The X Keyboard Extension:
Protocol Specification

X Consortium Standard

Erik Fortune

The X Keyboard Extension: Protocol Specification: X Consortium
Standard

Erik Fortune
X Version 11, Release 7.6

Version 1.0
Copyright © 1995, 1996 X Consortium Inc., Silicon Graphics Inc., Hewlett-Packard Company, Digital Equipment
Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “ Software”),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/
or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon Graphics Inc., Hewlett-Packard Company, and Digital Equipment
Corporation shall not beused in advertising or otherwiseto promotethe sale, useor other dealingsin this Software without prior written authorization.

Table of Contents

ACKNOWIEAGMENTS ...ttt et ettt et e et e et e e e e aba e e ennan s Vi
Lo OVEIVIBIW ottt ettt ettt e n e enaa s 1
Conventions and ASSUMPLIONSuuuiieriieteti ettt e et et e e et e e e e 1

2. KEYDOBIT SEALE .. .eeeeieeeee e 2
Locking and Latching Modifiers and GroUPScccuuuiiiiiiiiieiiiii e 2
Fundamental Components of XKB Keyboard Stateooevviviiiiiiiiieiiiieceii e 2
Computing Effective Modifier and GroUDccuuuieiiiiiiiiiiii e 3
Computing A State Field from an XKB Staecocvvuiiiiiiiiieiiiiece e 3

Derived Components of XKB Keyboard Statec..uveiiiiiiiiiiiiiieiei e 3
Server Internal Modifiers and Ignore Locks BEhaviorovvvveiiiiiiiiiiiiiciicee, 4
Compatibility Components of Keyboard SEaEvveiiiiiiieiiiiiie e 4

3. VITTUB MOTITIENS .ottt e et e e et e e e e et e eeeee 6
MOifier DEFINITIONSiiieite et 6
Inactive Modifier DEfINITIONSuuuiiiiii e 7

Virtual Modifier MapPINGgoooeeeii et 7

4. Global Keyboard CONtIOISuuiiiiiiieeiei et 8
The RePEatKEYS CONLIONcooeii ettt e eeaens 8

The PerKeyRepeat CONIOlcoeuiiiiiiiii e 8

Detectable AULOTEPEALu i eieiie ettt ettt et e e e e na e e eeees 8

The SIOWKEYS CONIOLceeeeeeiiii et e ettt e e et e e et eeenes 9

The BOUNCEKEYS CONLIOI ittt e e et e e e enb e eeees 9

The SHCKYKEYS CONIOLe.iiiit et e e e e eaa e eees 9

The MOUSEKEYS CONIOLceueiieiiii ettt et e e e e e e 10

The MouSEKEYSACCE CONIOluuueiiiii ettt e 10
Relative POINtEr IMOLIONoiiiiiiei i 10

ADSOIULE POINEEr IMOTION ...t 11

The ACCESSXKEYS CONLIOI ...t 11

The AccessSXTIMEOUL CONLIOIiiiiii i 11

The AccessXFeedback CONLIOliiiiiii et 11

The Overlayl and Overlay2 CONIOISueiiiiieieii et 12
"Boolean" Controls and The EnabledControlS Controlcooveeiiiiiiiiiiiiineeciieeeeiiee, 13
Automatic Reset of BOOIEaN CONIOISuuiiiiiiiieiiii e 13

5. Key Event ProCeSSING OVEIVIEWc.uuiiiiiiiiieeeiii ettt ettt e e e e 14
6. Key Event Processing in the SEIVEN ... 15
APPIYING GIoDEl CONIOISceveeeiii et eeeens 15

KBY BENAVIOL ...ttt ettt 15

KIBY ACHIONS ..ottt ettt ettt e e et et et e e e n e e e e aa e aae 16
Delivering a Key or Button Event t0 @ CHENtcccuuuiiiiiiiiiiiiii e 22

XKB Interactions With Core ProtoCol Grabsc..uuviviiiiiiiiiiiiiieciii e 23

7. Key Event Processing in the CHIENt e et 24
Notation and TEMUNOIOGYcceeruneiiitie ettt ettt e e e e e e 24
Determining the KeySym Associated with aKey BEventccooiviiiiiiiiiiiiiici e, 24

[N Y Y =< PP 25

Ky SYMBOL M8 ...t 26
Transforming the KeySym Associated with aKey Bventcccoiviiiiiiiiiiiiiic e, 26
Client Map EXAMPIE ...t 27

8. SYMDOIIC NAIMESottt e e et e e e eeaans 29
9. KeyBO0ard INAICAIONSceeeeieeeeei et e e e e 31
Global Information ADOUL INAICAEONScccuvuiiiiii e 31
Per-Indicator INFOIMBELIONiiiiit et e e e eeeens 31
INQICAEON MBS ...ttt ettt e ettt e e e et e e e erb e eeees 31

The X Keyboard Exten-
sion: Protocol Specification

10. Keyboard BEIISouiiiii e 35
Client Notification Of BEIISuiiiiiiiiciii e 35
Disabling Server Generated BElIScviiniiiiii e 35
Generating Named BeElISooiiiii e 35
Generating Optional Named BellSoiiiiiiii e 35
Forcing a Server Generated Bellooviiiiiii i 36

11, Keyboard GEOMELIYuuiiii i ieeiie e e et e e e e e e e e e e e et e e et e e et e e et e e e aaeeaneeees 37
Shapes anNd OULIINESoeuniiii e e e e e e e e e e e e aaaas 37
S o 0] 3 LS PSSP 38
D00 o o PSP 38
Keyboard Geometry EXaMPIEccouiiiiiiicii e 39

12. Interactions Between XKB and the Core ProtOCOlovviiiiiiiiiiiiiiieeeiie e 41
Group Compatibility IMaD ...c.uueieiiii e e e 41

Setting a Passive Grab for an XKB Stat@..........veviiiiiiiiiiiiecie e 42
Changing the Keyboard Mapping Using the Core Protocolccceveviiiiiiiiciiiccieeeiees 42
Explicit Keyboard Mapping COmMPONENESccuuiiiiiieiiiieeiiieeeii e e e e et e e e eines 42
AsSIgNiNg SYMDBOIS TO GIOUPSuviiieii et ieee e e e e e e e e e e e e e e e e eanees 43
Assigning Types To Groups of Symbolsfor aKeycoocoeveiiiiiiiiiiin e 44
ASSIgNING ACHIONS TO KEYS ...iiiiiiiii e e e e e e 45
Updating EVErything EISEcouuiiiiiiiiii e e e e e eaaes 46
Effects of XKB on Core ProtoCOl EVENEScccvveniiiiiiiieiiiii e 46
Effect of XKB 0n Core ProtoCol REQUESESviviieiiiieeiiieeeie et ee e e e e e e 47
Sending EVENtS t0 CHENESiiiiiii e e e e e e e 48

13. The Server Database of Keyboard COMPONENESccuuiiiiiiiiiicii e e e e e 49
COMPONENT NBIMES .. u it e e e et e et e e et e e nans 49
Partial Components and Combining Multiple Componentsccocuveviiiieiiieeeiiieciiee e 49
(©0 41070 0= 01 B o 1€ 50
Keyboard COMPONENLSccuuiiiiiiiiiee e e ee e e e e e e e e e e e e et e e et e e e e e eeaneeaens 50
The Keycodes COMPONENTuuiiiiieiii e e e e e e e e e e e e e e e e e et e e et e e eeanaas 50

The TYPES COMPONENTcvineiii e e e e e e e e e e e e e e e et e e et eeaa e e et e e enaeeens 51
The Compatibility Map COMPONENcovviiiiiieiii e e e e 51
The Symbols COMPONENTciuiiiii e e e e e e aeas 51
The Geometry COMPONENEuuiiiteiii e ee e ee e e e e e e e e e e e e e st e e et eeaneeannas 52
COMPIELE KEYMEBPSuiiiiieii e ettt e e et e e e e e et e e e e e et e e et e et eaatneeeaneeeens 52

14. Replacing the Keyboard "On-the-Fly" ... 53

15. Interactions Between XKB and the X [Nput EXENSIONccovviiiiiieiiiiiciin e e 54
Using XKB Functions with Input Extension Keyboardscccoveviiiiiniiin e, 54
Pointer and Device BUON ACHIONSiiiiiiiiee i e e e e e e eees 54
Indicator Maps for EXtENSION DEVICEScvvviiiiiiii et e e e 55
Indicator Names for EXENSION DEVICESuivieiinieiiiiiiie et e ettt e e e e e e e eaeens 55

16. XKB ProtOCOl REQUESESevuiiiiieiii e e e e e et e e e e r e e e e et e et e e et e e st e e e aaeeanneees 56
(0] £ T PP 56

(=Y o0 o I 4 (o] £ 56
S Lo = o (o = (o= PR 56
L000] 100010l TN Y/ oS PPN 56
REOUESES ...ttt 59
Initializing the X Keyboard EXIENSIONccovuiiiiiiiii e 60
S e (g To [Y= 1= 60
Generating Named Keyboard BellSc.ooviiiiiiiiiicii e 61
Querying and Changing Keyboard Statecocevuieiiiiiiiieii e 62
Querying and Changing Keyboard Controlsccoeviiiiieiiiiciii e, 64
Querying and Changing the Keyboard Mappingcccccooveiiieiiiiiiii e 68
Querying and Changing the Compatibility Mapcccocoviiiiiiiiiii e, 74
Querying and Changing INQiCALOrScccuuiiiiieiiie e e 75

The X Keyboard Exten-
sion: Protocol Specification

Querying and Changing Symbolic NamESc..oveiiiiiiiiiiii e 79
Querying and Changing Keyboard GEOMELTYoevviiiiiiieiiiieeiiieeei e e aiee e 82
Querying and Changing Per-Client FIagScocviviiiiiiii e 84
Using the Server’s Database of Keyboard COmMponents............ccoevevveeviiieiiineeiineeennn. 85
Querying and Changing Input EXteNSION DEVICESccvvvuieiiiiiiiiieciieeeee e e 88
Debugging the X Keyboard EXIENSIONccovviiiiiiiiiieiie e e e e e 91
Y | PPN 92
Tracking Keyboard Replacementoiiiiiiiiiii e 92
Tracking Keyboard Mapping ChangeScccuuieiiiieiiiieiie e e e 93
Tracking Keyboard State ChangeSvvvviiiiiii e 94
Tracking Keyboard Control Changescc.uviviiiiiiiiiiiie e 95
Tracking Keyboard Indicator State Changescc..veviiiiiiiiiiiii e 96
Tracking Keyboard Indicator Map Changesoevvviiiiiiiiiiicciin e, 96
Tracking Keyboard Name Changescccuuiiiiiiiiiii e e e 97
Tracking Compatibility Map Changesc..oviiiiiiiiii e 98
Tracking Application Bell REQUESEScvvuiiiiiicii e e e 99
Tracking Messages Generated by Key ACHIONSccovviviiiiiiiiiiiiiiece e 99
Tracking Changes to AccessX State and KeysSocvviiiiiiiiiiiiciii e 100
Tracking Changes TO EXtENSION DEVICESccvuuiiiiiieiii e e e e e 101

A. Default Symbol TransformMationscc.uiiiiieiiii e e e e e e aes 103
Interpreting the Control MOAITIEriiiiii i e 103
Interpreting the LOCK MOGIfIErcouniiiii e e e 103
Locale-Sensitive CapitaliZationc.couuieiiiiiiiiieii e 103
Locale-Insensitive CapitaliZationcoeieiiiiiiieiiii e e e 103

SO g To g Loz I N Y Y o= PPN 107
(0= 0o 0 Torz I (= YA Y o1 107
The ONE_LEVEL K@Y TYPE ..uiiiiiiiieiiiii ettt e e e e e eeanas 107

The TWO_LEVEL KEY TYPE .oieiiieiiiii ittt e e 107

The ALPHABETIC KEY TYPE ..ttt ettt e e e e e eaanns 107

The KEYPAD KEY TYPE cutiiiiiiiiiiee ettt e et e et eeeeetn e e eeaenaeaees 107
GRS Y15 1 1 RPN 108
N LS TV YA Y 1 1 T P 108
KeySyms Used by the 1ISO9995 Standardccoveiiiiiiiiiiiiiiiece e 108
KeySyms Used to Control The Core POINtErovvvviiiiiiieiiiiecieee e 109
KeySyms Used to Change Keyboard Controlscocouvveiiiieiiiiiiiie e, 110
KeySyms Used To Control The SEIVEScciviiiii e e e 110
KeySyms for Non-Spacing Diacritical Keysoviiiiiiiiiiiii i 111

(I o) (0wt I g Too o 1 oo MU 112
Y 1= o ([l 0 01V/= 011 o P 112
1000100010l TN Y/ oS PP PRSP 113
L (0] £ T PP 119
=Y o 1] 119
(NG YA ST= 7= Y/ o = 123
REOUESES ..o 123
B NS . 142

Acknowledgments

| am grateful for all of the comments and suggestions | have received over the years. | could not possibly
list everyone who has helped, but a few people have gone well above and beyond the call of duty and
simply must be listed here.

My managers here at SGI, Tom Paquin (now at Netscape) and Gianni Mariani were wonderful. Rather
than insisting on somerrelatively quick, specialized proprietary solution to the keyboard problemswe were
having, both Tom and Gianni understood the importance of solving them in a general way and for the
community as a whole. That was a difficult position to take and it was even harder to maintain when
the scope of the project expanded beyond anything we imagined was possible. Gianni and Tom were
unflagging in their support and their desireto “do theright thing” despite the schedule and budget pressure
that intervened from time to time.

