues. Clients may specify which of the

sets should be used in listing or opening a font.

An event mechanism similar to that used in the X protocoal is provided for asynchronous notification of

clients by the server.

Clients may provide authorization data for the server to be used in determining (according to the server's
licensing policy) whether or not access should be granted to particular fonts. Thisis particularly useful for
clients whose authorization changes over time (such asan X server that can verify the identity of the user).

Implementations that wish to provide additional requests or events may use the extension mechanism.
Adding to the core font service protocol (with the accompanying change in the major or minor version

numbers) is reserved to the X Consortium.

Chapter 3. Font Server Naming

Font clients that expose font server names to the user are encouraged to provide ways of naming font
servers symbolically (e.g. DEPARTMENT-FONTS). However, for environments that lack appropriate
name services transport-specific names are necessary. Since these names do occur in the protocol, clients
and servers should support at least the applicable formats described below. Formats for additional trans-
ports may be registered with the X Consortium.

TCP/IP Names

The following syntax should be used for TCP/IP names.

TCP nane ::= tcp/ hostname : ipportnunber [/ catal oguelist]

where host name is either symbolic (such as expo. | ¢s. nit. edu) or numeric decimal (such as
18. 30. 0. 212). Thei ppor t nunber isthe port on which the font server islistening for connections.

Thecat al oguel i st string at the end is optional and specifies a plus-separated list of catalogues that
may be requested. For example:

tcp/ expo.lcs. mt.edu: 8012/ avai |l abl et+speci al
tcp/ 18. 30. 0. 212: 7890

DECnet Names

The following syntax should be used for DECnet names:

DECnet nanme ::= decnet/ nodenane ::font$ objnane [/ catal ogueli st]

where nodenane is either symbolic (such as SRVNOD) or the numeric decimal form of the DECnet
address (such as 44. 70). The obj namne is normal, case-insensitive DECnet object name. The cat a-

| oguel i st string at the end is optional and specifies a plus-separated list of catalogues that may be
requested. For example:

DECNET/ SRVNQOD: : FONT$DEFAULT/ AVAI LABLE
decnet/ 44. 70: : f ont $ot her

Chapter 4. Protocol

The protocol described below uses the request/reply/error model and is specified using the same conven-
tions outlined in Section 2 of the core X Window System protocol [1]:

» Datatype names are spelled in upper case with no word separators, asin: FONTID
« Alternate values are capitalized with no word separators, asin: MaxW dt h

 Structure element declarations are in lower case with hyphens as word separators, as in: byt e- or -
der-nsb

Note

Structure element names are referred to in upper case (e.g. BYTE- ORDER- MSB) when used
in descriptions to set them off from the surrounding text. When this document is typeset they
will be printed in lower casein adistinct font.

» Type declarations have the form “name: type”, asin: CARDS: 8-bit byte
e Comma-separated lists of alternate values are enclosed in braces, asin: { M n, MaxW dt h, Max }

» Comma-separated lists of structure elementsare enclosed in brackets, asin: [byt e1l: CARDS, byt e2:
CARDS8]

A type with aprefix “LISTof” represents a counted list of elements of that type, asin: LISTofCARDS8

Data Types

The following data types are used in the core X Font Server protocol:

ACCESSCONTEXT

ACCESSCONTEXT: ID

Thisvalue is specified in the CreateAC request as the identifier to be used when referring to a particular
AccessContext resource within the server. These resources are used by the server to store client-specified
authorization information. This information may be used by the server to determine whether or not the
client should be granted access to particular font data.

In order to preserve the integrity of font licensing being performed by the font server, care must be taken
by aclient to properly represent the identity of the true user of the font. Some font clients will in fact be
servers (for example, X servers) reguesting fonts for their own clients. Other font clients may be doing
work on behalf of a number of different users over time (for example, print spoolers).

AccessContexts must be created (with Cr eat eAC) and switched among (with Set Aut hori zat i on)
to represent all of these “font users” properly.

ALTERNATESERVER

ALTERNATESERVER: [nanme: STRINGS,

Protocol

subset : BOOL]
Thisstructure specifiesthe NAME, encoded in | SO 8859-1 according to Section 3, of another font server that
may be useful as a substitute for this font server. The SUBSET field indicates whether or not the alternate
server is likely to only contain a subset of the fonts available from this font server. This information is

returned during the initial connection setup and may be used by the client to find a backup server in case
of failure.

AUTH

AUTH: [nane: STRINGS,
dat a: LISTofBYTE]

This structure specifies the name of an authorization protocol and initial data for that protocoal. It is used
in the authorization negotiation in the initial connection setup and in the CreateAC request.

BITMAPFORMAT

BITMAPFORMAT: CARD32

CARD32 containing the following fields defined by the sets of values given further below

byt e- or der - nsb: 1 bit,
bi t - order - nsb: 1 bit,
i mage-rect: 2 hits { M n, MaxW dt h, Max },
zer o- pad: 4 hits,
scanl i ne- pad: 2 bits { Scanl i nePad8, Scan-
I i nePad16, Scan-
I i nePad32, Scan-
[i nePad64 },
zer 0- pad: 2 hits,
scanline-unit: 2 bits { Scanl i neUni t 8, Scan-
i neUnit 16, Scanl i neU-
ni t 32, Scanl i neUni t 64},
zer o- pad: 2 bits,
zer 0- pad: 16 hits,

]

This structure specifies how glyph images are transmitted in response to Quer yXBi t naps8 and
Quer yXBi t maps 16 requests.

If theBYTE- ORDER- MSBhit (1 << 0) isset, the Most Significant Byte of each scanline unit isreturned
first. Otherwise, the Least Significant Byte is returned first.

If the Bl T- ORDER- MBB hit (1 << 1) is set, the left-most bit in each glyph scanline unit is stored
in the Most Significant Bit of each transmitted scanline unit. Otherwise, the |left-most bit is stored in the
Least Significant Bit.

Protocol

The | MAGE- RECT field specifies a rectangle of pixels within the glyph image. It contains one of the
following alternate values:

| mgeRect M n (0 << 2)
| mmgeRect MaxW dt h (1 << 2)
| mageRect Max (2 << 2)

For a glyph with extents XCHARINFO in a font with header information XFONTINFO, the | M
AGE- RECT values have the following meanings:

| mageRect M n . o . i)))
Thisrefers to the minimal bounding rectangle surrounding the inked pixelsin

the glyph. Thisisthe most compact representation. The edges of the rectangle
are.

left: XCHARI NFO. LBEARI NG
right: XCHARI NFO. RBEARI NG
top: XCHARI NFO. ASCENT

bot t om XCHARI NFO. DESCENT

| mmgeRect MaxW dt h .)
This refers to the scanlines between the glyph's ascent and descent, padded

on the left to the minimum left-bearing (or 0, whichever is less) and on the
right to the maximum right-bearing (or logical-width, whichever is greater).
All glyph images share a common horizontal origin. This is a combination
of | mageRect Max in the horizontal direction and | mageRect M n in the
vertical direction. The edges of the rectangle are:

left: m n (XFONTI NFO. M N- BOUNDS. LBEARI NG, 0)

right: max (XFONTI NFO. MAX- BOUNDS. RBEARI NG,
XFONTI NFO. MAX- BOUNDS. W DTH)

top: XCHARI NFO. ASCENT

bott om XCHARI NFO. DESCENT

| mgeRect Max]])
This refers to all scanlines, from the maximum ascent (or the font ascent,

whichever isgreater) to the maximum descent (or the font descent, whichever
is greater), padded to the same horizontal extents as MaxW dt h. All glyph
images have the same sized bitmap and share a common origin. This is the
|east compact representation, but may be the easiest or most efficient (partic-
ularly for character cell fonts) for some clients to use. The edges of the rect-

angle are;
left: m n (XFONTI NFO. M N- BOUNDS. LBEARI NG, 0)
right: max (XFONTI NFO. MAX- BOUNDS. RBEARI NG,
XFONTI NFO. MAX- BOUNDS. W DTH)
t op: max (XFONTI NFO. FONT- ASCENT,
XFONTI NFO. MAX- BOUNDS. ASCENT)
bott om max (XFONTI NFO. FONT- DESCENT,

XFONTI NFO. MAX- BOUNDS. DESCENT)

The SCANLI NE- PADfield specifies the number of bits (8, 16, 32, or 64) to which each glyph scanlineis
padded before transmitting. It contains one of the following alternate values:

Protocol

Scanl i nePad8 (0 << 8)
Scanl i nePad16 (1 << 8)
Scanl i nePad32 (2 << 8)
Scanl i nePad64 (3 << 8)

The SCANLI NE- UNI T field specifies the number of bits (8, 16, 32, or 64) that should be treated as a unit
for swapping. Thisvalue must belessthan or equal to the number of bits specified by the SCANLI NE- PAD.
It contains one of the following alternate values:

Scanl i neUnit8 (0 << 12)
Scanl i neUni t 16 (1 << 12)
Scanl i neUni t 32 (2 << 12)
Scanl i neUni t 64 (3 << 12)

BITMAPFORMATS are byte-swapped as CARD32s. All unspecified bits must be zero.

Use of an invalid BITMAPFORMAT causes a Format error to be returned.

BITMAPFORMATMASK

BITMAPFORMATMASK: CARD32 mask

Thisisamask of bits representing the fieldsin aBITMAPFORMAT:

Byt eOr der Mask (1 << 0)
Bi t Or der Mask (1 << 1)
| mgeRect Mask (1 << 2)
Scanl i nePadMask (1 << 3)
Scanl i neUni t Mask (1 << 4)

Unspecified bits are required to be zero or else a Format error is returned.

BOOL

BOOL: CARDS8

Thisis aboolean value containing one of the following alternate values:

Fal se
True 1

BYTE

BYTE: 8-bit value

Protocol

Thisis an unsigned byte of data whose encoding is determined by the context in which it is used.

CARDS, CARD16, CARD32

CARDS: 8-hit unsigned integer

CARD16: 16-bit unsigned integer

CARD32: 32-bit unsigned integer

These are unsigned numbers. The latter two are byte-swapped when the server and client have different
byte orders.