Will Walker, at Digital Equipment Corporation, has been alongtime supporter of XKB. His help and input
was essential to ensure that the extension as awhole fits and works together well. His focus was AccessX
but the entire extension has benefited from his input and hard work. Without his unflagging good cheer
and willingnessto lend a hand, XKB would not be where it is today.

Matt Landau, at the X Consortium, stood behind XKB during some tough spots in the release and stan-
dardization process. Without Matt’ s support, XKB would likely not be a standard for along timeto come.
When it became clear that we had too much to do for the amount of time we had remaining, Matt did a
fantastic job of finding people to help finish the work needed for standardization.

One of those people was George Sachs, at Hewlett-Packard, who jumped in to help out. His help was
essential in getting the extension into this release. Another was Donna Converse, who helped figure out
how to explain al of this stuff to someone who hadn’t had their head buried in it for years.

Amber Benson and Gary Aitken were ssimply phenomenal. They jumped into a huge and complicated
project with good cheer and unbelievable energy. They were* up to speed” and contributing within days. |
stand in awe of the amount that they managed to achieve in such ashort time. Thanksto Gary and Amber,
the XKB library specification is a work of art and a thousand times easier to use and more useful than
it would otherwise be.

| truly cannot express my gratitude to all of you, without whom this would not have been possible.
Erik Fortune
Silicon Graphics, Inc.

5 February 1996

Vi

Chapter 1. Overview

This extension provides a number of new capabilities and controls for text keyboards.

Thecore X protocol specifiesthewaysthat the Shift, Control and Lock modifiersand the modifiersbound
tothe Mode_switch or Num_Lock keysymsinteract to generate keysymsand characters. The core protocol
also alows users to specify that a key affects one or more modifiers. This behavior is smple and fairly
flexible, but it has a number of limitations that make it difficult or impossible to properly support many
common varieties of keyboard behavior. The limitations of core protocol support for keyboards include:

» Use of a single, uniform, four-symbol mapping for al keyboard keys makes it difficult to properly
support keyboard overlays, PC-style break keys or keyboards that comply with 1SO9995 or a host of
other national and international standards.

» Useof amodifier to specify asecond keyboard group has side-effects that wreak havoc with client grabs
and X toolkit trandations and limit us to two keyboard groups.

* Poorly specified locking key behavior requires X serverstolook for afew "magic" keysymsto determine
which keys should lock when pressed. This leads to incompatibilities between X servers with no way
for clients to detect implementation differences.

* Poorly specified capitalization and control behavior requires modifications to X library source code
to support new character sets or locales and can lead to incompatibilities between system-wide and X
library capitalization behavior.

» Limited interactions between modifiers specified by the core protocol make many common keyboard
behaviorsdifficult or impossibleto implement. For example, thereisno reliable way to indicate whether
or not using shift should "cancel" the lock modifier.

e Thelack of any explicit descriptions for indicators, most modifiers and other aspects of the keyboard
appearance requires clients that wish to clearly describe the keyboard to a user to resort to a mishmash
of prior knowledge and heuristics.

This extension makes it possible to clearly and explicitly specify most aspects of keyboard behavior on a
per-key basis. It adds the notion of a numeric keyboard group to the global keyboard state and provides
mechanisms to more closely track the logical and physical state of the keyboard. For keyboard control
clients, thisextension provides descriptions and symbolic names for many aspects of keyboard appearance
and behavior. It also includes anumber of keyboard controls designed to make keyboards more accessible
to people with movement impairments.

The X Keyboard Extension essentially replaces the core protocol definition of akeyboard. The following
sections describe the new capabilities of the extension and the effect of the extension on core protocol
requests, events and errors.

Conventions and Assumptions

This document uses the syntactic conventions, common types, and errors defined in sections two through
four of the specification of the X Window System Protocol. This document assumes familiarity with the
fundamental concepts of X, especially those related to the way that X handles keyboards. Readerswho are
not familiar with the meaning or use of keycodes, keysyms or modifiers should consult (at least) the first
five chapters of the protocol specification of the X Window System before continuing.

Chapter 2. Keyboard State

The core protocol description of keyboard state consists of eight modifiers (Shift, Lock, Control , and
Mod1 - Mod5). A modifier reports the state of one or modifier keys, which are similar to qualifier keys
as defined by the 1SO9995 standard:

Qualifier key A key whose operation has no immediate effect, but which, for aslong asit is held
down, modifiesthe effect of other keys. A qualifier key may be, for example, a shift
key or acontrol key.

Whenever amodifier key isphysically or logically depressed, the modifier it controlsis set in the keyboard
state. The protocol implies that certain modifier keys lock (i.e. affect modifier state after they have been
physically released) but does not explicitly discuss locking keys or their behavior. The current modifier
state is reported to clients in a number of core protocol events and can be determined using the Query-
Pointer request.

The XKB extension retains the eight "real" modifiers defined by the core protocol but extends the core
protocol notion of keyboard state to include up to four keysym groups , as defined by the 1SO9995
standard:

Group: A logical state of a keyboard providing access to a collection of characters. A group usually
contains a set of characters which logically belong together and which may be arranged on
severa shift levels within that group.

For example, keyboard group can be used to select between multiple alphabets on a single keyboard, or
to access less-commonly used symbols within a character set.

Locking and Latching Modifiers and Groups

With the core protocol, there is no way to tell whether a modifier is set due to alock or because the user
is actually holding down a key; this can make for a clumsy user-interface as locked modifiers or group
state interfere with accelerators and translations.

XKB adds explicit support for locking and latching modifiers and groups. Locked modifiers or groups
apply to all future key events until they are explicitly changed. Latched modifiers or groups apply only to
the next key event that does not change keyboard state.

Fundamental Components of XKB Keyboard
State

The fundamental components of XKB keyboard state include:

e Thelocked modifiers and group

The latched modifiers and group

» The base modifiers and group (for which keys are physically or logically down)

The effective modifiers and group (the cumulative effect of the base, locked and latched modifier and
group states).

State of the core pointer buttons.

Keyboard State

The latched and locked state of modifiers and groups can be changed in response to keyboard activity or
under application control using the XkbLatchLockState request. The base modifier, base group and pointer
button states always reflect the logical state of the keyboard and pointer and change only in response to
keyboard or pointer activity.

Computing Effective Modifier and Group

The effective modifiers and group report the cumulative effects of the base, latched and locked modifiers
and group respectively, and cannot be directly changed. Note that the effective modifiers and effective
group are computed differently.

The effective modifiers are simply the bitwise union of the base, latched and locked modifiers.

The effective group isthe arithmetic sum of the base, latched and locked groups. The locked and effective
keyboard group must fall in the range Groupl - Group4 , so they are adjusted into range as specified by
the global GroupsWrap control asfollows:

« If the RedirectintoRange flag is set, the four least significant bits of the groups wrap control specify
the index of a group to which all illegal groups correspond. If the specified group is also out of range,
al illegal groups map to Groupl.

« If the ClamplintoRangeflag is set, out-of-range groups correspond to the nearest legal group. Effective
groups larger than the highest supported group are mapped to the highest supported group; effective
groups lessthan Groupl are mappedto Groupl . For example, akey with two groups of symbols uses
Group2 type and symbolsiif the global effective group is either Group3 or Group4.

« If neither flag is set, group is wrapped into range using integer modulus. For example, a key with two
groups of symbolsfor which groupswrap uses Groupl symbolsif the global effectivegroupis Group3
or Group2 symbolsif the global effective group is Group4.

The base and latched keyboard groups are unrestricted eight-bit integer values and are not affected by the
GroupsWrap control.

Computing A State Field from an XKB State

Many eventsreport the keyboard statein asingle statefield. Using XK B, astate field combines modifiers,
group and the pointer button state into a single sixteen bit value as follows:

 Bits 0 through 7 (the least significant eight bits) of the effective state comprise a mask of type KEY -
MASK which reports the state modifiers.

* Bits 8 through 12 comprise a mask of type BUTMASK which reports pointer button state.
» Bits13 and 14 are interpreted as a two-bit unsigned numeric value and report the state keyboard group.
* Bit 15 (the most significant bit) is reserved and must be zero.

It ispossibleto assemble astate field from any of the components of the XK B keyboard state. For example,
the effective keyboard state would be assembled as described above using the effective keyboard group,
the effective keyboard modifiers and the pointer button state.

Derived Components of XKB Keyboard State

In addition to the fundamental state components, XKB keeps track of and reports a number of state com-
ponents which are derived from the fundamental components but stored and reported separately to makeit

Keyboard State

easier to track changesin the keyboard state. These derived components are updated automatically when-
ever any of the fundamental components change but cannot be changed directly.

Thefirst pair of derived state components control the way that passive grabs are activated and the way that
modifiersarereportedin coreprotocol eventsthat report state. The server usesthe ServerInternalModifiers
, IgnoreL.ocksModifiersand IgnoreGroupLock controls, described in Server Internal Modifiersand Ignore
Locks Behavior, to derive these two states as follows:

e Thelookup state is the state used to determine the symbols associated with a key event and consists of
the effective state minus any server internal modifiers.

e Thegrab stateisthe state used to decide whether aparticular event triggers apassive grab and consists of
the lookup state minus any members of theignore locks modifiersthat are not either latched or logically
depressed. If the ignore group locks control is set, the grab state does not include the effects of any
locked groups.

Server Internal Modifiers and Ignore Locks Behavior

The core protocol does not provide any way to exclude certain modifiers from client events, so thereisno
way to set up amodifier which affects only the server.

The modifiers specified in the mask of the InternalMods control are not reported in any core protocol
events, are not used to determine grabs and are not used to cal culate compatibility state for XK B-unaware
clients. Server internal modifiers affect only the action applied when akey is pressed.

The core protocol does not provide any way to exclude certain modifiersfrom grab calculations, so locking
modifiers often have unanticipated and unfortunate side-effects. XKB provides another mask which can
help avoid some of these problems.

The locked state of the modifiers specified in mask of the IgnorelLockMods control isnot reported in most
core protocol events and is not used to activate grabs. The only core events which include the locked state
of the modifiers in the ignore locks mask are key press and release events that do not activate a passive
grab and which do not occur whileagrab isactive. If the IgnoreGroupLock control is set, the locked state
of the keyboard group is not considered when activating passive grabs.

Without XKB, the passive grab set by atrandation (e.g. Alt<KeyPress>space) does not trigger if any
modifiers other than those specified by the translation are set, with the result that many user interface
components do not react when either Num Lock or when the secondary keyboard group are active. The
ignore locks mask and the ignore group locks control make it possible to avoid this behavior without
exhaustively grabbing every possible modifier combination.

Compatibility Components of Keyboard State

The core protocol interpretation of keyboard modifiers does not include direct support for multiple groups,
so XKB reports the effective keyboard group to XKB-aware clients using some of the reserved bitsin the
state field of some core protocol events, as described in Computing A State Field from an XKB State.

This modified state field would not be interpreted correctly by XKB-unaware clients, so XKB provides
a group compatibility mapping (see Group Compatibility Map) which remaps the keyboard group into
a core modifier mask that has similar effects, when possible. XKB maintains three compatibility state
components that are used to make non-XKB clients work as well as possible;

» The compatibility state corresponds to the effective modifier and effective group state.

e The compatibility lookup state is the core-protocol equivalent of the lookup state.

Keyboard State

» The compatibility grab state is the nearest core-protocol equivalent of the grab state.

Compatibility states are essentialy the corresponding XKB state, but with keyboard group possibly en-
coded as one or more modifiers; Group Compatibility Map describes the group compatibility map, which
specifies the modifier(s) that correspond to each keyboard group.

The compatibility state reported to XKB-unaware clients for any given core protocol event is computed
from the modifier state that X KB-capable clientswould see for that same event. For example, if theignore
group locks control is set and group 2 islocked, the modifier bound to Mode_switch isnot reported in any
event except (Device)KeyPress and (Device)K eyRel ease events that do not trigger a passive grab.

Note

Referring to clients as " XK B-capable is somewhat misleading in this context. The sampleimple-
mentation of XKB invisibly extends the X library to use the keyboard extension if it is present.
This means that most clients can take advantage of all of XKB without modification, but it also
meansthat the XK B state can be reported to clientsthat have not explicitly requested the keyboard
extension. Clients that directly interpret the state field of core protocol events or that interpret
the keymap directly may be affected by some of the XKB differences; clients that use library or
toolkit routines to interpret keyboard events automatically use al of the XKB features.

XKB-aware clients can query the keyboard state at any time or request immediate notification of achange
to any of the fundamental or derived components of the keyboard state.

Chapter 3. Virtual Modifiers

The core protocol specifies that certain keysyms, when bound to modifiers, affect the rules of keycode to
keysym interpretation for all keys; for example, when Num_Lock isbound to some modifier, that modifier
isused to choose shifted or unshifted state for the numeric keypad keys. The core protocol doesnot provide
a convenient way to determine the mapping of modifier bits, in particular Mod1 through Mod5 , to
keysyms such as Num_Lock and Mode_switch . Clients must retrieve and search the modifier map to
determine the keycodes bound to each modifier, and then retrieve and search the keyboard mapping to
determine the keysyms bound to the keycodes. They must repeat this process for all modifiers whenever
any part of the modifier mapping is changed.

XKB provides a set of sixteen named virtual modifiers, each of which can be bound to any set of the eight
"rea" modifiers (Shift, Lock, Control and Mod1 - Mod5 as reported in the keyboard state). This makes
it easier for applications and keyboard layout designers to specify to the function a modifier key or data
structure should fulfill without having to worry about which modifier is bound to a particular keysym.