CHAR2B: [bytel, byte2: CARDS8]

This structure specifies an individual character code within either a 2-dimensional matrix (using BYTEL
and BYTEZ2 as the row and column indices, respectively) or a vector (using BYTEL and BYTE2 as most-
and least-significant bytes, respectively). This data type is treated as a pair of 8-bit values and is never
byte-swapped. Therefore, the client should always transmit BYTEL first.

EVENTMASK

EVENTMASK: CARD32 mask

Thisis amask of bitsindicating which of an extension's (or the core's) maskable events the client would
like to receive. Each bit indicates one or more events, and a bit value of one indicates interest in a corre-
sponding set of events. The following bits are defined for event masks specified for the core protocol (i.e.
an EXTENSI ON- OPCODE of zeroin Set Event Mask and Get Event Mask requests):

Cat al oguelLi st ChangeMask (1 << 0)
Font Li st ChangeMask (1 << 1)

If Cat al ogueLi st ChangeMask is set, client is interested in receiving Cat al oguelLi st Not i -
fy events. If Font Li st ChangeMask is set, the client is interested in receiving Font Li st Not i fy
events.

Extensionsthat provide additional events may define their own event masks. These event masks have their
own scope and may use the same hit values as the core or other extensions.

All unused bits must be set to zero. In Set Event Mask requests, if any bits are set that are not defined for
the extension (or core) for which thisEVENTMASK isintended (according to the EXTENSI ON- OPCODE
giveninthe Set Event Mask request), an EventMask error is generated.

Thisvalueis swapped asa CARD32.

FONTID

FONTID: ID

Protocol

Thisisspecified by theclient intherequest OpenBi t mapFont astheidentifier to be used when referring
to a particular open font.

ID: CARD32

Thisis a 32-bit value in which the top 3 bits must be clear, and at least 1 other bit must be set (yielding
arange of 1 through 2%°-1). It is specified by the client to represent objects in the server. Identifiers are
scoped according to their type are private to the client; thus, the same identifier may be used for both a
FONTID and an ACCESSCONTEXT aswell as by multiple clients.

An ID of zero isreferred to as None.

INTS, INT16, INT32

INTS: 8-hit signed integer
INT16: 16-bit signed integer
INT32: 32-bit signed integer

These are signed numbers. The latter two are byte-swapped when the client and server have different byte
orders.

OFFSET32

OFFSET32: [position: CARD32,
| engt h: CARD32]

This structure indicates a position and length within a block of data.

PROPINFO

PROPINFO: [of fsets: LISTof PROPOFFSET,
dat a: LISTofBYTE]

This structure describesthe list of properties provided by afont. Stringsfor all of the properties namesand
values are stored within the data block and are located using a table of offsets and lengths.

This structure is padded to 32-hit alignment.

PROPOFFSET
PROPOFFSET: [nane: OFFSET32,
val ue: OFFSET32,
type: CARDS,

10

Protocol

zer o- pad3: BYTE, BYTE, BYTE]
This structure specifies the position, length, and type of of data for a property.

The NAME field specifies the position and length (which must be greater than zero) of the property name
relative to the beginning of the PROPI NFO. DATA block for this font. The interpretation of the position
and length of the VALUE field is determined by the TYPE field, which contains one of the following
dternate values:

String
Unsi gned

Si gned 2

which have the following meanings:

String
Thisproperty containsacounted string of bytes. Thedataisstored in the PROPI NFO. DATA
block beginning at relative byte VALUE.POSITION (beginning with zero), extending for
VALUE.LENGTH (at least zero) bytes.

Unsi ghed
This property contains a unsigned, 32-bit number stored as a CARD32 in
VALUE.POSITION (VALUE.LENGTH is zero).

Si gned

This property contains a signed, 32-bit number stored asan INT32 in VALUE.POSITION
(VALUE.LENGTH is zero).

This structure is zero-padded to 32-bit alignment.

RANGE

RANGE: [M n-char, max-char: CHAR2B]

This structure specifiesarange of character codes. A single character isrepresented by M N- CHAR equal's
MAX- CHAR. If the linear interpretation of MAX- CHARislessthan that of M N- CHAR, or if M N- CHARis
less than the font's XFONTI NFO. CHAR- RANGE. M N- CHAR, or if MAX- CHAR is greater than the font's
XFONTI NFO. CHAR- RANGE. MAX- CHAR, the rangeisinvalid.

RESOLUTION
RESOLUTION: [x-resol ution: CARD16,
y-resol ution: CARD1S6,
deci poi nt - si ze: CARD16]

This structure specifies resolution and point size to be used in resolving partially-specified scaled font
names. The X- RESOLUTI ONand Y- RESOLUTI ON are measured in pixels-per-inch and must be greater
than zero. The DECI POl NT- S| ZE is the preferred font size, measured in tenths of a point, and must be
greater than zero.

11

Protocol

STRINGS

STRINGS: LISTof CARDS

Thisisacounted list of 1-byte character codes, typically encoded in 1SO 8859-1. A character code“c” is
equivalent to a CHAR2B structure whose BYTEL is zero and whose BYTE2 is“c”.

TIMESTAMP

TIMESTAMP: CARD32

Thisisthe number of millisecondsthat have passed since aserver-dependent origin. It isprovided in errors
and events and is permitted to wrap.

XCHARINFO
XCHARINFO: [I bearing,rbearing: INT16,
wi dt h: INT16,
ascent ,descent: INT16,
attributes: CARD16]

This structure specifiesthe ink extents and horizontal escapement (also known as the set- or logical width)
of anindividual character. Thefirst five values represent directed distances in a coordinate system whose
origin isaligned with the lower-left edge of the left-most pixel of the glyph baseline (i.e. the baseline falls
between two pixels as shown in Figure 3-1 of the Bitmap Distribution Format 2.1 Consortium standard

[2]).

The LBEARI NGfield specifies the directed distance measured to the right from the origin to the left edge
of the left-most inked pixel in the glyph.

The RBEARI NG field specifies the directed distance (measured to the right) from the origin to the right
edge of the right-most inked pixel in the glyph.

The W DTH field specifies the directed distance (measured to the right) from the origin to the position
where the next character should appear (called the escapement point). This distance includes any whites-
pace used for intercharacter padding and is also referred to as the logical width or horizontal escapement.

The ASCENT field specifies the directed distance (measured up) from the baseline to the top edge of the
top-most inked pixel in the glyph.

The DESCENT field specifiesthe directed distance (measured down) from the baseline to the bottom edge
of the bottom-maost inked pixel.

The ATTRI BUTES field specifies glyph-specific information that is passed through the application. If this
value is not being used, it should be zero.

Theink bounding box of aglyphisdefined to be the smallest rectangle that enclosesall of theinked pixels.
This box has awidth of RBEARI NG- LBEARI NG pixels and a height of ASCENT + DESCENT pixels.

XFONTINFO

12

Protocol

XFONTINFO: [fl ags: CARD32,
drawi ng-direction: { Left ToRi ght ,Ri ght -
ToLeft }
char -range: RANGE,
defaul t-char: CHARZB,
m n- bounds: XCHARINFO,
max- bounds: XCHARINFO,
font-ascent: INT16,
font - descent: INT16,
properties: PROPINFO]

This structure specifies attributes related to the font as awhole.

The FLAGS field is abit mask containing zero or more of the following boolean values (unspecified bits
must be zero):

Al | Char act er sExi st (1 << 0)
I nkl nsi de (1 << 1)
Hori zont al Overl ap (1 << 2)

which have the following meanings:

Al'| Char act er sExi st
If this bit is set, all of the characters in the range given by CHAR- RANGE
have glyphs encoded in the font. If this bit is clear, some of the characters
may not have encoded glyphs.

I nkl nsi de
If this bit is set, the inked pixels of each glyph fall within the rectangle
described by the font's ascent, descent, origin, and the glyph's escapement
point. If thishit is clear, there may be glyphs whose ink extends outside this
rectangle.

Hori zont al Overl ap
If thishit is set, the two ink bounding boxes (smallest rectangle enclosing the
inked pixels) of some pairs of glyphsin the font may overlap when displayed
side-by-side (i.e. the second character is imaged at the escapement point of
thefirst) on acommon baseline. If thishit isclear, thereare no pairsof glyphs
whose ink bounding boxes overlap.

The DRAW NG- DI RECTI ONfield contains a hint indicating whether most of the character metrics have
apositive(or“Lef t ToRi ght) logical width or anegative (“Ri ght ToLef t ") logical width. It contains
the following alternate values:

Left ToR ght
Ri ght ToLeft 1

The CHAR- RANGE. M N- CHARand CHAR- RANGE. VAX- CHARfields specify thefirst and last character
codes that have glyphs encoded in thisfont. All fonts must have at least one encoded glyph (in which case

13

Protocol

the M N- CHAR and MAX- CHAR are equal), but are not required to have glyphs encoded at all positions
between the first and last characters.

The DEFAULT- CHAR field specifies the character code of the glyph that the client should substitute for
unencoded characters. Requests for extents or bitmaps for an unencoded character generate zero-filled
metrics and a zero-length glyph bitmap, respectively.

The M N- BOUNDS and MAX- BOUNDS fields contain the minimum and maximum values of each of the
extents field of all encoded charactersin the font (i.e. non-existent characters are ignored).

The FONT- ASCENT and FONT- DESCENT fields specify the font designer's logical height of the font,
above and below the baseline, respectively. The sum of the two values is often used as the vertical line
spacing of thefont. Individual glyphs are permitted to have ascents and descentsthat are greater than these
values.

The PROPERTI ES field contains the property data associated with this font.

This structure is padded to 32-hit alignment.

Requests

This section describes the requests that may be sent by the client and the replies or errorsthat are generated
in response. Versions of the protocol with the same major version are required to be upward-compatible.

Every request on agiven connection isimplicitly assigned a sequence number, starting with 1, that is used
in replies, error, and events. Servers are required to generate replies and errors in the order in which the
corresponding requests are received. Servers are permitted to add or remove fontsto the list visible to the
client between any two requests, but requests must be processed atomically. Each request packet isat least
4 bytes long and contains the following fields:

maj or - opcode: CARDS
m nor - opcode: CARDS
| engt h: CARD16

The MAJOR- OPCODE specifies which core request or extension package this packet represents. If the
MAJ OR- OPCODE corresponds to a core request, the M NOR- OPCODE contains 8 hits of request-specif-
ic data. Otherwise, the M NOR- OPCODE specifies which extension request this packet represents. The
LENGTH field specifies the number of 4-byte units contained within the packet and must be at least one.
If thisfield contains avalue greater than oneit is followed by (LENGTH - 1) * 4 bytes of request-specific
data. Unless otherwise specified, unused bytes are not required to be zero.