The use of asingle, server-driven mechanism for reporting changes to all data structures makes it easier
for clients to stay synchronized. For example, the core protocol specifies a specia interpretation for the
modifier bound to the Num_Lock key. Whenever any keys or modifiers are rebound, every application has
to check the keyboard mapping to make surethat thebinding for Num_Lock has not changed. If Num_Lock
is remapped when XKB isin use, the keyboard description is automatically updated to reflect the new
binding, and clients are notified immediately and explicitly if there is a change they need to consider.

The separation of function from physical modifier bindings also makesit easier to specify more clearly the
intent of abinding. X serversdo not all assign modifiers the same way — for example, Num_Lock might
be bound to Mod2 for one vendor and to Mod4 for another. This makes it cumbersome to automatically
remap the keyboard to a desired configuration without some kind of prior knowledge about the keyboard
layout and bindings. With XKB, applications simply use virtual modifiers to specify the behavior they
want, without regard for the actual physical bindingsin effect.

XKB puts most aspects of the keyboard under user or program control, so it is even more important to
clearly and uniformly refer to modifiers by function.

Modifier Definitions

Use an XKB modifier definition to specify the modifiers affected by any XKB control or data structure.
An XKB modifier definition consists of a set of real modifiers, a set of virtual modifiers, and an effective
mask. The mask is derived from the real and virtual modifiers and cannot be explicitly changed — it
contains all of the real modifiers specified in the definition plus any real modifiers that are bound to the
virtual modifiers specified in the definition. For example, this modifier definition specifies the numeric
lock modifier if the Num_Lock keysym is not bound to any real modifier:

{ real _nmods= None, virtual _nods= Nuniock, mask= None }

If we assign Mod2 to the Num_L ock key, the definition changes to:

{ real _mobds= None, virtual _nods= Nuniock, mask= Mbd2 }

Using thiskind of modifier definition makesit easy to specify the desired behavior in such away that XKB
can automatically update all of the data structures that make up a keymap to reflect user or application
specified changes in any one aspect of the keymap.

Virtual Modifiers

The use of modifier definitions also makes it possible to unambiguously specify the reason that amodifier
is of interest. On a system for which the Alt and Meta keysyms are bound to the same modifier, the
following definitions behave identically:

{ real nods= None, virtual nods= Al't, mask= Mddl }
{ real nods= None, virtual nobds= Meta, mask= Mdl }

If we rebind one of the modifiers, the modifier definitions automatically reflect the change:

{ real _nmods= None, virtual _nods= Alt, mask= Mddl }
{ real _nmods= None, virtual _nods= Meta, mask= Mdd4 }

Without the level of indirection provided by virtual modifier maps and modifier definitions, we would
have no way to tell which of the two definitionsis concerned with Alt and which is concerned with Meta.

Inactive Modifier Definitions

Some XKB structures ignore modifier definitions in which the virtual modifiers are unbound. Consider
this example:

if (state matches { Shift }) Do OneThi ng;
if (state matches { Shift+Nunmiock }) Do Anot her;

If the NumLock virtual modifier is not bound to any real modifiers, these effective masks for these two
cases are identical (i.e. they contain only hift). When it is essentia to distinguish between OneThing
and Another, XKB considers only those modifier definitions for which all virtual modifiers are bound.

Virtual Modifier Mapping

XKB maintains a virtual modifier mapping , which lists the virtual modifiers associated with each key.
Thereal modifiersbound to avirtual modifier alwaysinclude all of the modifiers bound to any of the keys
that specify that virtual modifier in their virtual modifier mapping.

For example, if Mod3 is bound to the Num_Lock key by the core protocol modifier mapping, and the
NumLock virtual modifier is bound to they Num_Lock key by the virtual modifier mapping, Mod3 is
added to the set of modifiers associated with the NumLock virtual modifier.

The virtual modifier mapping is normally updated automatically whenever actions are assigned to keys
(see Changing the Keyboard Mapping Using the Core Protocol for details) and few applications should
need to change the virtual modifier mapping explicitly.

Chapter 4. Global Keyboard Controls

The X Keyboard Extension supports a number of global key controls , which affect the way that XKB
handles the keyboard as awhole. Many of these controls make the keyboard more accessible to the phys-
ically impaired and are based on the AccessDOS package®.

The RepeatKeys Control

The core protocol only allows control over whether or not the entire keyboard or individua keys should
autorepeat when held down. The RepeatKeys control extends this capability by adding control over the
delay until a key begins to repeat and the rate at which it repeats. RepeatKeys is also coupled with the
core autorepeat control; changes to one are always reflected in the other.

The RepeatKeys control hastwo parameters. The autorepeat delay specifies the delay between theinitial
press of an autorepeating key and thefirst generated repeat event in milliseconds. The autorepeat interval
specifies the delay between all subsequent generated repeat eventsin milliseconds.

The PerKeyRepeat Control

When RepeatKeys are active, the PerKeyRepeat control specifies whether or not individual keys should
autorepeat when held down. XK B providesthe PerKeyRepeat for convenienceonly, andit alwaysparallels
the auto-repeats field of the core protocol GetKeyboardControl request — changes to one are always
reflected in the other.

Detectable Autorepeat

The X server usually generates both press and rel ease events whenever an autorepeating key is held down.
If an XKB-aware client enables the DetectableAutorepeat per-client option for a keyboard, the server
sendsthat client akey release event only when the key is physically released. For example, holding down
akey to generate three characters without detectable autorepeat yields:

Press -> Rel ease -> Press -> Rel ease -> Press -> Rel ease

If detectable autorepeat is enabled, the client instead receives:

Press-> Press -> Press -> Rel ease

Note that only clientsthat request detectable autorepeat are affected; other clients continue to receive both
pressand release eventsfor autorepeating keys. Also notethat support for detectable autorepeat isoptional;
servers are not required to support detectable autorepeat, but they must correctly report whether or not
it is supported.

Querying and Changing Per-Client Flags describes the XkbPerClientFlags request, which reports or
changes valuesfor all of the per-client flags, and which lists the per-client flags that are supported.

1 AccessDOS provides access to the DOS operating system for people with physical impairments and was developed by the Trace R& D Center at
the University of Wisconsin. For more information on AccessDOS, contact the Trace R&D Center, Waisman Center and Department of Industrial
Engineering, University of Wisconsin-Madison W1 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

Globa Keyboard Controls

The SlowKeys Control

Some users often bump keys accidentally while moving their hand or typing stick toward the key they
want. Usually, the keys that are bumped accidentally are hit only for a very short period of time. The
SowKeys control helpsfilter these accidental bumps by telling the server to wait a specified period, called
the SowKeys acceptance delay , before delivering key events. If the key is released before this period
elapses, no key events are generated. The user can then bump any number of keys on their way to the one
they want without generating unwanted characters. Once they have reached the key they want, they can
then hold it long enough for SowKeys to accept it.

The SowKeys control has one parameter; the slow keys delay specifiesthe length of time, in milliseconds,
that akey must be held down before it is accepted.

When JowKeys are active, the X Keyboard Extension reports the initial press, acceptance, rejection or
release of any key to interested clientsusing AccessXNotify events. The AccessXNotify event is described
in more detail in Events.

The BounceKeys Control

Some people with physical impairments accidentally "bounce" on a key when they pressit. That is, they
pressit once, then accidentally pressit again immediately. The BounceKeys control temporarily disables
akey after it has been pressed, effectively "debouncing” the keyboard.

The BounceKeys has asingle parameter. The BounceKeys delay specifies the period of time, in millisec-
onds, that the key is disabled after it is pressed.

When BounceKeys are active, the server reportsthe acceptance or rejection of any key to interested clients
by sending an AccessXNotify event. The AccessXNotify event is described in more detail in Events.

The StickyKeys Control

Some people find it difficult or impossible to press two keys at once. The StickyKeys control makes it
easier for them to type by changing the behavior of the modifier keys. When SickyKeys are enabled, a
modifier islatched when the user pressesit just once, so the user can first press amodifier, release it, then
press another key. For example, to get an exclamation point (!) on a PC-style keyboard, the user can press
the Shift key, releaseit, then pressthe 1 key.

By default, StickyKeysalso allowsusersto lock modifier keyswithout requiring special locking keys. The
user can press amodifier twicein arow to lock it, and then unlock it by pressing it one more time.

Modifiers are automatically unlatched when the user presses anon-modifier key. For instance, to enter the
sequence Shift + Ctrl + Z the user could press and release the Shift key to latch the Shift modifier, then
press and release the Ctrl key to latch the Control modifier — the Ctrl key isamodifier key, so pressing
it does not unlatch the Shift modifier, but leaves both the Shift and Control modifiers latched, instead.
When the user pressesthe Z key, it will be asthough the user pressed Shift + Ctrl + Z simultaneously. The
Z key isnot amodifier key, sothe Shift and Control modifiers are unlatched after the event is generated.

A locked amodifier remainsin effect until the user unlocksit. For example, to enter the sequence ("XKB")
on aPC-stylekeyboard with atypical US/ASCII layout, the user could press and release the Shift key twice
to lock the Shift modifier. Then, when the user pressesthe 9, ‘', x, k, b, *,and 0keysin sequence,
it will generate ("XKB"). To unlock the Shift modifier, the user can press and release the Shift key.

Globa Keyboard Controls

Two option flags modify the behavior of the StickyKeys control:

» If the XkbAX TwoKeysflagis set, XKB automatically turns StickyKeys off if the user presses two or
more keys at once. This serves to automatically disable StickyKeys when a user who does not require
sticky keysis using the keyboard.

» The XkbAX_LatchToLock controls the locking behavior of StickyKeys ; the SickyKeys control only
locks modifiers as described above if the XkbAX_LatchToLock flag is set.

The MouseKeys Control

The MouseKeys control lets a user control all the mouse functions from the keyboard. When MouseKeys
areenabled, all keyswith MouseKeys actions bound to them generate core pointer eventsinstead of normal
key press and release events.

The MouseKeys control has a single parameter, the mouse keys default button , which specifies the core
pointer button to be used by mouse keys actions that do not explicitly specify a button.

The MouseKeysAccel Control

If the MouseKeysAccel control is enabled, the effect of a pointer motion action changes as akey is held
down. The mouse keys delay specifies the amount of time between the initial key press and the first
repeated motion event. The mouse keys interval specifies the amount of time between repeated mouse
keys events. The stepsto maximum acceleration field specifies the total number of events before the key
is travelling at maximum speed. The maximum acceleration field specifies the maximum acceleration.
The curve parameter controls the ramp used to reach maximum acceleration.

When MouseKeys are active and a SA _MovePtr key action (see Key Actions) is activated, a pointer
motion event is generated immediately. If MouseKeysAccel is enabled and if acceleration is enabled for
thekey in question, asecond event isgenerated after mouse keysdelay milliseconds, and additional events
are generated every mouse keysinterval milliseconds for as long as the key is held down.

Relative Pointer Motion

If the SA MovePtr action specifies relative motion, events are generated as follows: The initial event
always moves the cursor the distance specified in the action; after stepsto maximum acceleration events
have been generated, all subsequent events move the pointer the distance specified in the action times
the maximum acceleration. Events after the first but before maximum acceleration has been achieved are
accelerated according to the formula:

Where action_delta is the offset specified by the mouse keys action, max_accel and steps to_max are
parameters to the MouseKeysAccel ctrl, and the curveFactor is computed using the MouseKeysAccel
curve parameter as follows:

With the result that a curve of 0 causes the distance moved to increase linearly from action_delta to

, and the minimum legal curve of - 1000 causes all events after the first moveat max_accel . A negative
curve causesaninitial sharp increasein acceleration which tapers off, whileapositive curveyieldsasl ower
initial increase in acceleration followed by a sharp increase as the number of pointer events generated by
the action approaches steps to_max .

10

Globa Keyboard Controls

Absolute Pointer Motion

If an SA_MovePtr action specifies an absolute position for one of the coordinates but still allows acceler-
ation, al repeated events contain any absolute coordinates specified in the action.

The AccessXKeys Control

If AccessXKeys is enabled many controls can aso be turned on or off from the keyboard by entering the
following standard key sequences:

» Holding down a shift key by itself for eight seconds toggles the SowKeys control.

» Pressing and releasing a shift key five timesin arow without any intervening key events and with less
than 30 seconds delay between consecutive presses toggles the state of the SickyKeys control.

» Simultaneously operating two or more modifier keys deactivates the StickyKeys control.

Some of these key sequences optionally generate audible feedback of the change in state, as described in
The AccessX Feedback Control, or cause XkbAccessXNotify events as described in Events.

The AccessXTimeout Control

In environments where computers are shared, features such as SowKeys present a problem: if JowKeys
is on, the keyboard can appear to be unresponsive because keys have no effect unless they are held for
a certain period of time. To help address this problem, XKB provides an AccessXTimeout control to
automatically change the value of any global controls or AccessX options if the keyboard is idle for a
specified period of time.

The AccessX Timeout control has anumber of parameters which affect the duration of the timeout and the
features changed when the timeout expires.

The AccessX Timeout field specifies the number of seconds the keyboard must be idle before the global
controls and AccessX options are modified. The AccessX Options Mask field specifies which valuesin
the AccessX Options field are to be changed, and the AccessX Options Values field specifies the new
values for those options. The AccessX Controls Mask field specifies which controls are to be changed
in the global set of enabled controls, and the AccessX Controls Values field specifies the new values
for those controls.

The AccessXFeedback Control

If AccessXFeedback is enabled, special beep-codes indicate changes in keyboard controls (or some key
events when JowKeys or SickyKeys are active). Many beep codes sound as multiple tones, but XKB
reports asingle XkbBellNotify event for the entire sequence of tones.