If arequest packet containstoo little or too much data, the server returns a Length error. If the server runs
out of internal resources (such asmemory) while processing arequest, it returnsan Alloc error. If aserveris
deficient (and therefore non-compliant) and is unableto processarequest, it may return an I mplementation
error. If aclient uses an extension request without previously having issued aQuer yExt ensi on request
for that extension, the server responds with a Request error. If the server encounters a request with an
unknown MAJ OR- OPCODE or M NOR- OPCODE, it responds with a Request error. At most one error is
generated per request. If more than one error condition is encountered in processing a requests, the choice
of which error isreturned is server-dependent.

Core requests have MAJ OR- OPCODE values between 0 and 127, inclusive. Extension requests have MA-
JOR- OPCODE values between 128 and 255, inclusive, that are assigned by by the server. All M NOR- OP-
CODE values in extension requests are between 0 and 255, inclusive.

14

Protocol

Each reply is at least 8 bytes long and contains the following fields:

type: CARDS valueof 0
dat a- or - unused: CARDS

sequence- nunber : CARD16

| engt h: CARD32

The TYPE field has a value of zero. The DATA- OR- UNUSED field may be used to encode one byte of
reply-specific data (see Section 5.2 on request encoding). The least-significant 16 bits of the sequence
number of the request that generated the reply are stored in the SEQUENCE- NUVBER field. The LENGTH
field specifies the number of 4-byte units in this reply packet, including the fields described above, and
must be at least two. If LENGTH is greater than two, the fields described above are followed by (LENGTH
- 2) * 4 bytes of additional data.

Requests that have replies are described using the following syntax:

Request Nane

argl: typel

arg2: type2

ar gN: typeN

#

resulti: typel

result2; type2

resultmM typeM

Errors: kindl, kind2 ..., kindK
Description

If arequest does not generate areply, the# and result lines are omitted. If arequest may generate multiple
replies, the # is replaced by a#+. In the authorization data exchanges in the initial connection setup and
the CreateAC request, # indicates data sent by the client in response to data sent by the server.

The protocol begins with the establishment of a connection over a mutually-understood virtual stream:

open connection

byt e- order: BYTE

cl i ent - maj or-protocol -version: CARD16

cl i ent-ni nor-protocol -version: CARD16
aut hori zati on- protocol s: LISTofAUTH

Theinitial byte of the connection specifies the BYTE- ORDER in which subsequent 16-bit and 32-bit nu-
meric values are to be transmitted. The octal value 102 (ASCII uppercase “B”) indicates that the most-
significant byte is to be transmitted first; the octal value 154 (ASCII lowercase “| ") indicates that the

15

Protocol

least-significant byte is to be transmitted first. If any other value is encountered the server closes the con-
nection without any response.

The CLI ENT- MAJOR- PROTOCOL- VERSI ON and CLI ENT- M NOR- PROTOCOL - VERSI ON specify
which version of the font service protocol the client would like to use. If the client can support multiple
versions, the highest version should be given. This version of the protocol has a magjor version of 2 and
aminor version of 0.

The AUTHORI ZATI ON- PROTOCQOLS containsalist of protocol names and optional initial datafor which
the client can provide information. The server may use this to determine which protocol to use or as part
of theinitial exchange of authorization data.

#

st at us: { Success, Conti nue, Busy,
Deni ed }

server - mgj or - prot ocol - versi on: CARD16

server-m nor - protocol -versi on: CARD16

al ternate-servers-hint: LISTofALTERNATESERVER

aut hori zati on-i ndex: CARDS8

aut hori zati on- dat a: LISTofBYTE

The SERVER- MAJOR- PROTOCOL - VERSI ON and SERVER- M NOR- PROTOCOL - VERSI ON specify
the version of the font service protocol that the server expects from the client. If the server supports the
version specified by the client, this version number should be returned. If the client has requested a higher
version than is supported by the server, the server's highest version should be returned. Otherwise, if the
client has requested a lower version than is supported by the server, the server's lowest version should be
returned. It isthe client's responsibility to decide whether or not it can match this version of the protocol.

The ALTERNATE- SERVERS- HI NT is a list of other font servers that may have related sets of fonts
(determined by means outside this protocol, typically by the system administrator). Clients may chooseto
contact these font servers if the connection is rejected or lost.

The STATUS field indicates whether the server accepted, rejected, or would like more information about
the connection. It has one of the following alternate values:

Success
Conti nue
Busy
Deni ed

w N O

If STATUS isDeni ed, the server hasrejected the client's authorization information. If STATUS isBusy,
the server has simply decided that it cannot provide fonts to this client at this time (it may be able to at
alater time). In both cases, AUTHORI ZATI ON- | NDEX is set to zero, no authorization-data is returned,
and the server closes the connection after sending the data described so far.

Otherwise the AUTHORI ZATI ON- | NDEX is set to the index (beginning with 1) into the AUTHORI ZA-
TI ON- PROTOCOLS list of the protocol that the server will use for this connection. If the server does not
want to use any of the given protocols, this value is set to zero. The AUTHORI ZATI ON- DATA field is
used to send back authorization protocol-dependent data to the client (such as a challenge, authentication
of the server, etc.).

16

Protocol

If STATUSisSuccess, thefollowing section of protocol isomitted. Otherwise, if STATUSisCont i n-
ue, the server expects more authorization data from the client (i.e. the connection setup is not finished,
SO NO requests or events may be sent):

#

nor e- aut hori zat i on- dat a: STRINGS8

#

st at us: { Success, Cont i nue, Busy, Deni ed }
nor e- aut hori zat i on- dat a: LISTofBYTE

The values in STATUS have the same meanings as described above. This section of protocol is repeated
until the server either accepts (sets STATUS to Success) or rejects (sets STATUS to Deni ed or Busy)
the connection.

Once the connection has been accepted and STATUS is Success, an implicit AccessContext is created
for the authorization data and the protocol continues with the following data sent from the server:

#

remai ni ng- | engt h: CARD32
maxi mum r equest - | engt h: CARD16
rel ease- nunber: CARD32
vendor : STRINGS8

The REMAI NI NG- LENGTH specifies the length in 4-byte units of the remaining data to be transmitted
to the client. The MAXI MUM REQUEST- LENGTH specifies the largest request size in 4-byte units that
is accepted by the server and must have a value of at least 4096. Requests with a length field larger than
this value are ignored and a Length error is returned. The VENDOR string specifies the name of the man-
ufacturer of the font server. The RELEASE- NUMBER specifies the particular release of the server in a
manufacturer-dependent manner.

After the connection is established and the setup information has been exchanged, the client may issue
any of requests described below:

NoQp

Errors: Alloc

This request does nothing. It istypically used in response to aKeepAl i ve event.

Li st Ext ensi ons

#
nanes: LISTof STRINGS
Errors: Alloc

Thisrequest returns the names of the extension packagesthat are supported by the server. Extension names
are case-sensitive and are encoded in SO 8859-1.

Quer yExt ensi on

17

Protocol

name: STRINGS8
#

present: BOOL
maj or - ver si on: CARD16
m nor - ver si on: CARD16
maj or - opcode: CARDS8
first-event: CARDS
nunmber - event s: CARDS
first-error: CARDS
nunber-errors: CARDS
Errors: Alloc

Thisrequest determines whether or not the extension package specified by NAME (encoded in 1SO 8859-1)
is supported by the server and that there is sufficient number of major opcode, event, and error codes
available. If so, then PRESENT isset to Tr ue, MAJOR- VERSI ONand M NOR- VERSI ON are set to the
respective major and minor version numbers of the protocol that the server would prefer; MAJ OR- OP-

CODE is set to the value to use in extension requests; FI RST- EVENT is set to the value of the first ex-
tension-specific event code or zero if the extension does not have any events, NUVBER- EVENTS is set
to the number of new events that the event defines; FI RST- ERROR is set to the value of the first exten-
sion-specific error code or zero if the extension does not define any new errors, and NUMBER- ERRORS
is set to the number of new errors the extension defines.

Otherwise, PRESENT is set to Fal se and the remaining fields are set to zero.

The server is free to return different values to different clients. Therefore, clients must use this request
before issuing any of the requests in the named extension package or using the Set Event Mask request
to expressinterest in any of this extension's events. Otherwise, a Request error is returned.

Li st Cat al ogues

pattern: STRINGS8

mex- names: CARD32

#+

replies-foll ow ng-hint: CARD32
nanes: LISTofSTRINGS8
Errors: Alloc

This request returns a list of at most MAX- NAMES names of collections (called catalogues) of fonts that
match the specified PATTERN. In the pattern (which is encoded in 1SO 8859-1), the “?” character (octal
77) matches any single character; the “*” character (octal 52) matches any series of zero or more char-
acters; and alphabetic characters match either upper- or lowercase. The returned NAMES are encoded in
SO 8859-1 and may contain mixed character cases.

If PATTERN s of zero length or MAX- NAMES is equal to zero, one reply containing a zero-length list of
names is returned. This may be used to synchronize the client with the server.

Servers are free to add or remove catalogues to the set returned by Li st Cat al ogues between any
two requests. This request is not cumulative; repeated uses are processed in isolation and do result in an
iteration through the list.

18

Protocol

To reduce the amount of buffering needed by the server, thelist of names may be split across several reply
packets, so long as the names arrive in the same order that they would have appeared had they beenin a
single packet. The REPLI ES- FOLLOW NG- HI NT field in all but the last reply contains a positive value
that specifies the number of repliesthat arelikely, but not required, to follow. In thelast reply, which may
contain zero or more names, thisfield is set to zero.

Set Cat al ogues

names: LISTof STRINGS

Errors: Alloc, Name

This request sets the list of catalogues whose fonts should be visible to the client. The union of the fonts
provided by each of the named catal ogues forms the set of fonts whose names match patternsin Li st -
Font s, Li st Font sWt hXI nf o, and OpenBi t mapFont requests. The catalogue names are case-
insensitive and are encoded in 1SO 8859-1. A zero-length list resets the client's catalogue list to the serv-
er-dependent default.