All feedback tones are governed by the AudibleBell control. Individual feedback tones can be explicitly
enabled or disabled using the accessX options mask or set to deactivate after an idle period using the
accessX timeout options mask . XKB defines the following feedback tones:

11

Globa Keyboard Controls

Feedback Name Bell Name Default Sound Indicates
FeatureFB AX_FeatureOn rising tone Keyboard control enabled
AX_FeatureOff falling tone Keyboard control disabled
AX_FeatureChange two tones Severa controls changed
state
IndicatorFB AX_IndicatorOn high tone Indicator Lit
AX_IndicatorOff low tone Indicator Extinguished
AX_IndicatorChange two high tones Severa indicators changed
state
SlowWarnFB AX_SlowKeysWarning three high tones Shift key held for four sec-
onds
SKPressFB AX_SlowKeyPress single tone Key presswhile SowKeys
areon
SKReleaseFB AX_SlowKeyRelease single tone Key release while
SowKeysareon
SKAcceptFB AX_SlowKeyAccept single tone Key event accepted by
SowKeys
SKRejectFB AX_SlowKeyReject low tone Key event rejected by
SowKeys
StickyKeysFB ~ AX_StickyLatch [ow tone then high tone Modifier latched by Stick-
yKeys
AX_StickyL ock high tone Modifier locked by Stick-
yKeys
AX_StickyUnlock low tone Modifier unlocked by
SickyKeys
BKRejectFB AX_BounceKeysReject low tone Key event rejected by
BounceKeys

Implementationsthat cannot generate continuous tones may generate multiple beepsinstead of falling and
rising tones; for example, they can generate a high-pitched beep followed by a low-pitched beep instead
of acontinuous falling tone.

If the physical keyboard bell isnot very capable, attemptsto simulate a continuous tone with multiple bells
can sound horrible. Set the DumbBellFB AccessX option to inform the server that the keyboard bell is not
very capable and that XKB should use only simple bell combinations. Keyboard capabilities vary wildly,
so the sounds generated for the individual bells when the DumbBellFB option is set are implementation
specific.

The Overlayl and Overlay2 Controls

A keyboard overlay allows some subset of the keyboard to report alternate keycodes when the overlay is
enabled. For example akeyboard overlay can be used to simulate anumeric or editing keypad on keyboard
that does not actually have one by generating alternate of keycodes for some keys when the overlay isen-
abled. Thistechniqueisvery common on portable computers and embedded systemswith small keyboards.

XKB includes direct support for two keyboard overlays, using the Overlayl and Overlay2 controls. When
Overlayl is enabled, all of the keys that are members of the first keyboard overlay generate an alternate
keycode. When Overlay2 is enabled, all of the keys that are members of the second keyboard overlay
generate an alternate keycode.

12

Globa Keyboard Controls

To specify the overlay to which a key belongs and the alternate keycode it should generate when that
overlay isenabled, assign it either the KB_Overlayl or KB_Overlay2 key behaviors, asdescribed in Key
Behavior.

"Boolean" Controls and The EnabledControls
Control

All of the controls described above, along with the AudibleBell control (described in Disabling Server
Generated Bells) and the IgnoreGroupLock control (described in Server Internal Modifiers and Ignore
L ocks Behavior) comprise the boolean controls. In addition to any parameters listed in the descriptions
of the individua controls, the boolean controls can be individually enabled or disabled by changing the
value of the EnabledControls control.

Thefollowing non-boolean controls are always active and cannot be changed using the EnabledControls
control or specified in any context that accepts only boolean controls: GroupsWrap (Computing Effective
Modifier and Group), EnabledControls, InternalMods (Server Internal Modifiers and Ignore Locks Be-
havior), and IgnoreLockMods (Server Internal Modifiers and Ignore Locks Behavior) and PerKeyRepeat
(The RepeatKeys Control)

Automatic Reset of Boolean Controls

The auto-reset controls are a per-client value which consist of two masks that can contain any of the
boolean controls (see"Boolean" Controlsand The EnabledControls Control). Whenever the client exitsfor
any reason, any boolean controls specified in the auto-reset mask are set to the corresponding value from
the auto-reset values mask. Thismakesit possiblefor clientsto "clean up after themselves' automatically,
even if abnormally terminated.

For example, aclient that replace the keyboard bell with some other audible cue might want to turn off the
AudibleBell control (Disabling Server Generated Bells) to prevent the server from also generating a sound
and thus avoid cacophony. If the client were to exit without resetting the AudibleBell control, the user
would be left without any feedback at all. Setting AudibleBell in both the auto-reset mask and auto-reset
values guarantees that the audible bell will be turned back on when the client exits.

13

Chapter 5. Key Event Processing
Overview

There are three steps to processing each key event in the X server, and at least three in the client. This
section describes each of these steps briefly; the following sections describe each step in more detail.

1.

First, the server applies global keyboard controls to determine whether the key event should be pro-
cessed immediately, deferred, or ignored. For example, the SowKeys control can cause a key event
to be deferred until the slow keys delay has elapsed while the RepeatKeys control can cause multiple
X events from a single physical key pressif the key is held down for an extended period. The global
keyboard controls affect all of the keys on the keyboard and are described in Global Keyboard Contraols.

. Next, the server applies per-key behavior. Per key-behavior can be used to simulate or indicate some

specia kinds of key behavior. For example, keyboard overlays, in which akey generates an aternate
keycode under certain circumstances, can be implemented using per-key behavior. Every key has a
single behavior, so the effect of key behavior does not depend on keyboard modifier or group state,
though it might depend on global keyboard controls. Per-key behaviors are described in detail in Key
Behavior.

. Finally, the server applieskey actions. Logically, every keysym on the keyboard has some action asso-

ciated with it. The key action tells the server what to do when an event which yields the corresponding
keysym is generated. Key actions might change or suppress the event, generate some other event, or
change some aspect of the server. Key actions are described in Key Actions.

If the global controls, per-key behavior and key action combine to cause a key event, the client which
receives the event processesit in several steps.

1

First the client extracts the effective keyboard group and a set of modifiers from the state field of the
event. See Computing A State Field from an XKB State for details.

. Using the modifiers and effective keyboard group, the client selects a symbol from the list of keysyms

bound to the key. Determining the KeySym Associated with a Key Event discusses symbol selection.

. If necessary, the client transformsthe symbol and resulting string using any modifiersthat are"left over”

from the process of looking up a symbol. For example, if the Lock modifier is |eft over, the resulting
keysym is capitalized according to the capitalization rules specified by the system. See Transforming
the KeySym Associated with aKey Event for amore detailed discussion of the transformations defined
by XKB.

. Finally, the client uses the keysym and remaining modifiers in an application-specific way. For exam-

ple, applications based on the X toolkit might apply translations based on the symbol and modifiers
reported by the first three steps.

14

Chapter 6. Key Event Processing in the
Server

This section describes the stepsinvolved in processing akey event within the server when XKB is present.
Key events can be generated due to keyboard activity and passed to XKB by the DDX layer, or they can
be synthesized by another extension, such as X TEST.

Applying Global Controls

When the X Keyboard Extension receives a key event, it first checks the global key controls to decide
whether to process the event immediately or at al. The global key controls which might affect the event,
in descending order of priority, are:

If akey is pressed while the BounceKeys control is enabled, the extension generates the event only if
the key is active. When akey is released, the server deactivates the key and starts a bounce keys timer
with an interval specified by the debounce delay.

If the bounce keys timer expires or if some other key is pressed before the timer expires, the server
reactivates the corresponding key and deactivates the timer. Neither expiration nor deactivation of a
bounce keys timer causes an event.

If the SowKeys control is enabled, the extension sets a slow keys timer with an interval specified by
the slow keys delay, but does not process the key event immediately. The corresponding key release
deactivates thistimer.

If the slow keys timer expires, the server generates a key press for the corresponding key, sends an
XkbAccessXNotify and deactivates the timer.

The extension processes key press events normally whether or not the RepeatKeys control isactive, but
if RepeatKeys are enabled and per-key autorepeat is enabled for the event key, the extension processes
key press events normally, but it also initiates an autorepeat timer with an interval specified by the
autorepeat delay. The corresponding key rel ease deactivates the timer.

If the autorepeat timer expires, the server generates a key release and akey press for the corresponding
key and reschedules the timer according to the autorepeat interval.

Key events are processed by each global control in turn: if the BounceKeys control accepts a key event,
SowKeys considersit. Once SowKeys allows or synthesizes an event, the RepeatKeys control actson it.

Key Behavior

Once an event is accepted by all of the controls or generated by a timer, the server checks the per-key
behavior of the corresponding key. This extension currently defines the following key behaviors:

15

Key Event Processing in the Server

Behavior Effect
KB_Default Press and release events are processed normally.
KB_Lock If akey islogicaly up (i.e. the corresponding bit of the core key map is

cleared) when it is pressed, the key pressis processed normally and the cor-
responding release isignored. If the key islogically down when pressed, the
key pressisignored but the corresponding release is processed normally.

KB_RadioGroup If another member of the radio group specified by indexislogically down
when akey is pressed, the server synthesizes a key release for the member

flags: CARD8 that is logically down and then processes the new key press event normally.

index: CARD8 If the key itself islogically down when pressed, the key press event isig-

nored, but the processing of the corresponding key rel ease depends on the
value of the RGAllowNone bitin flags. If it is set, the key releaseis pro-
cessed normally; otherwise the key releaseis also ignored.

All other key release events are ignored.

KB_Overlayl If the Overlayl control is enabled, events from this key are reported as
if they came from the key specified in key . Otherwise, press and release

key: KEYCODE events are processed normally.

KB_Overlay2 If the Overlay2 control is enabled, events from this key are reported as
if they came from the key specified in key . Otherwise, press and release

key: KEYCODE events are processed normally.

The X server uses key behavior to determine whether to process or filter out any given key event; key
behavior isindependent of keyboard modifier or group state (each key has exactly one behavior.

Key behaviors can be used to simulate any of these types of keys or to indicate an unmodifiable physical,
electrical or software driver characteristic of a key. An optional permanent flag can modify any of the
supported behaviors and indicates that behavior describes an unalterable physical, electrical or software
aspect of the keyboard. Permanent behaviors cannot be changed or set by the XkbSetMap request. The
permanent flag indicates a characteristic of the underlying system that XKB cannot affect, so XKB treats
all permanent behaviors asif they were KB_Default and does not filter key events described in the table
above.

Key Actions

Once the server has applied the global controls and per-key behavior and has decided to process a key
event, it applies key actions to determine the effects of the key on the internal state of the server. A key
action consists of an operator and some optional data. XKB supports actions which:

 change base, latched or locked modifiers or group

» move the core pointer or simulate core pointer button events
» change most aspects of keyboard behavior

* terminate or suspend the server

» send amessage to interested clients

» simulate events on other keys

Each key hasan optional list of actions. If present, thislist parallelsthe list of symbols associated with the
key (i.e. it has one action per symbol associated with the key). For key press events, the server looks up

16

Key Event Processing in the Server

the action to be applied from this list using the key symbol mapping associated with the event key, just
as a client looks up symbols as described in Determining the KeySym Associated with a Key Event; if
the event key does not have any actions, the server uses the SA NoAction event for that key regardless
of modifier or group state.

Key actions have essentially two halves; the effects on the server when the key is pressed and the effects
when the key is released. The action applied for a key press event determines the further actions, if any,
that are applied to the corresponding release event or to events that occur while the key is held down.
Clients can change the actions associated with a key while the key is down without changing the action
applied next time the key is released; subsequent press-release pairs will use the newly bound key action.

Most actionsdirectly changethe state of the keyboard or server; some actions also modify other actionsthat
occur simultaneously with them. Two actions occur simultaneoudly if the keys which invoke the actions
areboth logically down at the sametime, regardless of the order in which they are pressed or delay between
the activation of one and the other.

Most actions which affect keyboard modifier state accept a modifier definition (see Virtual Modifiers)
named mods and a boolean flag name useModMap among their arguments. These two fields combine
to specify the modifiers affected by the action as follows: If useModMap is True, the action sets any
modifiers bound by the modifier mapping to the key that initiated the action; otherwise, the action sets
the modifiers specified by mods . For brevity in the text of the following definitions, we refer to this
combination of useModMap and mods as the "action modifiers."

The X Keyboard Extension supports the following actions:

Action Effect

SA NoAction « Nodirect effect, though SA_NoAction events may change the effect of oth-
er server actions (see below).

SA SetMods ¢ Key press adds any action modifiers to the keyboard' s base modifiers.

mods: MOD_DEF » Key release clears any action modifiers in the keyboard' s base modifiers,

provided that no other key which affects the same modifiersislogically
useModM ap: BOOL down.

clearLocks: BOOL « If no keys were operated simultaneously with thiskey and clearLocksis
set, release unlocks any action modifiers.

SA LatchMods « Key press and release events have the same effect asfor SA SetMods ; if
no keys were operated simultaneously with the latching modifier key, key

mods: MOD_DEF release events have the following additional effects:

useModMap: BOOL Modifiers that were unlocked dueto clearLocks have no further effect.

clearLocks: BOOL « If latchToLock is set, key release locks and then unlatches any remaining

action modifiers that are already latched.
latchToLock: BOOL

» Finally, key release latches any action modifiers that were not used by the
clearLocks or latchToLock flags.