If any of the catalogue names are invalid, a Name error is returned and the request isignored.

Get Cat al ogues

#
nanes: LISTof STRINGS
Errors: Alloc

Thisrequest returnsthe current list of catalogue names (encoded in | SO 8859-1) associated with the client.
These catalogues determine the set of fonts that are visibleto Li st Font s, Li st Font sW t hXI nf o,
and OpenBi t mapFont . A zero-length list indicates the server's default set of fonts. Catalogue hames
are case-insensitive and may be returned in mixed case.

Set Event Mask

ext ensi on- opcode: CARDS8
event - mask: EVENTMASK
Errors: EventMask, Request

This request specifies the set of maskable events that the extension indicated by EXTENSI ON- OPCODE
(or zero for the core) should generate for the client. Event masks are limited in scope to the extension (or
core) for which they are defined, so expressing interest in events from one or more extensions requires
multiple uses of this request.

The default event mask if Set Event Mask has not been called is zero, indicating no interest in any
maskable events. Some events are not maskable and cannot be blocked.

If EXTENSI ON- OPCCODE is not avalid extension opcode previously returned by Quer yExt ensi on or
zero, aRequest error isreturned. If EVENT- MASK contains any bits that do not correspond to valid events
for the specified extension (or core), an EventMask error is returned and the request isignored.

Get Event Mask

19

Protocol

ext ensi on- opcode: CARDS8

#

event - mask: EVENTMASK
Errors: Request

This request returns the set of maskable core events the extension indicated by EXTENSI ON- OPCCODE
(or the coreif zero) should generate for the client. Non-maskable events are aways sent to the client.

If EXTENSI ON- OPCODE is not avalid extension opcode previously returned by Quer yExt ensi on or
zero, aRequest error is returned.

Cr eat eAC

ac: ACCESSCONTEXT

aut hori zati on- protocol s: LISTofAUTH

#

st at us: { Success, Cont i nue, Deni ed }
aut hori zati on-i ndex: CARDS

aut hori zati on- dat a: LISTofBYTE

Errors: IDChoice

This request creates a new AccessContext object within the server containing the specified authorization
data. When this AccessContext is selected by the client using the Set Aut hor i zat i on request, the data
may be used by the server to determine whether or not the client should be granted access to particular
font information.

If STATUS isDeni ed, the server rejects the client's authorization information and does not associate AC
with any valid AccessContext. In this case, AUTHORI ZATI ON- | NDEX is set to zero, and zero bytes of
AUTHORI ZATI ON- DATA is returned.

Otherwise, AUTHORI ZATI ON- | NDEX is set to the index (beginning with 1) into the AUTHORI ZA-
TI ON- PROTOCOLS list of the protocol that the server will use for this connection. If the server does not
want to use any of the given protocols, this value is set to zero. The AUTHORI ZATI ON- DATA field is
used to send back authorization protocol-dependent data to the client (such as a challenge, authentication
of the server, etc.).

If STATUSisCont i nue, theclient is expected to continue the request by sending the following protocol
and receiving the indicated response from the server. This continues until STATUS is set to either Suc-
cess or Deni ed.

#

nor e- aut hori zati on-dat a: STRINGS

#

st at us: { Success, Cont i nue, Deni ed }
nor e- aut hori zati on-dat a: LISTofBYTE

Once the connection has been accepted and STATUS is Success, the request is complete.

If ACisnot in the range [1..229—1] or is aready associated with an access context, an IDChoice error is
returned.

20

Protocol

FreeAC

ac: ACCESSCONTEXT
Errors: AccessContext, Alloc

This request indicates that the specified AC should no longer be associated with a valid access context.
If ACis also the current AccessContext (as set by the Set Aut hori zat i on regquest), an implicit Se-
t Aut hori zat i on of None is done to restore the AccessContext established for the initial connection
setup. Operations on fonts that were opened under AC are not affected. The client may reuse the value of
ACin asubsequent Cr eat e AC request.

If ACisn't associated with any valid authorization previously created by Cr eat e AC, an AccessContext
error is returned.

Set Aut hori zati on

ac: ACCESSCONTEXT
Errors: AccessContext

This request sets the AccessContext to be used for subsequent requests (except for Quer y Xl nf o,
Quer yXExt ent s8, Quer yXExt ent s16, Quer yXBi t maps8, Quer yXBi t maps16 and Cl ose-
Font which are done under the AccessContext of the corresponding OpenBi t mapFont). An AC of
None restores the AccessContext established for the initial connection setup.

If ACisneither None nor avalue associated with avalid AccessContext previously created by Cr eat e AC,
an AccessContext error is returned.

Set Resol uti on

resol uti ons: LISTofRESOLUTION
Errors: Resolution, Alloc

Thisrequest provides a hint asto the resolution and preferred point size of the drawing surfaces for which
the client will be requesting fonts. The server may use this information to set the RESOLUTION_X and
RESOLUTION Y fields of scalable XLFD font names, to order sets of names based on their resolutions,
and to choose the server-dependent instance that is used when a partially-specified scalable fonthname is
opened.

If azero-length list of RESOLUTIONSisgiven, the server-dependent default valueisrestored. Otherwise,
if elements of all of the specified RESOLUTIONS are non-zero, the default resolutions for this client are
changed.

If a RESOLUTION entry contains a zero, a Resolution error is returned and the default resolutions are
not changed.

Get Resol uti on

#
resol uti ons: LISTofRESOLUTION
Errors: Alloc

21

Protocol

This request returns the current list of default resolutions. If a client has not performed a Set Resol u-
t i on, aserver-dependent default value is returned.

Li st Font s
pattern: STRINGS8
mex- names: CARD32
#t
replies-follow ng-hint: CARD32
nanes: LISTof STRING8
Errors: Alloc

Thisreguest returnsalist of at most MAX- NAVES font names that match the specified PATTERN, accord-
ing to matching rules of the X Logical Font Description Conventions [3]. In the pattern (which is encoded
in ISO 8859-1) the “?” character (octal 77) matches any single character; the “*” character (octal 52)
matches any series of zero or more characters; and al phabetic characters match either upper- or lowercase.
The returned NAMES are encoded in SO 8859-1 and may contain mixed character cases. Font names are
not required to be in XLFD format.

If PATTERN is of zero length or MAX- NAMES is equal to zero, one reply containing a zero-length list of
names s returned. This may be used to synchronize the client with the server.

Serversarefreeto add or removefontsto the set returned by Li st Font s between any two requests. This
request is not cumulative; repeated uses are processed in isolation and do result in an iteration through
thelist.

To reduce the amount of buffering needed by the server, the list of names may be split across several reply
packets, so long as the names arrive in the same order that they would have appeared had they beenin a
single packet. The REPLI ES- FOLLOW NG- HI NT field in all but the last reply contains a positive value
that specifies the number of repliesthat arelikely, but not required, to follow. In the last reply, which may
contain zero or more names, thisfield is set to zero.

Li st FontsWthXl nfo

pattern: STRINGS8
pattern: STRINGS8
pattern: STRINGS8
max- names: CARD32

#+

replies-follow ng-hint: CARD32

i nfo: XFONTINFO
name: STRINGS8
Errors: Alloc

This request is similar to Li st Font s except that a separate reply containing the name, header, and
property data is generated for each matching font name. Following these replies, if any, a fina reply
containing a zero-length NAME and no | NFOis sent.

The REPLI ES- FOLLOW NG- HI NT field in all but the last reply contains a positive value that specifies
the number of repliesthat are likely, but not required, to follow. In the last reply, thisfield is set to zero.

22

Protocol

If PATTERN is of zero length or if MAX- NAMVES is equal to zero, only the final reply containing a ze-
ro-length NAME and no | NFOisreturned. This may be used to synchronize the client with the server.

QpenBi t mapFont

fontid: FONTID

pattern: STRINGS8

f or mat - mask: BITMAPFORMATMASK

format-hint: BITMAPFORMAT

#

ot heri d: FONTID or None

ot herid-valid: BOOL

cachabl e: BOOL

Errors: IDChoice, Name, Format, AccessContext, Alloc

This request looks for a server-dependent choice of the font names that match the specified PATTERN
according to the rules described for Li st Font s. If no matches are found, a Name error is returned.
Otherwise, the server attempts to open the font associated with the chosen name.

Permission to access the font is determined by the server according the licensing policy used for thisfont.
The server may use the client's current AccessContext (as set by the most recent Set Aut hori zati on
request or the original connection setup) to determine any client-specific sets of permissions. After thefont
has been opened, the client is allowed to specify a new AccessContext with Set Aut hori zati on or
release the AccessContext using Fr ee AC . Subsequent Quer y Xl nf o, Quer y XExt ent s8, Quer y X-
Ext ent s16, Quer yXBi t naps8, Quer yXBi t maps16 and Cl oseFont requests on this FONTID
are performed according to permissions granted at the time of the QpenBi t napFont request.

If the server iswilling and able to detect that the client has already opened the font successfully (possibly
under adifferent name), the OTHERI Dfield may be set to one of theidentifiers previously used to open the
font. The OTHERI D- VALI Dfield indicates whether or not OTHERI Disstill associated with an open font:
ifitisTr ue, theclient may use OTHERI Dasan aternativeto FONTI D. Otherwise, if OTHERI D- VALI D
is Fal se, OTHERI D is no longer open but has not been reused by a subsequent OpenBi t napFont
request.

If OTHERI Disset to None, then OTHERI D- VALI D should be set to Fal se.

The FORMAT- MASK indicates which fields in FORMAT- HI NT the client is likely to use in subsequent
Get XBi t naps8 and Cet XBi t maps16 requests. Servers may wish to use thisinformation to precom-
pute certain values.

If CACHABLE issetto Tr ue, the client may cache the font (so that redundant opens of the same font may
be avoided) and use it with all AccessContexts during the life of the client without violating the font's
licensing policy. This flag is typically set whenever afont is unlicensed or is licensed on a per-display
basis. If CACHABLE is Fal se, the client should reopen the font for each AccessContext.

The server is permitted to add to or remove from the set of fonts returned by Li st Font s between any
two requests, though mechanisms outside the protocol. Therefore, it is possible for this request (which is
atomic) to return a different font than would result from separate aLi st Font s followed by an Qpen-
Bi t mapFont with a non-wildcarded font name.

If FONTI Disnot in the range [1..229—1] or if it isalready associated with an open font, an IDChoice error
is returned. If no font is available that matches the specified PATTERN, a Name error is returned. If the

23

Protocol

fontispresent but the client is not permitted access, an AccessContext error isreturned. If FORMAT- MASK
has any unspecified bits set or if any of the fields in FORMAT- HI NT indicated by FORVAT- MASK are
invalid, a Format error is returned.

QueryXl nfo
fontid: FONTID
#
i nfo: XFONTINFO
Errors: Font, Alloc

This request returns the font header and property information for the open font associated with FONTI D.

If FONTI Dis not associated with any open fonts, a Font error is returned.

Quer yXEXt ent s8

fontid: FONTID

range: BOOL

chars: STRINGS8

#

extents: LISTof XCHARINFO
Errors: Font, Range, Alloc

Thisrequest is equivalent to Quer yXExt ent s16 except that it uses 1-byte character codes.

Quer yXExt ent s16

fontid: FONTID

range: BOOL

chars: LISTofCHAR2B

#

extents: LISTofXCHARINFO
Errors: Font, Range, Alloc

This request returns alist of glyph extents from the open font associated with FONTID for the series of
characters specified by RANGE and CHARS.

If RANGEisTr ue, each succeeding pair of elementsin CHARS istreated asarange of charactersfor which
extents should bereturned. If CHARS contains an odd number of elements, thefont'sXFONTI NFO. CHAR-
RANGE. MAX- CHARisimplicitly appended to thelist. If CHARS contains no elements, thelist isimplicitly
replaced with thefont's XFONTI NFO. CHAR- RANGE. If any of theresulting character rangesareinvalid,
a Range error isreturned. Otherwise, the character ranges are concatenated in the order given by CHARS
to produce a set of character codes for which extents are returned.

If RANGE is Fal se, then CHARS specifies the set of character codes for which extents are returned. If
CHARS is of zero length, then a zero-length list of extentsis returned.

The extents for each character code in the resulting set (which may contain duplicates) are returned in the
order in which the character codes appear in the set. At least one metric for each character shall be non-

24

Protocol

zero unless the character is not encoded in the font, in which case all-zero metrics are returned. A blank,
zero-width character can be encoded with non-zero but equal |eft and right bearings.

If FONTI Dis not associated with any open fonts, a Font error isreturned. If RANGE is Tr ue and CHARS
contains any invalid ranges, a Range error is returned.

Quer yXBi t maps8

fontid: FONTID

range: BOOL

chars: STRINGS8

fornmat : BITMAPFORMAT

H#Ht

replies-foll ow ng-hint: CARD32

of f sets: LISTofOFFSET32

bi t maps: LISTofBYTE

Errors: Font, Range, Format, Alloc

Thisrequest isequivaent to Quer yXBi t maps 16 except that it uses 1-byte character codes.

Quer yXBi t maps16

fontid: FONTID

range: BOOL

chars: LISTofCHAR2B
format: BITMAPFORMAT

#+

replies-foll ow ng-hint: CARD32

of f sets: LISTofOFFSET32

bi t maps: LISTofBYTE

Errors: Font, Range, Format, Alloc

This request returns alist of glyph bitmaps from the open font associated with FONTI D for the series of
characters specified by RANGE and CHARS.

If RANGE is True, each succeeding pair of elements in CHARS is treated as a range of charac-
ters for which bitmaps should be returned. If CHARS contains an odd number of elements, the font's
XFONTI NFO. CHAR- RANGE. MAX- CHAR is implicitly appended to the list. If CHARS contains no ele-
ments, the list isimplicitly replaced with the font's XFONTI NFO. CHAR- RANGE. If any of the resulting
character ranges are invalid, a Range error is returned. Otherwise, the character ranges are concatenated
in the order given by CHARS to produce a set of character codes for which bitmaps are returned.

If RANGE is Fal se, then CHARS specifies the set of character codes for which bitmaps are returned. If
CHARS is of zero length, then asingle reply containing azero-length list of offsets and bitmapsisreturned.

If any of the resulting character ranges are invalid, a Range error is returned. Otherwise, the resulting
character ranges are concatenated in the order given by CHARS to produce a set of character codes for
which bitmaps are returned.

25

Protocol

The server isfree to return the glyph bitmaps in multiple replies to reduce the amount of buffering that is
necessary. In this situation, the set of characters obtained above is partitioned into an implementation-de-
pendent number of ordered, non-overlapping subsets containing runs of one or more consecutive charac-
ters. The global ordering of characters must be maintained such that concatenating the subsets in order
that they were produced yields the original set. A reply is generated for each subset, in the order that it
was produced.

For each character in a subset, an image of that character's glyph is described by arectangle of bits corre-
sponding to the pixels specified by FORMAT.IMAGE-RECT. Within the image, set and clear bits repre-
sent inked and non-inked pixels, respectively.

Each scanline of aglyph image, from top to bottom, is zero-padded on the right to amultiple of the number
of hits specified by FORMAT.SCANLINE-PAD. The scanline isthen divided from left to right into a se-
guence of FORMAT.SCANLINE-UNIT bits. Thebits of each unit are then arranged such that theleft-most
pixel is stored in the most- or least-significant bit, according to FORMAT.BIT-ORDER-MSB. The bytes
of each unit are then arranged such that the most- or least-significant byte, according to FORMAT.BY TE-
ORDER-MSB, is transmitted first. Finaly, the units are arranged such that the left-most is transmitted
first and the right-most is transmitted last.

The individual images within a subset are then concatenated in a server-dependent order to form the
Bl TMAPS data of thereply. If aglyph imageis duplicated within areply, the server isfreeto return fewer
(but at least one) copies of the image. If a character is not encoded within the font, a zero-length bitmap
is substituted for this character. Each glyph image must begin at a bit position that is a multiple of the
FORMAT.SCANLINE-UNIT.

The OFFSETS array in areply contains one entry for each character in the subset being returned, in the
order that the characters appear in the subset. Each entry specifies the starting location in bytes and size
in bytes of the corresponding glyph image in the Bl TMAPS data of that reply (i.e. an offset may not refer
to datain another reply).

The REPLI ES- FOLLOW NG- HI NT field in all but the last reply contains a positive value that specifies
the number of repliesthat are likely, but not required, to follow. In the last reply, which may contain data
for zero or more characters, thisfield is set to zero.

If FONTI Disnot associated with any open fonts, a Font error is returned. If RANGE is Tr ue and CHARS
contains any invalid ranges, a Range error isreturned. If FORMAT isinvalid, a Format error is returned.

Cl oseFont
fontid: FONTID
Errors: Font, Alloc

This request indicates that the specified FONTI D should no longer be associated with an open font. The
server isfreeto release any client-specific storage or licenses alocated for the font. The client may reuse
the value of FONTI Din a subsequent OpenBi t mapFont request.

If FONTI Dis not associated with any open fonts, a Font error is returned.

close connection

When a connection is closed, a Cl oseFont is done on all fonts that are open on the connection. In
addition, the server is free to release any storage or licenses allocated on behalf of the client that made
the connection.

26

Protocol

Errors

All errors are at least 16 byteslong and contain the following fields:

type: CARDS valueof 1
error-code: CARDS

sequence- nunber : CARD16

| engt h: CARD32

ti nest anp: TIMESTAMP

maj or - opcode: CARDS

m nor - opcode: CARDS

dat a- or - unused: CARD16

The TYPE field has a value of one. The ERROR-CODE field specifies which error occurred. Core errors
codes are in the range 0 through 127, extension error codes are in the range 128 through 255. The SE-
QUENCE-NUMBER field contains the least significant 16 bits of the sequence number of the request that
caused theerror. The LENGTH field specifiesthelength of the error packet in 4-byte unitsand must havea
value of at least 4. The TIMESTAMP specifiesthe server time when the error occurred. The MAJOR-OP-
CODE and MINOR-OPCODE (zero for core requests) fields specify the type of request that generated the
error. The DATA-OR-UNUSED field may be used for 16 bits of error-specific information. If LENGTH
is greater than four, these fields are followed by (LENGTH - 4) * 4 bytes of extra data.

The following errors are defined for the core protocol:

Request

dat a- or - unused: CARD16 unused

Thiserror is generated by any request that has an unknown combination of major and minor request num-
bers, or by any extension request that isissued before a Quer yExt ensi on of that extension.

Format
dat a- or - unused: CARD16 unused
format: BITMAPFORMAT bad format value

Font

This error is generated by the use of an invalid BITMAPFORMAT in the QpenBi t napFont,
Quer yXBi t maps8, and Quer yXBi t maps16 requests. The value that caused the error isincluded as

extradata.

dat a- or - unused: CARD16 unused
fontid: FONTID bad font identifier

Thiserror is generated by an invalid FONTID in the Quer yXI nf 0, Quer yXExt ent s8, Quer y XEx-
tent s16,Quer yXBi t maps8, Quer yXBi t maps16 and Cl oseFont requests. Thevaluethat caused

the error isincluded as extra data.

27

Protocol

Range

dat a- or - unused: CARD16 unused

range: RANGE bad range

This error is generated by an invalid RANGE in the Quer yXExt ent s8, Quer yXExt ent s16,
Quer yXBi t maps8 and Quer yXBi t maps 16 requests. The value that caused the error is included as

extradata.
EventMask
dat a- or - unused: CARD16 unused
EVENTMASK bad event mask

event - mask:

Thiserrorisgenerated by aninvalid EVENTMASK inthe Set Event Mask request. Thevaluethat caused
the error isincluded as extra data.

AccessContext

CARD16 unused

dat a- or - unused:
ACCESSCONTEXT unaccepted AccessContext

ac:
This error is generated by an invalid ACCESSCONTEXT inthe Fr eeACor Set Aut hori zati on re-

guest or by an OpenBi t mapFont request performed without sufficient authorization. In the first two
cases, the ACCESSCONTEXT of the errant request is returned as extra data. In the third case, the current

ACCESSCONTEXT isreturned as extra data.