SA LockMods » Key press sets the base and possibly the locked state of any action modi-

fiers. If noLockis True, only the base state is changed.
mods. MOD_DEF

» For key release events, clears any action modifiersin the keyboard' s base
useModMap: BOOL modifiers, provided that no other key which affects the same modifiersis
down. If noUnlockis False and any of the action modifiers were locked

nolock: BOOL before the corresponding key press occurred, key release unlocks them.

17

Key Event Processing in the Server

Action

Effect

noUnlock: BOOL
SA SetGroup

group: INT8
groupAbsolute: BOOL

clearLocks: BOOL

SA LatchGroup
group: INT8
groupAbsolute: BOOL
clearLocks: BOOL

latchTolL ock: BOOL

SA LockGroup
group: INT8

groupAbsolute: BOOL

SA MovePtr

X,y: INT16
noAccel: BOOL
absoluteX: BOOL

absoluteY : BOOL

SA PtrBtn

button: CARD8

e If groupAbsoluteis set, key press events change the base keyboard group
to group ; otherwise, they add group to the base keyboard group. In either
case, the resulting effective keyboard group is brought back into range de-
pending on the value of the GroupsWrap control for the keyboard.

e If an SA 1SOLock key is pressed while this key is held down, key release
has no effect, otherwise it cancels the effects of the press.

« If no keys were operated simultaneously with thiskey and clearLocksis
set, key release also sets the locked keyboard group to Groupl .

» Key press and release events have the same effect asan SA_SetGroup ac-
tion; if no keys were operated simultaneously with the latching group key
and the clearLocks flag was not set or had no effect, key release hasthe
following additional effects:

« If latchToLock is set and the latched keyboard group is non-zero, the key
release adds the delta applied by the corresponding key press to the locked
keyboard group and subtracts it from the latched keyboard group. The
locked and effective keyboard group are brought back into range accord-
ing to the value of the global GroupsWiap control for the keyboard.

e Otherwise, key release adds the key press deltato the latched keyboard
group.

e If groupAbsoluteis set, key press sets the locked keyboard group to
group . Otherwise, key press adds group to the locked keyboard group.
In either case, the resulting locked and effective group is brought back in-
to range depending on the value of the GroupsWiap control for the key-
board.

* Key release has no effect.

¢ If MouseKeys are not enabled, this action behaveslike SA NoAction,
otherwise this action cancels any pending repeat key timers for this key
and has the following additional effects.

« Key press generates a core pointer MotionNotify event instead of the usu-
a KeyPress. If absoluteXis True, x specifiesthe new pointer X coordi-
nate, otherwise X isadded to the current pointer X coordinate; absoluteY
and y specify thenew Y coordinate in the same way.

« If noAccel is False, and the MouseKeysAccel keyboard control is en-
abled, key press also initiates the mouse keys timer for this key; every time
this timer expires, the cursor moves again. The distance the cursor moves
in these subsequent events is determined by the mouse keys acceleration as
described in The MouseKeysAccel Control.

« Key release disables the mouse keystimer (if it wasinitiated by the corre-
sponding key press) but has no other effect and isignored (does not gener-
ate an event of any type).

« If MouseKeys are not enabled, this action behaves like SA_NoAction .

18

Key Event Processing in the Server

Action

Effect

count: CARDS8

useDfItBtn: BOOL

SA LockPtrBtn
button: BUTTON
noL ock: BOOL
noUnlock: BOOL

useDfltBtn: BOOL

SA SetPtrDflt
affect;: CARDS
value: CARDS

dfltBtnAbs: BOOL

SA 1SOLock
dfitisGroup: False
mods: MOD_DEF
useModMap: BOOL
noL ock: BOOL
noUnlock: BOOL
noAffectMods: BOOL
noAffectGrp: BOOL

noAffectPtr: BOOL

e If useDfltBtnis set, the event is generated for the current default core but-
ton. Otherwise, the event is generated for the button specified by button .

« If the mouse button specified for this action islogically down, the key
press and corresponding release are ignored and have no effect.

* Otherwise, key press causes one or more core pointer button events instead
of the usual key press. If countis O, key press generates asingle Button-
Pressevent; if count isgreater than 0, key press generates count pairs of
ButtonPress and ButtonRelease events.

e If countis 0, key release generates a core pointer ButtonRelease which
matches the event generated by the corresponding key press; if count is
non-zero, key release does not cause a ButtonRelease event. Key release
never causes akey release event.

« If MouseKeys are not enabled, this action behaves like SA_NoAction .

« Otherwise, if the button specified by useDfltBtn and button is not locked,
key press causes a ButtonPressinstead of akey press and locks the but-
ton. If the button is already locked or if noLock is True, key pressisig-
nored and has no effect.

« If the corresponding key presswasignored, and if noUnlockis False,
key release generates a ButtonRelease event instead of akey release event
and unlocks the specified button. If the corresponding key press locked a
button, key releaseisignored and has no effect.

« If MouseKeys are not enabled, this action behaves like SA_NoAction .

* Otherwise, both key press and key release are ignored, but key press
changes the pointer value specified by affect to value, asfollows:

e If whichis SA AffectDfItBtn, valueand dfltBtnAbs specify the default
pointer button used by the various pointer actions asfollow: If dfltBtnAbs
is True, value specifies the button to be used, otherwise, value specifies
the amount to be added to the current default button. In either case, illegal
button choices are wrapped back into range.

« If dfltisGroupis True, key press sets the base group specified by
groupAbsolute and group . Otherwise, key press sets the action modifiers
in the keyboard' s base modifiers.

» Key release clears the base modifiers or group that were set by the key
press; it may have additional effectsif no other appropriate actions occur
simultaneously with the SA_1SOLock operation.

¢ If noAffectModsis False, any SA SetModsor SA LatchMods ac-
tions that occur simultaneously with the 1S0OLock action are treated as
SA LockMods instead.

e If noAffectGrpis False, any SA SetGroup or SA LatchGroup actions
that occur simultaneously with this action are treated as SA_LockGroup
actions instead.

19

Key Event Processing in the Server

Action

Effect

noAffectCtrls: BOOL
or

dfitisGroup: True
group: INT8
groupAbsolute: BOOL
noAffectMods. BOOL
noAffectGrp: BOOL
noAffectPtr: BOOL

noAffectCtrls: BOOL
SA TerminateServer

SA SwitchScreen
num: INT8
switchApp: BOOL

screenAbs: BOOL

SA SetControls

controls:

KB_BOOLCTRLMASK

SA LockControls

controls:

KB_BOOLCTRLMASK

noL ock: BOOL

noUnlock: BOOL

SA ActionMessage::
pressMsg: BOOL

releaseM sg: BOOL

genEvent: BOOL

e If noAffectPtr is False, SA PtrBtn actionsthat occur simultaneously
with the SA ISOLock action are treated as SA LockPtrBtn actionsin-
stead.

¢ If noAffectCirlsis False, any SA SetControls actions that occur simulta-
neously with the SA 1SOLock action are treated as SA_LockControls ac-
tionsinstead.

« If no other actions were transformed by the SA [SOLock action, key re-
lease locks the group or modifiers specified by the action arguments.

« Key pressterminates the server. Key releaseisignored.

e Thisaction isoptional; servers are free to ignoreit. If ignored, it behaves
like SA_NoAction.

« If the server supports this action and multiple screens or displays (either
virtual or red), this action changes to the active screen indicated by num
and screenAbs. If screenAbsis True, num specifies the index of the new
screen; otherwise, num specifies an offset from the current screen to the
new screen.

« If switchAppis False, it should switch to another screen on the same
server. Otherwise it should switch to another X server or application which
shares the same physical display.

e Thisaction isoptional; servers are free to ignore the action or any of its
flagsif they do not support the requested behavior. If the action isignored,
it behaveslike SA_NoAction , otherwise neither key press nor release gen-
erate an event.

» Key press enables any boolean controls that are specified in controls and
not already enabled at the time of the key press. Key release disables any
controls that were enabled by the corresponding key press. This action can
cause XkbControlsNotify events.

e If noLockis False, key presslocks and enables any controls that are
specified in controls and not aready locked at the time of the key press.

If noUnlockis False, key release unlocks and disables any controls that
are specified in controls and were not enabled at the time of the corre-
sponding key press.

o if pressMsgis True, key press generates an XkbActionMessage event
which reports the keycode, event type and the contents of message .

e If releaseMsgis True, key release generates an XkbActionMessage
event which reports the keycode, event type and contents of message .

20

Key Event Processing in the Server

Action

Effect

message: STRING

SA RedirectKey
newKey: KEY CODE
modsMask: KEY MASK
mods: KEYMASK
vmodsMask: CARD16

vmods; CARD16

SA DeviceBtn
count: CARDS8
button: BUTTON

device: CARDS

SA LockDeviceBtn
button: BUTTON
device: CARDS
noL ock: BOOL

noUnlock: BOOL

e If genEventis True, both press and rel ease generate key press and key
release events, regardless of whether they also cause an XkbActionMes-
sage.

* Key press causes a key press event for the key specified by newKey in-
stead of for the actual key. The state reported in this event reports of the
current effective modifiers changed as follow: Any real modifiers speci-
fied in modsMask are set to corresponding values from mods . Any real
modifiers bound to the virtual modifiers specified in vmodsMask are ei-
ther set or cleared, depending on the corresponding valuein vmods. If the
real and virtual modifier definitions specify conflicting values for asingle
modifier, the real modifier definition has priority.

« Key release causes a key release event for the key specified by newKey ;
the state field for this event consists of the effective keyboard modifiers at
the time of the release, changed as described above.

e The SA_RedirectKey action normally redirects to another key on the same
device as the key or button which caused the event, unless that device does
not belong to the input extension KEY CLASS, in which case this action
causes an event on the core keyboard device.

* The devicefield specifiesthe ID of an extension device; the button field
specifies the index of a button on that device. If the button specified by
this action islogically down, the key press and corresponding release are
ignored and have no effect. If the device or button specified by this action
areillegal, this action behaves like SA_NoAction .

« Otherwise, key press causes one or more input extension device button
eventsinstead of the usual key pressevent. If countis O, key press gen-
eratesasingle DeviceButtonPress event; if count is greater than 0, key
press generates count pairs of DeviceButtonPress and DeviceButtonRe-
lease events.

« If countis O, key release generates an input extension DeviceButtonRe-
lease which matches the event generated by the corresponding key press;
if count is non-zero, key release does not cause a DeviceButtonRelease
event. Key release never causes akey release event.

* The devicefield specifiesthe ID of an extension device; the button field
specifies the index of a button on that device. If the device or button speci-
fied by this action areillegal, it behaveslike SA_NoAction .

e Otherwise, if the specified button is not locked and if noLockis False,
key press causes an input extension DeviceButtonPress event instead of a
key press event and locks the button. If the button is already locked or if
noLockis True, key pressisignored and has no effect.

« |If the corresponding key presswas ignored, and if noUnlockis False,
key release generates an input extension DeviceButtonRelease event in-
stead of a core protocol or input extension key release event and unlocks
the specified button. If the corresponding key press locked a button, key
release isignored and has no effect.

21

Key Event Processing in the Server

Action Effect
SA DeviceValuator * The devicefield specifiesthe ID of an extension device; vall and val2

_ specify valuators on that device. If deviceisillegal or if neither vall nor
device: CARDS8 val2 specifies alegal vauator, this action behaves like SA_NoAction .

vallWhat : SA_DVOP « |f valn specifiesalegal valuator and valnWhat isnot SA_IgnoreVal , the

ecified value is adjusted as specified by valnWhat :
vall: CARDS ¥ ! ¥ 4

e If valnWhat is SA_SetValMin, valnisset to its minimum legal value.
val1lValue: INT8

e If valnWhat is SA_SetValCenter , valnis centered (to (max-min)/2).
vallScale: 0...7

e If valnWhat is SA SetValMax, valnis set to its maximum legal value.
val2What : BOOL

e if valnWhat is SA SetValRelative,
val2: CARDS8 -

val2Value: INT8 isadded to valn.

valoscale: 0.7 e if valnWhat is SA SetValAbsolute, valnisset to

 lllegal valuesfor SA SetValRelative or SA SetVal Absolute are clamped
into range.

If SickyKeys are enabled, all SA SetMods and SA SetGroup actions act like SA LatchMods and
SA LatchGroup respectively. If the LatchTolLock AccessX option is set, either action behaves as if both
the SA ClearLocksand SA LatchTolock flags are set.

Actions which cause an event from another key or from a button on another deviceimmediately generate
the specified event. These actions do not consider the behavior or actions (if any) that are bound to the
key or button to which the event is redirected.

Core events generated by server actions contain the keyboard state that was in effect at the time the key
event occurred; the reported state does not reflect any changes in state that occur as aresult of the actions
bound to the key event that caused them.

Events sent to clients that have not issued an XkbUseExtension request contain a compatibility state in
place of the actual XKB keyboard state. See Effects of XKB on Core Protocol Events for a description
of this compatibility mapping.

Delivering a Key or Button Event to a Client

Thewindow and client that receive core protocol and input extension key or button events are determined
using the focus policy, window hierarchy and passive grabs as specified by the core protocol and the input
extension, with the following changes:

» A passive grab triggers if the modifier state specified in the grab matches the grab compatibility state
(described in Compatibility Components of Keyboard State). Clients can choose to use the XKB grab
state instead by setting the GrabsUseXKBSate per-client flag. This flag affects all passive grabs that
arerequested by the client which setsit but does not affect passive grabsthat are set by any other client.

e The state field of events which trigger a passive grab reports the XKB or compatibility grab state in
effect at the time the grab is triggered; the state field of the corresponding release event reports the
corresponding grab state in effect when the key or button is released.