IDChoice
dat a- or - unused: CARD16 unused
id: ID bad identifier

Thiserror isgenerated by aninvalid or already associated ACCESSCONTEXT identifierinaCr eat eAC
request or FONTID identifier in an QpenBi t mapFont reguest. The value that caused the error is in-

cluded as extra data.

Name

dat a- or - unused: CARD16 unused

Thiserror is generated by afont name pattern that matches no fontsin an QpenBi t napFont request or
no catalogue namesin a Set Cat al ogues request.

Resolution
dat a- or - unused: CARD16 X value of errant resolution
y-resol ution: CARD16 Y value of errant resolution
CARD16 point size of errant resolution

poi nt - si ze:

28

Protocol

Thiserror isgenerated in response to aninvalid RESOLUTION structurein aSet Resol ut i on request.
The value that caused the error isincluded in the DATA-OR-UNUSED field and as extra data.

Alloc

dat a- or - unused: CARD16 unused

Thiserror isgenerated by any request for which the server lacks sufficient resources (especially memory).
Length

dat a- or - unused: CARD16 unused

| engt h: CARD32 bad length value

This error is generated by any request that has a length field greater than (MAXIMUM-RE-
QUEST-LENGTH * 4) bytes. The value that caused the error isincluded as extra data.

Implementation

dat a- or - unused: CARD16 unused

This error may be generated in response to any request that the server is unable to process because it is
deficient. Use of this error is highly discouraged and indicates lack of conformance to the protocol.

Extensions

Additional errors may be defined by extensions.

Events

Events may be generated in response to requests or at the server's discretion after the initial connection
setup information has been exchanged. Each event is at least 12 bytes long and contains the following

fields:

type: CARDS value of 2
event - code: CARDS

sequence- nunmber : CARD16

| engt h: CARD32

ti mest anp: TIMESTAMP

The TYPE field contains the value 2. The EVENT-CODE field specifies the number of the event and is
in therange 0-127 for core events or the range 128-255 for extensions. The SEQUENCE-NUMBER field
specifies the least significant 16 bits of the sequence number of the last request to have been processed by
the server. The LENGTH field specifies the number of 4-byte unitsin this event packet and must always
have avalue of at least 3. The TIMESTAMP field specifies the server time when the event occurred. If
LENGTH is greater than three, these fields are followed by (LENGTH - 3) * 4 bytes of additional data.

Events are described using the following syntax:

Event Nane

29

Protocol

argl: typel
ar gN: typeN
Description

If an event does not provide any extraarguments, thear g1...ar gNlinesare omitted from the description.

The core X Font Service protocol defines the following events:

KeepAl i ve

This unsolicited, nonmaskable event may be sent by the server to verify that the connection has not been
broken (for transports that do not provide this information). Clients should acknowledge receipt of this
request by sending any request (such asNoOp).

Cat al ogueLi st Noti fy

added: BOOL
del et ed: BOOL

Thisevent is sent to clients that have included Cat al oguelLi st ChangeMask in their core event mask
whenever the list of catalogues that are available has changed. The ADDED field is Tr ue if new cata-
logues have been added to the server, otherwiseitisFal se. The DELETED fieldis Tr ue if any existing
catalogues have been removed from the server, otherwiseitisFal se.

Font Li st Notify

added: BOOL
del et ed: BOOL

This event is sent to clients that have included Font Li st ChangeMask in their event mask whenever
the list of fonts that are provided by the currently selected catalogues has changed. The ADDED field is
Tr ue if new fonts have been added to any of the catalogues currently used by the client, otherwise it is
Fal se. The DELETED field is Tr ue if any existing fonts have been removed from any of catalogues
used by the client, otherwiseitisFal se.

Extensions

Additional events may be defined by extensions.

30

Chapter 5. Protocol Encoding

Numbers that are prefixed with “#x” are in hexadecima (base 16). All other numbers are in decimal.
Requests, replies, errors, events, and compound types are described using the syntax:

Name
count contents name
count contents name

where COUNT isthe number of bytesin the data stream occupied by thisfield, CONTENTS is the name
of the type as given in Section 4 or the value if thisfield contains a constant, and NAME is a description
of thisfield.

Objects containing counted lists use a lowercase single-letter variable (whose scope is limited to the re-
quest, reply, event, or error in which it is found) to represent the number of objectsin thelist. These vari-
ables, and any expressionsin which they are used, should be treated as unsigned integers. Multiple copies
of an object areindicated by CONTENTS prefix “LISTof”.

Unused bytes (whose value is undefined) will have ablank CONTENTS field and a NAME field of “un-
used”. Zeroed bytes (whose value must be zero) will have ablank CONTENTSfield and aNAME field of
“zero". The expression pad(e) refers to the number of bytes needed to round avalue “€” up to the closed
multiple of four:

pad(e) = (4 - (e nmod 4)) nod 4

Data Types

ACCESSCONTEXT
4 CARD32 access cont ext

with at | east one of the followng bits set:
#XLFFFFfff

but none of the following bits set:

#xe0000000 zero
ALTERNATESERVER
1 BOCL subset
1 n | engt h of nane
n STRI NG8 nanme
p unused, p=pad(n+2)
AUTH
2 n | engt h of nane

31

Protocol Encoding

2 d | ength of data

n STRI NG8 nane

p unused, p=pad(n)

d STRI N&3 dat a

q unused, qg=pad(d)

Bl TMAPFORNMAT

4 CARD32 val ue, union of the follow ng bits:
#x00000001 Byt eOr der MSB
#x00000002 Bi t Or der MSB
#x00000000 | mmgeRect M n
#x00000004 | mgeRect MaxW dt h
#x00000008 | mmgeRect Max
#x00000000 Scanl i nePad8
#x00000100 Scanl i nePadl16
#x00000200 Scanl i nePad32
#x00000300 Scanl i nePad64
#x00000000 ScanlineUnit8
#x00001000 Scanl i neUnit 16
#x00002000 Scanl i neUni t 32
#x00003000 Scanl i neUni t 64

except for the follow ng bits which nmust be zero
#xffffccfO zero
and the follow ng of which at nbst one bit nay be set:

#x0000000c at npst one bit can be set

Bl TMAPFORIVATMASK

4 CARD32 val ue, mask of the follow ng bits:
#x00000001 Byt eOr der Mask
#x00000002 Bi t Or der Mask
#x00000004 | mgeRect Mask
#x00000008 Scanl i nePadMask
#x00000010 Scanl i neUni t Mask

except for the follow ng bits which nmust be zero

#xffffffeo zero

BOCL

1 BOOL bool ean, one of the foll ow ng val ues:
0 Fal se
1 True

BYTE

1 BYTE unsi gned byte of data

32

Protocol Encoding

CARD8

1 CARDS 8-bit unsigned integer
CARD16

2 CARD16 16-bit unsigned integer
CARD32

4 CARD32 32-bit unsigned integer
CHAR2B

1 CARD8 byt el

1 CARD8 byt e2

EVENTMASK

4 CARD32 event mask

for core events, this is union of the follow ng bits:

#00000001
#00000002

Cat al oguelLi st ChangeMask
Font Li st ChangeMask

but none of the following bits set:
#fffffffc
extensions define their own sets of bits

FONTI D
4 CARD32 font identifier

with at | east one of the followng bits set:
#xLFFFffff

but none of the following bits set:

#xe0000000 zero
| NT8
1 | NT8 8-bit signed integer
I NT16
2 | NT16 16-bit signed integer
I NT32
4 | NT32 32-bit signed integer
OFFSET32
4 CARD32 position (or integer val ue)
4 CARD32 | ength
PROPI NFO
4 n nunber of PROPCFFSET conponents
4 m nunber of bytes of property data

33

Protocol Encoding

20*n PROPOFFSET property offsets into data bl ock

m LI STof BYTE property data bl ock
PROPOFFSET
8 OFFSET32 name in data bl ock
8 OFFSET32 val ue in data bl ock
1 CARDS type, one of the foll ow ng val ues:
0 String
1 Unsi gned
2 Si gned
3 zero
RANGE
2 CHAR2B m ni mum char acter code
2 CHAR2B maxi mum char act er code
RESCOLUTI ON
2 CARD16 X resolution in pixels per inch
2 CARD16 y resolution in pixels per inch
2 CARD16 poi nt size in decipoints
STRNAME
1 n | ength of nane
n STRI NG8 nanme
STRI NGB8
n LI STof BYTE array of 8-bit character val ues
TI MESTAWP
4 CARD32 mlliseconds since server tine origin
XCHARI NFO
2 | NT16 | eft bearing
2 | NT16 ri ght bearing
2 I NT16 wi dt h
2 I NT16 ascent
2 I NT16 descent
2 CARD16 attributes
XFONTI NFO
4 CARD32 flags, union of the follow ng bits:
#x00000001 Al | Char act er sExi st
#x00000002 I nkl nsi de
#x00000004 Hori zont al Overl ap

but none of the following bits set:
#xFffffff8 zero

4 RANGE range of characters in font
1 CARDS drawi ng direction

0 Left ToR ght

1 Ri ght ToLeft

34

Protocol Encoding

1

2 CHAR2B

12 XCHARI NFO

12 XCHARI NFO

2 I NT16

2 I NT16

n PROPI NFO
Requests

open connection

NHFTDODNONDNPE

OO NNEFEPEFEPNDN

o)

BYTE
#x42
#x6¢C

CARD8

2

0

a/ 4 | engt hof

LI STof AUTH

CARD16
0

1

2

3
2
0
CARDS
CARDS

al 4
(d+qg)/ 4

unused

default character
m ni mum bounds
maxi mum bounds
font ascent

font descent
property data

byt eorder, one of the val ues:
Most Si gni ficant Byte first
Least Si gni fi cant Byte first

nunberof auth in auth-data

cl i ent-ngjor-protocol -version

cl i ent-ninor-protocol -version

aut h- dat a

aut h- dat a

st at us
Success
Cont i nue
Busy
Deni ed
nmaj or version
ver sion
nunber of al ternate-servers-hint
aut hori zati on-i ndex
| engt hof al ternate-servers-hint
| engt hof aut hori zati on-data

Ll STof ALTERNATESERVER al t er nat e- server s- hi nt

LI STof BYTE

aut hori zati on-dat a
unused, g=pad(d)

If STATUS isBusy or Deni ed, the protocol stops and the connection is closed. If STATUS is Con-
ti nue, the client is expected to respond with additional data, to which the server responds with a new
status value and more data. This dialog continues until the status is set to Success, or until the server
sets STATUSto Busy or Deni ed and closes the connection:

NDATFTO O DN

1+(d+q)/ 4
LI STof BYTE

2+(d+q)/ 4
CARD16
0

1
2
3

| ength
nor e- aut hori zati on- dat a
unused, qg=pad(d)

| ength
st at us
Success
Cont i nue
Busy
Deni ed

35

Protocol Encoding

2 unused
d LI STof BYTE nor e- aut hori zati on- dat a
q unused, qg=pad(d)

When STATUS is Success, the protocol resumes with the following sent by the server:

4 3+(v+w) /4 | ength of rest of data
2 CARD16 maxi mum r equest -1 ength
2 v | ength of vendor string
4 CARD32 rel ease- nunber

v STRI N8 vendor-string

w unused, w=pad(v)

Once the connection has been established, the client may send the following requests:

NoQp

1 0 maj or - opcode

1 unused

2 1 | ength

Li st Ext ensi ons

1 1 maj or - opcode

1 unused

2 1 | ength

#

1 0 type reply

1 CARDS nunber of nanes
2 CARD16 seguence- nunber
4 2+(n+p)/4 | ength

n LI STof STRNAME names

p unused, p=pad(n)

er yExt ensi on
2 maj or - opcode
n | engt h of nane
1+(n+p)/ 4 | ength
STRI NGB nanme
unused, p=pad(n)

QI

1

1

2

n

p

#

1 0 type reply

1 BOOL pr esent

2 CARD16 seqguence- nunber
4 5 | ength

2 CARD16 maj or - ver si on
2 CARD16 m nor - ver si on
1 CARDS maj or - opcode
1 CARDS first-event

1 CARDS nunber - event s
1 CARDS first-error

1 CARDS nunber-errors
3 unused

Li st Cat al ogues

36

Protocol Encoding

1 3 maj or - opcode

1 unused

2 3+(n+p)/4 l ength

4 CARD32 max- names

2 n l ength of pattern

2 unused

n STRI NG pattern

p unused, p=pad(n)

#+

1 0 type reply

1 unused

2 CARD16 seqguence- nunber

4 4+(n+p)/ 4 | ength

4 CARD32 replies-foll ow ng- hint
4 CARD32 nunber of cat al ogue- nanes
n LI STof STRNAME cat al ogue- nanes

p unused, p=pad(n)

Set Cat al ogues

1 4 maj or - opcode

1 CARDS nunber of cat al ogue- nanes
2 1+(n+p)/ 4 | ength

n LI STof STRNAME cat al ogue- nanes

p unused, p=pad(n)

Cet Cat al ogues

1 5 maj or - opcode

1 unused

2 1 | ength

#

1 0 type reply

1 CARDS nunber of cat al ogue- nanes
2 CARD16 seqguence- nunber

4 2+(n+p)/4 | ength

n LI STof STRNAME cat al ogue- nanes

p unused, p=pad(n)

Set Event Mask

1 6 maj or - opcode

1 CARDS ext ensi on- opcode

2 2 | ength

4 EVENTMASK event - mask

Cet Event Mask

1 7 maj or - opcode

1 CARDS ext ensi on- opcode
2 1 | ength

#

1 0 type reply

1 unused

2 CARD16 seqguence- nunber
4 3 | ength

4 EVENTMASK event - mask

37

Protocol Encoding

Creat eAC
1 8
1 CARDB
2 2+al 4
4 ACCESSCONTEXT
a LI STof AUTH
#
1 0
1 CARDB
2 CARD16
4 3+(d+q)/ 4
2 CARD16
0

1
2
3
2
d LI STof BYTE

q

If STATUS is Cont i nue, the client is expected to respond with additional data, to which the server
responds with a new status value and more data. This dialog continues until the statusis set to Success,

maj or - opcode

nunber of aut hori zati on-protocols
l ength

ac

aut hori zati on- protocol s

type reply

aut hori zati on-i ndex
seqguence- nunber

| ength

st at us

Success

Cont i nue

Busy

Deni ed

unused

aut hori zati on-data
unused, qg=pad(d)

Busy, or Deni ed at which point the request is finished.

#
4 1+(d+q)/ 4
d LI STof BYTE
q
#
4 2+(d+q)/ 4
2 CARD16
0
1
2
3
2
d LI STof BYTE
q
FreeAC
1 9
1
2 2
4 ACCESSCONTEXT

Set Aut hori zati on
1 10

1

2 2
4 ACCESSCONTEXT

Set Resol uti on
1 11

| ength
nor e- aut hori zati on- dat a
unused, qg=pad(d)

| ength

st at us

Success

Cont i nue

Busy

Deni ed

unused

aut hori zati on-dat a
unused, qg=pad(d)

maj or - opcode
unused

| ength

ac

maj or - opcode
unused

| ength

ac

maj or - opcode

38

Protocol Encoding

1 n

2 1+(6*n+p)/ 4

6*n LI STof RESCLUTI ON
p p=pad(6*n)

Cet Resol uti on
1 12

1

1

2

#

1 0

1 n

2 CARD16

4 2+(6*n+p)/ 4

6*n LI STof RESCLUTI ON
p p=pad(6*n)

Li st Font s
13

3+(n+p)/4
CARD32
n

STRI NG8

0

CARD16
4+(n+p)/ 4
CARD32

CARD32

LI STof STRNAVE

'OD-b-b-bl\)HHﬁ:'ODNN-bNHH

Li st Font sWt hXl nfo
14

3+(n+p)/4
CARD32
n

STRI NGB

+ (except for |ast
0
n
CARD16
3+(n+p+f)/ 4
CARD32
XFONTI NFO
STRI NG3

T ST ABRANRPRPHFTOTSOISNNNAEANREPRE

nunber of resol utions
l ength
resol utions

maj or - opcode
unused
| ength

type reply

nunber of resol utions
seqguence- nunber

| ength

resol utions

maj or - opcode
unused

| ength

max- nanes

l ength of pattern
unused

pattern

unused, p=pad(n)

type reply

unused

seguence- nunber

| ength
replies-foll ow ng- hint
nunber of font - names

f ont - names

unused, p=pad(n)

maj or - opcode
unused

| ength

max- nanes

l ength of pattern
unused

pattern

unused, p=pad(n)

in series)

type reply

| engt h of nane
seqguence- nunber
| ength
replies-hint
fontinfo

name

unused, p=pad(n)

39

Protocol Encoding

(last in series)
1 0

1 0

2 CARD16

4 2

OpenBi t mapFont
15

4+(n+p)/ 4

FONTI D

Bl TMAPFORNMATVASK
Bl TMAPFORNMAT
STRNANVE

BOOL
CARD16

FONTI D
BOOL

WFRLrAPANRPPRPHFOTOTSPARARANNRPRE

eryXlnfo
16

Q
1

1

2 2

4 FONTI D
#

1 0

1

2 CARD16
4

f

p

2+f /4
XFONTI NFO

Quer yXExt ent s8
1 17

1 BOOL

2 3+(n+p)/4
4 FONTI D
4 n

n STRI N3
p

#

1 0

1

2 CARD16
4 3+3*n
4 n

1

*n LI STof XCHARI NFO

Quer yXExt ent s16

type reply

| ast-reply indicator
seqguence- nunber
reply length

maj or - opcode
unused

| ength

fontid

f or mat - mask

f or mat

pattern

unused, p=pad(n)

type reply
otherid-valid
seqguence- nunber
| ength

ot herid
cachabl e
unused

maj or - opcode
unused
| ength
fontid

type reply
unused

seqguence- nunber
| ength

fontinfo

unused, p=pad(f)

maj or - opcode

range

| ength

fontid

nunber chars entries
chars

unused, p=pad(n)

type reply

unused

seqguence- nunber

| ength

nunber of extents
extents

40

Protocol Encoding

1 18 maj or - opcode

1 BOOL range

2 3+(2*n+p)/ 4 l ength

4 FONTI D fontid

4 n nunber chars entries
2*n LI STof CHAR2B char s

p unused, p=pad(2*n)

#

1 0 type reply

1 unused

2 CARD16 seqguence- nunber

4 3+3*n | ength

4 n nunber of extents
12*n LI STof XCHARI NFO extents
Quer yXBi t naps8

1 19 maj or - opcode

1 BOOL range

2 4+(n+p)/ 4 | ength

4 FONTI D fontid

4 Bl TMAPFORNVAT f or mat

4 n nunber of chars entries
n STRI N3 chars

p unused, p=pad(n)

#+

1 0 type reply

1 unused

2 CARD16 seguence- nunber

4 5+2*n+(mtp)/ 4 | ength

4 CARD32 replies-foll ow ng- hint
4 n nunber of offsets

4 m nunber of bytes of glyph i mages
8*n LI STof OFFSET32 of fsets

m LI STof BYTE gl yphi mages

p unused, p=pad(m

Quer yXBi t taps16

1 20 maj or - opcode

1 BOOL range

2 4+(2*n+p)/ 4 | ength

4 FONTI D fontid

4 Bl TMAPFORNVAT f or mat

4 n nunber of chars entries
2*n LI STof CHAR2B chars

p unused, p=pad(2*n)

#

1 0 type reply

1 unused

2 CARD16 seqguence- nunber

4 5+2*n+(mtp)/ 4 | ength

4 CARD32 replies-foll ow ng- hint
4 n nunmber of offsets

4 m nunber of bytes of gl yph i mages
8*n LI STof OFFSET32 of fsets

41

Protocol Encoding

m LI STof BYTE

©

Cl oseFont
1 21

1
2
4

Errors

Request

1

0

CARD16

4

TI MESTAMP
CARDS
CARDS

NFRPRPAMRAMNREPR

or mat
1
1
CARD16
5
TI MESTAMP
CARDS
CARDS

ANRFPRPADMNRET

Bl TMAPFORVAT

o

>

—
[N

2

CARD16

5

TI MESTAMP

ANRFPRPADMNRET

CARD16

5

TI MESTAMP
CARDS
CARDS

PR ARMNRER @

gl yphi mages
unused, p=pad(m

maj or - opcode
unused
| ength
fontid

type error
Request
sequence- nunber
| ength

ti mestanp

maj or - opcode

nm nor - opcode
unused

type error

For mat
sequence- nunber
| ength

ti mestanp

maj or - opcode

nm nor - opcode
unused
bad- f or mat

type error

Font

seqguence- nunber
| ength

ti mestanp

maj or - opcode

nm nor - opcode
unused
bad-fontid

type error
Range

seqguence- nunber
l ength

ti mestanp

maj or - opcode

m nor - opcode

42

Protocol Encoding

2
4

RANGE

Event Mask

ANFRPRPARAMNREPR

1

4

CARD16

5

TI MESTAMP
CARDS
CARDS

EVENTMASK

AccessCont ext

ANFRPRPARAMNREPR

1

5

CARD16

5

TI MESTAMP
CARDS
CARDS

ACCESSCONTEXT

=]
o
(0]