22

Key Event Processing in the Server

« If the LookupStateWhenGrabbed per-client flag is set, all key or button events that occur while a key-
board or pointer grab is active contain the XKB or compatibility lookup state, depending on the value of
the GrabsUseXKBSate per-client flag. If LookupStateWhenGrabbed is not set, they include the XKB
or compatibility grab state, instead.

» Otherwise, the state field of events that do not trigger a passive grab report is derived from the XKB
effective modifiers and group, as described in Computing A State Field from an XKB State.

» If akey release event is the result of an autorepeating key that is being held down, and the client to
which the event is reported has requested detectable autorepeat (see Detectable Autorepeat), the event
isnot delivered to the client.

The following section explains the intent of the XK B interactions with core protocol grabs and the reason
that the per-client flags are needed.

XKB Interactions With Core Protocol Grabs

XKB provides the separate lookup and grab statesto help work around some difficulties with the way the
core protocol specifies passive grabs. Unfortunately, many clientswork around those problems differently,
and the way that XKB handles grabs and reports keyboard state can sometimes interact with those client
workarounds in unexpected and unpleasant ways.

To provide more reasonable behavior for clients that are aware of XKB without causing problems for
clients that are unaware of XKB, this extension provides two per-client flags that specify the way that
XKB and the core protocol should interact.

» Thelargest problems arise from the fact that an XKB state field encodes an explicit keyboard group in
bits 13-14 (asdescribed in Computing A State Field from an XKB State), while pre-XKB clientsuse one
of the eight keyboard modifiers to select an alternate keyboard group. To make existing clients behave
reasonably, XKB normally usesthe compatibility grab state instead of the XKB grab state to determine
whether or not a passive grab istriggered. XKB-aware clients can set the GrabsUseXKBState per-client
flag to indicate that they are specifying passive grabs using an XKB state.

» Sometoolkits start an active grab when apassive grabistriggered, in order to have more control over the
conditions under which the grab isterminated. Unfortunately, the fact that XKB reports adifferent state
in events that trigger or terminate grabs means that this grab simulation can fail to terminate the grab
under some conditions. To work around this problem, XKB normally reportsthe grab statein all events
whenever agrab isactive. Clientswhich do not use active grabs like this can set the LookupState\When-
Grabbed per-client flag in order to receive the same state component whether or not agrab is active.

The GrabsUseXKBSate per-client flag also applies to the state of events sent while a grab is active.
If it is set, events during a grab contain the XKB lookup or grab state; by default, events during a grab
contain the compatibility lookup or grab state.

The state used to trigger a passive grab is controlled by the setting of the GrabsUseXKBSate per-client
flag at the time the grab is registered. Changing this flag does not affect existing passive grabs.

23

Chapter 7. Key Event Processing in the
Client

The XKB client map for akeyboard is the collection of information a client needs to interpret key events
that come from that keyboard. It containsaglobal list of key types, described in Key Types, and an array
of key symbol map s, each of which describes the symbols bound to one particular key and the rules to
be used to interpret those symboals.

Notation and Terminology

XKB associates atwo-dimensional array of symbols with each key. Symbols are addressed by keyboard
group (see Keyboard State) and shift level, where level is defined asin the |SO9995 standard:

Level One of several states (normally 2 or 3) which govern which graphic character is produced when
agraphic key is actuated. In certain cases the level may also affect function keys.

Note that shift level is derived from the modifier state, but not necessarily in the same way for al keys.
For example, the Shift modifier selects shift level 2 on most keys, but for keypad keys the modifier bound
to Num_Lock (i.e. the NumLock virtual modifier) also selects shift level 2.gray symbols on akey

We use the notation G n L n to specify the position of a symbol on akey or in memory:

The gray charactersindicate symbolsthat areimplied or expected but are not actually engraved on the key.

Note

Unfortunately, the"natural" orientation of symbolson akey and the natural orientationin memory
are reversed from one another, so keyboard group refers to a column on the key and a row in
memory. There’s no real help for it, but we try to minimize confusion by using "group" and
"level" (or "shift level") to refer to symbols regardless of context.

Determining the KeySym Associated with a
Key Event

To look up the symbol associated with an XKB key event, we need to know the group and shift level that
correspond to the event.

Group isreported in bits 13-14 of the state field of the key event, as described in Computing A State Field
from an XKB State. The keyboard group reported in the event might be out-of-range for any particular
key because the number of groups can vary from key to key. The XKB description of each key containsa
groupinfofield whichisinterpreted identically to the global groupswrap control (see Computing Effective
Modifier and Group) and which specifies the interpretation of groups that are out-of-range for that key.

Once we have determined the group to be used for the event, we have to determine the shift level. The
description of akey includesa key type for each group of symbols bound to the key. Given the modifiers
from the key event, thiskey type yields a shift level and a set of "leftover" modifiers, as described in Key
Types below.

Finally, we can use the effective group and the shift level returned by the type of that group to look up a
symbol in atwo-dimensional array of symbols associated with the key.

24

Key Event Processing in the Client

Key Types

Each entry of a key type's map field specifies the shift level that corresponds to some XKB modifier
definition; any combination of modifiers that is not explicitly listed somewhere in the map yields shift
level one. Map entries which specify unbound virtual modifiers (see Inactive Modifier Definitions) are
not considered; each entry contains an automatically-updated active field which indicates whether or not
it should be used.

Each key type includes a few fields that are derived from the contents of the map and which report some
commonly used values so they don’'t have to be constantly recalculated. The numLevels field contains
the highest shift level reported by any of its map entries; XKB uses numLevelsto insure that the array of
symbols bound to a key islarge enough (the number of levels reported by akey typeisalso referred to as
itswidth). The modifiersfield reports all real modifiers considered by any of the map entriesfor the type.
Both modifiers and numLevels are updated automatically by XKB and neither can be changed explicitly.

Any modifiers specified in modifiers are normally consumed (see Transforming the KeySym Associat-
ed with a Key Event), which means that they are not considered during any of the later stages of event
processing. For those rare occasions that a modifier should be considered despite having been used to
look up a symbol, key types include an optional preserve field. If a preservelist is present, each entry
corresponds to one of the key type's map entries and lists the modifiers that should not be consumed if
the matching map entry is used to determine shift level.

For example, the following key type implements caps lock as defined by the core protocol (using the
second symbol bound to the key):

type "ALPHABETI C' {
nodi fiers = Shift+Lock;
map[Shift] = Level 2;
map[Lock] = Level 2;
map[Shi ft +Lock] = Level 2;
b

The problem with this kind of definition is that we could assign completely unrelated symbols to the two
shift levels, and "Caps Lock" would choose the second symbol. Another definition for alphabetic keys
uses system routines to capitalize the keysym:

type "ALPHABETI C' {
nodi fi ers= Shift;

map[Shift] = Level 2;

}s

When caps lock is applied using this definition, we take the symbol from shift level one and capitalize it
using system-specific capitalization rules. If shift and capslock are both set, we take the symbol from shift
level two and try to capitalize it, which usually has no effect.

The following key type implements shift-cancel s-caps lock behavior for alphabetic keys:

type "ALPHABETI C' {
nodi fiers = Shift+Lock;
map[Shift] = Level 2;
preserve[Lock] = Lock;

i

25

Key Event Processing in the Client

Consider the four possible states that can affect alphabetic keys. no modifiers, shift alone, capslock alone
or shift and caps lock together. The map contains no explicit entry for None (no modifiers), so if no
modifiersare set, any group with thistypereturnsthefirst keysym. The map entry for Shift reports Level2
, SO any group with this type returns the second symbol when Shift is set. Thereisno map entry for Lock
alone, but the type specifiesthat the Lock modifier should be preserved inthiscase, so Lock alone returns
the first symbol in the group but first applies the capitalization transformation, yielding the capital form
of the symboal. In thefinal case, thereisno map entry for Shift+Lock , so it returnsthe first symbol in the
group; thereis no preserve entry, so the Lock modifier is consumed and the symbol is not capitalized.

Key Symbol Map

The key symbol map for akey containsall of theinformation that aclient needsto process events generated
by that key. Each key symbol mapping reports:

» The number of groups of symbols bound to the key (numGroups).
» Thetreatment of out-of-range groups (grouplnfo).

» Theindex of the key typeto for each possible group (kt_index] MaxKbdGroups]).

The width of the widest type associated with the key (groupsWidth).
» Thetwo-dimensional (numGroups x groupsWidth) array of symbols bound to the key.

Itislegal for a key to have zero groups, in which case it also has zero symbols and all events from that
key yield NoSymbol . The array of key types is of fixed width and is large enough to hold key types
for the maximum legal number of groups (MaxKbdGroups , currently four); if a key has fewer than
MaxKbdGroups groups, the extra key types are reported but ignored. The groupswWidth field cannot be
explicitly changed; it is updated automatically whenever the symbols or set of types bound to a key are
changed.

If, when looking up asymbol, the effective keyboard group is out-of-range for the key, the groupinfo field
of the key symbol map specifies the rules for determining the corresponding legal group as follows:

« If the RedirectintoRange flag is set, the two least significant bits of grouplnfo specify the index of
a group to which all illegal groups correspond. If the specified group is also out of range, al illegal
groups map to Groupl .

» If ClamplntoRange flag is set, out-of-range groups correspond to the nearest legal group. Effective
groups larger than the highest supported group are mapped to the highest supported group; effective
groups lessthan Groupl are mappedto Groupl . For example, akey with two groups of symbols uses
Group2 type and symbolsiif the global effective group is either Group3 or Group4 .

* If neither flag is set, group is wrapped into range using integer modulus. For example, a key with two
groups of symbolsfor which groupswrap uses Groupl symbolsif the global effective groupis Group3
or Group2 symbolsif the global effective group is Group4 .

The client map contains an array of key symbol mappings, with one entry for each key between the min-
imum and maximum legal keycodes, inclusive. All keycodes which fal in that range have key symbol
mappings, whether or not any key actually yields that code.

Transforming the KeySym Associated with a
Key Event

Any modifiersthat were not used to look up the keysym, or which were explicitly preserved, might indicate
further transformations to be performed on the keysym or the character string that is derived from it. For

26

Key Event Processing in the Client

example, If the Lock modifier is set, the symbol and corresponding string should be capitalized according
to the locale-sensitive capitalization rules specified by the system. If the Control modifier is set, the
keysym is not affected, but the corresponding character should be converted to a control character as
described in Default Symbol Transformations.

This extension specifies the transformations to be applied when the Control or Lock modifiers are active
but were not used to determine the keysym to be used:

M odifier Transformation

Control Report the control character associated with the symbol. This extension de-
fines the control characters associated with the ASCI| alphabetic characters
(both upper and lower case) and for asmall set of punctuation characters (see
Default Symbol Transformations). Applications are free to associate control
characters with any symbols that are not specified by this extension.

Lock Capitalize the symbol either according to capitalization rules appropriate to
the application locale or using the capitalization rules defined by this exten-
sion (see Default Symbol Transformations).

Interpretation of other modifiersis application dependent.
Note

This definition of capitalization is fundamentally different from the core protocol’s, which uses
the lock modifier to select from the symbols bound to the key. Consider key 9 in the client map
example; the core protocol provides no way to generate the capital form of either symbol bound
to this key. XKB specifies that we first look up the symbol and then capitalize, so XKB yields
the capital form of the two symbols when caps lock is active.

XKB specifies the behavior of Lock and Control , but interpretation of other modifiers is left to the
application.

Client Map Example

Consider asimple, if unlikely, keyboard with the following keys (gray characters indicate symbols that
areimplied or expected but are not actually engraved on the key):

The core protocol represents this keyboard as a simple array with one row per key and four columns (the
widest key, key 10, determines the width of the entire array).

Key GiL1 G1lL2 G2L1 G2L2

8 Q NoSymbol at NoSymbol

9 odiaeresis egrave NoSymbol NoSymbol

10 A NoSymbol yis NoSymbol

11 ssharp question backslash guestiondown
12 KP_End KP_1 NoSymbol NoSymbol

13 Num_L ock NoSymbol NoSymbol NoSymbol

14 NoSymbol NoSymbol NoSymbol NoSymbol

15 Return NoSymbol NoSymbol NoSymbol

27

Key Event Processing in the Client

The row to be used for a given key event is determined by keycode; the column to be used is determined
by the symbols bound to the key, the state of the Shift and Lock Modifiers and the state of the modifiers
bound to the Num_Lock and Mode_switch keys as specified by the core protocal.

The XKB description of this keyboard consists of six key symbol maps, each of which specifies the types
and symbols associated with each keyboard group for one key:

Key Group: Type L1 L2

8 G1: ALPHABETIC q Q

G2: ONE_LEVEL @ NoSymbol

9 Gl: TWO_LEVEL odiaeresis egrave
10 G1: ALPHABETIC a A

G2: ALPHABETIC ae AE

11 Gl: TWO_LEVEL ssharp question
G2: ONE_LEVEL backslash guestiondown

12 G1: KEYPAD KP_End KP_1
13 G1: ONE_LEVEL Num_Lock

14 No Groups

15 G1: ONE_LEVEL Return

The keycode reported in a key event determines the row to be used for that event; the effective keyboard
group determines the list of symbols and key type to be used. The key type determines which symbol is
chosen from the list.

Determining the KeySym Associated with a Key Event details the procedure to map from akey event to
asymbol and/or a string.

28

Chapter 8. Symbolic Names

The core protocol does not provide any information to clients other than that actually used to interpret
events. This makesit difficult to write a client which presents the keyboard to a user in an easy-to-under-
stand way. Such applications have to examine the vendor string and keycodes to determine the type of
keyboard connected to the server and have to examine keysyms and modifier mappings to determine the
effects of most modifiers (the Shift, Lock and Control modifiers are defined by the core protocol but
no semantics are implied for any other modifiers).

This extension provides such applications with symbolic names for most components of the keyboard
extension and a description of the physical layout of the keyboard.

The keycodes name describesthe range and meaning of the keycodesreturned by the keyboard in question;
the keyboard geometry name describes the physical location, size and shape of the various keys on
the keyboard. As an example to distinguish between these two names, consider function keys on PC-
compatible keyboards. Function keys are sometimes above the main keyboard and sometimes to the left
of the main keyboard, but the same keycode is used for the key that islogically F1 regardiess of physical
position. Thus, all PC-compatible keyboards might share a keycodes name but different geometry names.

Note

The keycodes name is intended to be a very general description of the keycodes returned by a
keyboard; A single keycodes name might cover keyboards with differing numbers of keys pro-
vided that the keys that all keys have the same semantics when present. For example, 101 and
102 key PC keyboards might use the same name. Applications can use the keyboard geometry to
determine which subset of the named keyboard typeisin use.

The symbols name identifies the symbols bound to the keys. The symbols name is a human or applica
tion-readable description of the intended local e or usage of the keyboard with these symbols. The physical
symbols name describes the symbols actually engraved on the keyboard, which might be different than
the symbols currently being used.

The types name provides some information about the set of key types that can be associated with the
keyboard keys. The compat name provides some information about the rules used to bind actionsto keys
changed using core protocol reguests.

The compat , types, keycodes, symbolsand geometry names typically correspond to the keyboard
components from which the current keyboard description was assembled. These components are stored
individually in the server’ s database of keyboard components, described in The Server Database of Key-
board Components, and can be combined to assemble a complete keyboard description.

Each key has a four-byte symbolic name. The key name links keys with similar functions or in similar
positions on keyboards that report different scan codes. Key aliases allow the keyboard layout designer
to assign multiple names to a single key, to make it easier to refer to keys using either their position or
their "function.”

For example, consider the common keyboard customizations:
» Set the "key to the left of the letter &' to be a control key.
» Changethe "capslock" key, wherever it might be, to a control key.

If we specify key names by position, the first customization is simple but the second isimpossible; if we
specify key names by function, the second customization is simple but the first isimpossible. Using key

29

Symbolic Names

aliases, we can specify both function and position for "troublesome” keys, and both customizations are
straightforward.

Key aliases can be specified both in the symbolic names component and in the keyboard geometry (see
Keyboard Geometry). Both sets of aliases are always valid, but key alias definitions in the keyboard ge-
ometry have priority; if both symbolic names and geometry include aliases, applications should consider
the definitions from the geometry before considering the definitions from the symbolic names section.

XKB provides symbolic names for each of the four keyboard groups, sixteen virtual modifiers, thirty-two
keyboard indicators, and up to MaxRadioGroups (32) radio groups.

XKB dlows keyboard layout designers or editors to assign names to each key type and to each of the
levels in a key type. For example, the second position on an alphabetic key might be called the "Caps'
level while the second position on a numeric keypad key might be called the "Num Lock" level.

30

Chapter 9. Keyboard Indicators

Although the core X protocol supports thirty-two LEDs on akeyboard, it does not provide any way to link
the state of the LEDs and the logical state of the keyboard. For example, most keyboards have a " Caps
Lock" LED, but X does not provide any standard way to make the LED automatically follow the logical
state of the modifier bound to the Caps Lock key.

The core protocol also gives no way to determine which bitsin the led_mask field of the keyboard state
map to the particular LEDs on the keyboard. For example, X does not provide a method for a client to
determine which bit to set in the led _mask to turn on the "Scroll Lock" LED, or even if the keyboard
has a"Scroll Lock" LED.

Most X serversimplement some kind of automatic behavior for one or more of the keyboard LEDs, but the
details of that automatic behavior areimplementation-specific and can be difficult or impossibleto control.

XKB provides indicator names and programmable indicators to help solve these problems. Using XKB,
clients can determine the names of the variousindicators, determine and control the way that the individual
indicators should be updated to reflect keyboard changes, and determine which of the 32 keyboard indi-
cators reported by the protocol are actually present on the keyboard. Clients may also request immediate
notification of changesto the state of any subset of the keyboard indicators, which makesit straightforward
to provide an on-screen "virtual" LED panel.

Global Information About Indicators

XKB provides only two pieces of information about the indicators as a group.

The physical indicators mask reports which of the 32 logical keyboard indicators supported by the core
protocol and XKB corresponds to some actual indicator on the keyboard itself. Because the physical indi-
cators mask describes a physical characteristic of the keyboard, it cannot be directly changed under pro-
gram control. It is possible, however, for the set of physical indicators to be change if a new keyboard is
attached or if a completely new keyboard description is loaded by the XkbGetKeyboardByName request
(see Using the Server’s Database of Keyboard Components).

The indicator state mask reports the current state of the 32 logical keyboard indicators. Thisfield and the

core protocol indicator state (as reported by the led-mask field of the core protocol GetKeyboardControl
request) are always identical.

Per-Indicator Information

Each of the thirty-two keyboard indicators has a symbolic name, of type ATOM. The XkbGetNames re-
quest reports the symbolic names for all keyboard components, including the indicators. Use the XkbSet-
Names request to change symbolic names. Both requests are described in Querying and Changing Sym-
bolic Names.

Indicator Maps

XKB aso provides an indicator map for each of the thirty-two keyboard indicators; an indicator map
specifies:

 The conditions under which the keyboard modifier state affects the indicator.

31

Keyboard Indicators

 The conditions under which the keyboard group state affects the indicator.
» The conditions under which the state of the boolean controls affects the indicator.

» The effect (if any) of attempts to explicitly change the state of the indicator using the core protocol
SetKeyboardControl request.

If IM_NoAutomaticis set inthe flagsfield of an indicator map, that indicator never changes in response
to changes in keyboard state or controls, regardless of the values for the other fields of the indicator map.
If IM_NoAutomaticisnot setin flags, the other fields of the indicator map specify the automatic changes
to the indicator in response to changes in the keyboard state or controls.

The which_groups and the groups fields of an indicator map determine how the keyboard group state
affects the corresponding indicator. The which_groups field controls the interpretation of groups and
may contain any one of the following values:

Value Interpretation of the Groups Field

IM_UseNone The groupsfield and the current keyboard group state are ignored.

IM_UseBase If groupsisnon-zero, the indicator islit whenever the base keyboard group
isnon-zero. If groupsiszero, the indicator islit whenever the base keyboard
group is zero.

IM_Usel atched If groupsisnon-zero, theindicator islit whenever the latched keyboard

group is non-zero. If groupsis zero, the indicator is lit whenever the latched
keyboard group is zero.

IM_Uselocked The groupsfield isinterpreted as amask. The indicator is lit when the cur-
rent locked keyboard group matches one of the bitsthat are set in groups .
IM_UseEffective The groupsfieldisinterpreted as amask. The indicator is lit when the cur-

rent effective keyboard group matches one of the bitsthat are setin groups.

The which_mods and mods fields of an indicator map determine how the state of the keyboard modifiers
affect the corresponding indicator. The modsfield isan XKB modifier definition, asdescribedin Modifier
Definitions, which can specify both real and virtual modifiers. The mods field takes effect even if some
or al of the virtual indicators specified in mods are unbound.

The which_modsfield can specify one or more components of the XK B keyboard state. The corresponding
indicator is lit whenever any of the real modifiers specified in the mask field of the mods modifier
definition are also set in any of the current keyboard state components specified by the which_mods. The
which_mods field may have any combination of the following values:

Value Keyboard State Component To Be Considered
IM_UseBase Base modifier state

IM_Usel atched Latched modifier state

IM_Uselocked Locked modifier state

IM_UseEffective Effective modifier state

IM_UseCompat Modifier compatibility state

The controls field specifies a subset of the boolean keyboard controls (see "Boolean" Controls and The
EnabledControls Control). The indicator is lit whenever any of the boolean controls specified in controls
are enabled.

32

Keyboard Indicators

Anindicator islit whenever any of the conditions specified by itsindicator map are met, unless overridden
by the IM_NoAutomatic flag (described above) or an explicit indicator change (described below).

Effects of Explicit Changes on Indicators

If the IM_NoExplicit flagissetin anindicator map, attemptsto changethe state of theindicator areignored.

If both IM_NoExplicit and IM_NoAutomatic are both absent from an indicator map, requests to change
the state of the indicator are honored but might be immediately superseded by automatic changes to the
indicator state which reflect changes to keyboard state or controls.

If the IM_LEDDrivesKB flag is set and the IM_NoExplicit flag is not, the keyboard state and controls
are changed to reflect the other fields of the indicator map, as described in the remainder of this section.
Attemptsto explicitly change the value of anindicator for which IM_LEDDrivesKB isabsent or for which
IM_NoExplicit is present do not affect keyboard state or controls.

The effect on group state of changing an explicit indicator which drives the keyboard is determined by the
value of which_groupsand groups, asfollows:

which_groups New State Effect on Keyboard Group State
IM_UseNone, or IM_UseBase On or Off No Effect
IM_UselLatched On The groupsfield istreated as a group

mask. The keyboard group latch is
changed to the lowest numbered group
specified in groups; if groupsisemp-
ty, the keyboard group latch is changed
to zero.

IM_Usel atched Off The groupsfield istreated as a group
mask. If the indicator is explicitly ex-
tinguished, keyboard group latch is
changed to the lowest numbered group
not specified in groups; if groupsis
zero, the keyboard group latch is set to
the index of the highest legal keyboard
group.

IM_Uselocked, or IM_UseEffective On If the groups mask isempty, group is
not changed, otherwise the locked key-
board group is changed to the lowest
numbered group specified in groups.

IM_UselLocked, or IM_UseEffective Off Locked keyboard group is changed to
the lowest numbered group that is not
specified in the groups mask, or to
Groupl if the groups mask contains all
keyboard groups.

The effect on the keyboard modifiers of changing an explicit indicator which drives the keyboard is de-
termined by the values that are set in of which_mods and mods, as follows:

33

Keyboard Indicators

Set in New State Effect on Keyboard Modifiers

which_mods

IM_UseBase On or Off No Effect

IM_Uselatched On Any modifiers specified in the mask field of mods are added
to the latched modifiers.

IM_Usel atched Off Any modifiers specified in the mask field of mods arere-
moved from the latched modifiers.

IM_Uselocked , On Any modifiers specified in the mask field of mods are added

IM_UseCompat , or to the locked modifiers.

IM_UseEffective

IM_Uselocked Off Any modifiers specified in the mask field of mods are re-
moved from the locked modifiers.

IM_UseCompat , or Off Any modifiers specified in the mask field of mods are re-

IM_UseEffective moved from both the locked and latched modifiers.

Lighting an explicit indicator which drives the keyboard also enables al of the boolean controls specified
in the controls field of its indicator map. Explicitly extinguishing such an indicator disables al of the
boolean controls specified in controls.

The effects of changing an indicator which drives the keyboard are cumulative; it is possible for asingle
change to affect keyboard group, modifiers and controls simultaneously.

If anindicator for which both the IM_LEDDrivesKB and IM_NoAutomatic flags are specified is changed,
the keyboard changes specified above are applied and the indicator is changed to reflect the state that was
explicitly requested. The indicator will remain in the new state until it is explicitly changed again.

If the IM_NoAutomatic flag is not set for an indicator which drives the keyboard, the changes specified
above are applied and the state of the indicator is set to the values specified by the indicator map. Note
that it is possible in this case for the indicator to end up in a different state than the one that was explic-
itly requested. For example, an indicator with which_mods of IM_UseBase and mods of Shift is not
extinguished if one of the Shift keysis physically depressed when the request to extinguish the indicator
is processed.

Chapter 10. Keyboard Bells

The core protocol provides reguests to control the pitch, volume and duration of the keyboard bell and a
request to explicitly sound the bell.

The X Keyboard Extension allows clients to disable the audible bell, attach a symbolic hame to a bell
request or receive an event when the keyboard bell is rung.

Client Notification of Bells

Clients can ask to receive XkbBellNotify event when a bell is requested by a client or generated by the
server. Bells can be sounded due to core protocol Bell requests, X Input Extension DeviceBell requests, X
Keyboard Extension XkbBell requestsor for reasonsinternal to the server such asthe XKB AccessXFeed-
back control.

Bell events caused by the XkbBell request or by the AccessXFeedback control include an optional window
and symbolic name for the bell. If present, the window makes it possible to provide some kind of visual
indication of which window caused the sound. The symbolic name can report some information about the
reason the bell was generated and makes it possible to generate a distinct sound for each type of bell.

Disabling Server Generated Bells

Theglobal AudibleBell boolean control for a keyboard indicates whether bells sent to that device should
normally cause the server to generate a sound. Applications which provide "sound effects’ for the various
named bellswill typically disable the server generation of bellsto avoid burying the user in sounds.

When the AudibleBell control isactive, all bells caused by core protocol Bell and X Input Extension De-
viceBell requests cause the server to generate a sound, as do all bells generated by the XKB AccessXFeed-
back control. Bellsrequested viathe X kbBell request normally cause a server-generated sound, but clients
can ask the server not to sound the default keyboard bell.

When the AudibleBell control is disabled, the server generates a sound only for bells that are generated
using the XkbBell request and which specify forced delivery of the bell.