ANFRPRPARAMNREPR

3

NFRPRPAMRMNRER g

(o2 ol

CARD16

5

TI MESTAMP
CARDS
CARDS

FONTI D

[

7

CARD16

4

TI MESTAMP
CARDS
CARDS

Resol uti on

PR ARAMNRER

1

8

CARD16

5

TI MESTAMP
CARDS
CARDS

unused
bad-r ange

type error
Event Mask
seqguence- nunber
| ength

ti mestanp

maj or - opcode

m nor - opcode
unused
event - mask

type error
AccessCont ext
seqguence- nunber
| ength

ti mestanp

maj or - opcode

m nor - opcode
unused

access cont ext

type error

| DChoi ce
seguence- nunber
| ength

ti mestanp

maj or - opcode

m nor - opcode
unused
bad-fontid

type error

Nane

seqguence- nunber
| ength

ti mestanp

maj or - opcode

m nor - opcode
unused

type error
Resol uti on
seqguence- nunber
| ength

ti mestanp

maj or - opcode

m nor - opcode

43

Protocol Encoding

»

RESOLUTI ON

o
)

9

CARD16

4

TI MESTAMP
CARDS
CARDS

NRRAANRRERD

—
D
=}
«Q
=

=

10

CARD16

5

TI MESTAMP
CARDS
CARDS

ANFRPRPARAMNREPR

CARD32

| mpl erent ati on
1 1

1 11

2 CARD16

4 4

4 TI MESTAMP
1 CARDS8

1 CARDS8

2

1

1

2 CARD16
4 3

4 TI MESTAMP

Cat al oguelLi st Notify
2

1

CARD16

4

TI MESTAMP

BOCL

BOCL

NFRPRPAMDMNRER

resol ution

type error

Al'l oc

seqguence- nunber
| ength

ti mestanp

maj or - opcode

m nor - opcode
unused

type error
Length
seqguence- nunber
| ength

ti mestanp

maj or - opcode

m nor - opcode
unused

bad-1 engt h

type error

| mpl enent ati on
seqguence- nunber
| ength

ti mestanp

maj or - opcode

m nor - opcode
unused

type event
event KeepAlive
seqguence- nunber
l ength

ti mestanp

type event

event Catal ogueLi stNotify
seqguence- nunber

l ength

ti mestanp

added

del et ed

unused

Protocol Encoding

Font Li st Notify

1 2 type event

1 2 event FontListNotify
2 CARD16 seqguence- nunber

4 4 | ength

4 TI MESTAMP ti mestanp

1 BOCL added

1 BOCL del et ed

2 unused

45

Chapter 6. Acknowledgements

This document represents the culmination of severa years of debate and experiments done under the
auspices of the MIT X Consortium font working group. Although this was a group effort, the author
remains responsible for any errors or omissions. The protocol presented here was primarily designed by
Jim Fulton, Keith Packard, and Bob Scheifler. Specia thanks goes to Ned Batchelder, Jim Flowers, and
Axel Deininger for their invigorating commentswhich never failed to makethisabetter document. Stephen
Gildea edited version 2 of this document. Finally, David Lemke deserves great credit for designing and
coding the sample implementation.

46

References

All of the following documents are X Consortium standards available from the X Consortium.
[1] X Window System Protocol Version 11. Robert W. Scheifler.
[2] Adobe Systems. Bitmap Distribution Format 2.1.

[3] X Consortium. X Logical Font Description Conventions, Version 1.5.

47

Appendix A. Suggested Licensing

Policies

The authorization data passed by the client in the initial connection setup information may be used by the
font server to implement restrictions on which fonts may be accessed. Furthermore, the font server isfree
to refuse new connections at any time.

Configuration or management of thelicenserestrictionsisoutside the scope of thefont service protocol and
isdonein a server-dependent manner. Possible policies might include, but are not limited to, combinations

of the following:

No restrictions

Per-machine

Per-user

Simultaneous Use

Postage Meter

anyone may access any fonts. The server neither refuses any connections nor
generates AccessContext errors on any fonts. For environments without spe-
cially-licensed fonts, thisis sufficient.

only those clients connecting from a known set of machines are permitted ac-
cess. The server could get the address of the connection and look in alist of
alowed machines.

only a known set of users may access the fonts. The server can use the autho-
rization data (such as a Kerberos ticket or a Secure RPC credential) to verify
the identity of the user and then look in alist of allowed users.

only acertain number of clientsmay useagivenfont at any onetime. Additional
clientswould receive AccessContext errorsif they attempt to openthefont. This
isonly effectiveif theinitial clients keep the font open for the entiretime that it
isbeing used (even if all of the data has been transmitted and is being cached).

a particular font may only be accessed a limited number of times before its
license must be renewed. Each time the font is opened, the server decrements
acounter. When the counter reaches zero, al further attempts to open the font
return an AccessContext error.

It should be noted that chaining of font servers (obtaining font data from other font servers) may conflict
with certain license policies.

48

Appendix B. Implementation
Suggestions

Font server implementations will probably wish to use techniques such as the following to avoid limits
on the number of simultaneous connections:

Theinitia connection information returned by the font server contains the names of other font servers
that may be used as substitutes. A font server may refuse to accept a connection, indicating that the
client should try one of the alternatives instead.

On operating systems that support processing forking, font servers might choose to fork so that the
child can continue processing the existing connections and the parent can accept new connections. Such
implementations are encouraged to use shared memory so that in-memory font databases can be shared.

On operating systems that support passing stream file descriptors between processes, cooperating font
servers could collect connections in a single process when there are few connections and spread them
among severa processes as the load increases.

If afont client is unable to connect to a server (as opposed to having the connection terminated), it
should retry for an implementation-dependent length of time (see Xlib's handling of ECONNREFUSED
in XConnDis.c).

49

Index

A

ACCESSCONTEXT, 5
AllCharactersExist, 13
ALTERNATESERVER, 5
AUTH, 6

B

BITMAPFORMAT, 6
BITMAPFORMATMASK, 8
BOOL, 8

BYTE, 8

C

CARD16, 9
CARD32,9

CARDS, 9

Cataloguel istNotify, 30
CHARZ2B, 9

close connection, 26
CloseFont, 26
CreateAC, 20

E

Error Codes
AccessContext, 28
Alloc, 29
EventMask, 28
Font, 27
Format, 27
IDChoice, 28
Implementation, 29
Length, 29
Name, 28
Range, 28
Request, 27
Resolution, 28

EVENTMASK, 9

F

FONTID, 9
FontListNotify, 30
FreeAC, 21

G

GetCatalogues, 19
GetEventMask, 19
GetResolution, 21

H

horizontal escapement, 12
Horizontal Overlap, 13

I

ID, 10

ImageRectMax, 7
ImageRectMaxWidth, 7
ImageRectMin, 7
Inkinside, 13

INT16, 10

INT32, 10

INTS, 10

K
KeepAlive, 30

L

LeftToRight, 13
ListCatalogues, 18
ListExtensions, 17
ListFonts, 22
ListFontswWithXInfo, 22

N
NoOp, 17

O

OFFSET32, 10
open connection, 15
OpenBitmapFont, 23

P

PROPINFO, 10
PROPOFFSET, 10

Q

QueryExtension, 17
QueryXBitmapsl6, 25
QueryXBitmapss, 25
QueryX Extentsl6, 24
QueryX Extents8, 24
QueryXlInfo, 24

R

RANGE, 11
RESOLUTION, 11
RightToLeft, 13

S

SetAuthorization, 21

50

Index

SetCatalogues, 19
SetEventMask, 19
SetResolution, 21
Signed, 11

String, 11
STRINGS, 12

T
TIMESTAMP, 12

U
Unsigned, 11

X

XCHARINFO, 12
XFONTINFO, 12

51

	The X Font Service Protocol
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Architectural Model
	Chapter 3. Font Server Naming
	TCP/IP Names
	DECnet Names

	Chapter 4. Protocol
	Data Types
	ACCESSCONTEXT
	ALTERNATESERVER
	AUTH
	BITMAPFORMAT
	BITMAPFORMATMASK
	BOOL
	BYTE
	CARD8, CARD16, CARD32
	CHAR2B
	EVENTMASK
	FONTID
	ID
	INT8, INT16, INT32
	OFFSET32
	PROPINFO
	PROPOFFSET
	RANGE
	RESOLUTION
	STRING8
	TIMESTAMP
	XCHARINFO
	XFONTINFO

	Requests
	open connection
	
	NoOp
	ListExtensions
	QueryExtension
	ListCatalogues
	SetCatalogues
	GetCatalogues
	SetEventMask
	GetEventMask
	CreateAC
	FreeAC
	SetAuthorization
	SetResolution
	GetResolution
	ListFonts
	ListFontsWithXInfo
	OpenBitmapFont
	QueryXInfo
	QueryXExtents8
	QueryXExtents16
	QueryXBitmaps8
	QueryXBitmaps16
	CloseFont
	close connection

	Errors
	Request
	Format
	Font
	Range
	EventMask
	AccessContext
	IDChoice
	Name
	Resolution
	Alloc
	Length
	Implementation
	Extensions

	Events
	KeepAlive
	CatalogueListNotify
	FontListNotify
	Extensions

	Chapter 5. Protocol Encoding
	Data Types
	Requests
	Errors
	Events

	Chapter 6. Acknowledgements
	References
	Appendix A. Suggested Licensing Policies
	Appendix B. Implementation Suggestions
	Index