Generating Named Bells

The XkbBell request allows clients to specify a symbolic name which is reported in the bell events they
cause. Bells generated by the AccessXFeedback control of this extension aso include a symbolic name,
but all kinds of feedback cause a single event even if they sound multiple tones.

The X server is permitted to use symbolic bell names (when present) to generate sounds other than ssimple
tones, but it is not required to do so.

Aside from those used by the XKB AccessXFeedback control (see The AccessX Feedback Control), this
extension does not specify bell names or their interpretation.

Generating Optional Named Bells

Under some circumstances, some kind of quiet audio feedback is useful, but a normal keyboard bell is
not. For example, a quiet "launch effect” can be helpful to let the user know that an application has been
started, but aloud bell would simply be annoying.

35

Keyboard Bells

To simplify generation of these kinds of effects, the XkbBell request allows clientsto specify "event only"
bells. The X server never generates anormal keyboard bell for "event only" bells, regardless of the setting
of the global AudibleBell control.

If the X server generates different sounds depending bell name, it is permitted to generate a sound even
for "event only" bells. Thisfield isintended simply to weed out "normal" keyboard bells.

Forcing a Server Generated Bell

Occasionaly, it isuseful to force the server to generate a sound. For example, aclient could "filter" server
bells, generating sound effects for some but sounding the normal server bell for others. Such a client
needs a way to tell the server that the requested bell should be generated regardless of the setting of the
AudibleBell control.

To simplify this process, clients which call the XkbBell request can specify that abell isforced. A forced
bell always causes a server generated sound and never causes a XkbBellNotify event. Because forced bells
do not cause bell notify events, they have no associated symbolic name or event window.

36

Chapter 11. Keyboard Geometry

The XKB description of akeyboard includes an optional keyboard geometry which describes the physical
appearance of the keyboard. Keyboard geometry describes the shape, location and color of al keyboard
keysor other visible keyboard components such asindicators. Theinformation contained in akeyboard ge-
ometry issufficient to allow aclient program to draw an accurate two-dimensional image of the keyboard.

The components of the keyboard geometry include the following:
* A symbolic nameto help users identify the keyboard.

» The width and height of the keyboard, in

. For non-rectangular keyboards, the width and height describe the smallest bounding-box that encloses
the outline of the keyboard.

* Alist of upto MaxColors(32) color names. A color name is a string whose interpretation is not
specified by XKB. Other geometry components refer to colors using their indices in thislist.

» Thebase color of the keyboard is the predominant color on the keyboard and is used as the default color
for any components whose color is not explicitly specified.

» The labd color isthe color used to draw the labels on most of the keyboard keys.

* The label font is a string which describes the font used to draw labels on most keys; XKB does not
specify aformat or name space for font names.

» Alistof geometry properties. A geometry property associates an arbitrary string with an equally arbi-
trary name. Geometry properties can be used to provide hints to programs that display images of key-
boards, but they are not interpreted by XKB. No other geometry structures refer to geometry properties.

» Alistof keyaliases, asdescribed in Symbolic Names.

» Alistof shapes; other keyboard componentsrefer to shapes by their index in thislist. A shape consists
of aname and one or more closed-polygons called outlines. Shapes and outlines are described in detail
in Shapes and Outlines.

Unless otherwise specified, geometry measurements are in

units. The origin (0,0) isin the top left corner of the keyboard image. Some geometry components can be
drawn rotated; all such objects rotate about their origin in

increments.

All geometry components include a priority , which indicates the order in which overlapping objects
should be drawn. Objects are drawn in order from highest priority (0) to lowest (255).

The description of the actual appearance of the keyboard is subdivided into named sections of related keys
and doodads . A a doodad describes some visible aspect of the keyboard that is not akey. A sectionisa
collection of keys and doodads that are physically close together and logically related.

Shapes and Outlines

Anoutlineisalist of one or more points which describes a single closed-polygon, as follows:

37

Keyboard Geometry

A list with a single point describes a rectangle with one corner at the origin of the shape (0, 0) and
the opposite corner at the specified point.

A list of two points describes a rectangle with one corner at the position specified by the first point and
the opposite corner at the position specified by the second point.

A list of three or more points describes an arbitrary polygon. If necessary, the polygon is automatically
closed by connecting the last point in the list with the first.

» A non-zero value for the cornerRadiusfield specifies that the corners of the polygon should be drawn
as circles with the specified radius.

All pointsin an outline are specified relative to the origin of the enclosing shape. Pointsin an outline may
have negative values for the X and Y coordinate.

Oneoutline (usually thefirst) isthe primary outline; akeyboard display application can generate asimpler
but still accurate keyboard image by displaying only the primary outlines for each shape. Non-rectangu-
lar keys must include a rectangular approximation as one of the outlines associated with the shape; the
approximation is not normally displayed but can be used by very simple keyboard display applicationsto
generate a recognizable but degraded image of the keyboard.

Sections

Each section has its own coordinate system — if a section is rotated, the coordinates of any components
within the section are interpreted relative to the edges that were on the top and left before rotation. The
components that make up a section include:

» Alistof rows. A row isalist of horizontaly or vertically adjacent keys. Horizontal rows parallel the
(pre-rotation) top of the section and vertical rows parallel the (pre-rotation) left of the section. All keys
in ahorizontal row share acommon top coordinate; all keysin avertical row share aleft coordinate.

A key description consists of a key name, a shape, akey color , and a gap . The key name
should correspond to one of the keys named in the keyboard names description, the shape specifiesthe
appearance of the key, and the key color specifies the color of the key (not the 1abel on the key). Keys
are normally drawn immediately adjacent to one another from left-to-right (or top-to-bottom) within a
row. The gap field specifies the distance between a key and its predecessor.

» An optional list of doodads; any type of doodad can be enclosed within a section. Position and angle
of rotation are relative to the origin and angle of rotation of the sections that contain them. Priority is
relative to the other components of the section, not to the keyboard as awhole.

» Anoptional list of overlay keys . Each overlay key definition indicates a key that can yield multiple
scan codes and consists of afield named under , which specifies the primary name of the key and a
field named over , which specifies the name for the key when the overlay keycode is selected. The key
specified in under must be a member of the section that contains the overlay key definition, while the
key specified in over must not.

Doodads

Doodads can be global to the keyboard or part of a section. Doodads have symbolic names of arbitrary
length. The only doodad name whose interpretation is specified by XKB is "Edges", which describes the
outline of the entire keyboard, if present.

All doodads report their origin in fields named left and top . XKB supports five kinds of doodads:

38

Keyboard Geometry

» An indicator doodad describes one of the physical keyboard indicators. Indicator doodads specify the
shape of the indicator, the indicator color when it is lit (on_color) and the indicator color when it is
dark (off_color).

* An outline doodad describes some aspect of the keyboard to be drawn as one or more hollow, closed
polygons. Outline doodads specify the shape, color, and angle of rotation about the doodad origin at
which they should be drawn.

» A solid doodad describes some aspect of the keyboard to be drawn as one or morefilled polygons. Solid
doodads specify the shape, color and angle of rotation about the doodad origin at which they should
be drawn.

» A text doodad describes atext label somewhere on the keyboard. Text doodads specify the label string,
the font and color to use when drawing the label, and the angle of rotation of the doodad about its origin.

» A logo doodad is a catch-all, which describes some other visible element of the keyboard. A logo
doodad is essentially an outline doodad with an additional symbolic name that describes the element
to be drawn.

If akeyboard display program recognizes the symbolic name, it can draw something appropriate within
the bounding region of the shape specified in the doodad. If the symbolic name does not describe a
recognizable image, it should draw an outline using the specified shape, outline, and angle of rotation.

The XKB extension does not specify the interpretation of logo names.

Keyboard Geometry Example

Consider the following example keyboard:

This keyboard has six sections: The left and right function sections (at the very top) each have one hori-
zontal row with eight keys. The left and right al phanumeric sections (the large sectionsin the middie) each
have six vertical rows, with four or five keys in each row. The left and right editing sections each have
three vertical rows with one to three keys per row; the left editing section is rotated 20° clockwise about
its origin while the right editing section is rotated 20° counterclockwise.

Thiskeyboard hasfour global doodads: Three small, round indicators and arectangular logo. The program
which generated thisimage did not recognize the logo, so it displays an outline with an appropriate shape
inits place.

This keyboard has seven shapes: All of the keysin the two function sections use the "FKEY" shape. Most
of the keys in the alphanumeric sections, as well as four of the keys in each of the editing sections use
the "NORM" shape. The keysin the first column of the left alphanumeric section and the last column of
the right alphanumeric section all use the "WIDE" shape. Two keys in each of the editing sections use
the"TALL" shape. The"LED" shape describes the three small, round indicators between the function and
alphabetic sections. The "LOGO" shape describes the keyboard 1ogo, and the "EDGE" shape describes
the outline of the keyboard as awhole.

The keyboard itself is white, as are al of the keys except for the eight keys that make up the home row,
whichusethe"grey20" color. Itisn’treally visiblein thispicture, but the threeindicatorshavean "on" color
of "green" and are "green30" when they are turned off. The keysin the alphanumeric and editing sections
all have a (vertical) gap of 0.5mm; the keys in the two function sections have a (horizontal) gap of 3mm.

Many of the keys in the right alphanumeric section, and the rightmost key in the right editing section are
drawn with two names in this image. Those are overlay keys; the bottom key name is the normal name

39

Keyboard Geometry

while the overlay name is printed at the top. For example, the right editing section has a single overlay
key entry, which specifies an under name of <SPCE> and an over name of <KPO0> , which indicates
that the key in question is usualy the shift key, but can behave like the 0 key on the numeric keypad
when an overlay is active.

40

Chapter 12. Interactions Between XKB
and the Core Protocol

In addition to providing anumber of new requests, XKB replaces or extends existing core protocol requests
and events. Some aspects of the this extension, such as the ability to lock any key or modifier, are visible
even to clients that are unaware of the XKB extension. Other capabilities, such as control of keysym
selection on a per-key basis, are available only to XKB-aware clients.

Though they do not have access to some advanced extension capabilities, the XKB extension includes
compatibility mechanisms to ensure that non-XKB clients behave as expected and operate at least aswell
with an XKB-capable server as they do today.

There are afew significant areas in which XKB state and mapping differences might be visible to XKB-
unaware clients:

» Thecore protocol usesamodifier to choose between two keyboard groups, whilethis extension provides
explicit support for multiple groups.

» Theorder of the symbolsassociated with any given key by XKB might not match the ordering demanded
by the core protocol.

To minimize problems that might result from these differences, XKB includes ways to specify the corre-
spondence between core protocol and XKB modifiers and symbols.

This section describes the differences between the core X protocol’s notion of a keyboard mapping and
XKB and explains the ways they can interact.

Group Compatibility Map

Asdescribed in Keyboard State, the current keyboard group is reported to XK B-aware clientsin bits 13-14
of the state field of many core protocol events. XKB-unaware clients cannot interpret those bits, but they
might use akeyboard modifier to implement support for asingle keyboard group. To ensure that pre-XKB
clients continue to work when XKB is present, XKB makes it possible to map an XKB state field, which
includes both keyboard group and modifier stateinto a pre-XKB state field which contains only modifiers.

A keyboard description includes one group compatibility map per keyboard group (four in al). Each such
map is a modifier definition (i.e. specifies both real and virtual modifiers) which specifies the modifiers
to be set in the compatibility states when the corresponding keyboard group is active. Here are a few
examplesto illustrate the application of the group compatibility map:

Group GroupCompat Effective Statefor XKB Compatibili- Statefor non-
Map Modifiers Clients ty Modifiers XKB Clients

1 Groupl=None Shift Xx00xxxxx00000001 Shift XXXxxxXxx00000001

2 Group2=Mod3 None X01xxxxx00000000 Mod3 XXXXXXxx00100000

3 Group3=Mod2 Shift x10xxxxx00000001 Shift+Mod2 xxxxxxxx00010001

4 Group4=None Control x11xxxxx00000100 Control XXXXXXxx00000100

Note that non-XKB clients (i.e. clientsthat are linked with aversion of the X library that does not support
XKB) cannot detect the fact that Group4 is active in this example because the group compatibility map
for Group4 does not specify any modifiers.

41

Interactions Between XKB
and the Core Protocol

Setting a Passive Grab for an XKB State

The fact that the state field of an event might look different when XKB is present can cause problems
with passive grabs. Existing clients specify the modifiers they wish to grab using the rules defined by the
core protocol, which use anormal modifier to indicate keyboard group. If we used an XKB statefield, the
high bits of the state field would be non-zero whenever the keyboard wasin any group other than Groupl
, and none of the passive grabs set by clients could ever be triggered.

To avoid this behavior, the X server normally uses the compatibility grab state to decide whether or not
to activate a passive grab, even for XKB-aware clients. The group compatibility map attempts to encode
the keyboard group in one or more modifiers of the compatibility state, so existing clients continue to
work exactly the way they do today. By default, there is no way to directly specify a keyboard groupin a
Grabbed or GrabButton request, but groups can be specified indirectly by correctly adjusting the group
compatibility map.

Clients that wish to specify an XKB keyboard state, including a separate keyboard group, can set the
GrabsUseXKBSate per-client flag which indicates that all subsequent key and button grabs from the re-
questing clients are specified using an XKB state.

Whether the XKB or core state should be used to trigger agrab is determined by the setting of the Grab-
sUseXKBSate flag for the requesting client at the time the key or button is grabbed. There is no way to
changethe state to be used for agrab that is already registered or for grabsthat are set by some other client.

Changing the Keyboard Mapping Using the
Core Protocol

An XKB keyboard description includes alot of information that is not present in the core protocol descrip-
tion of akeyboard. Whenever aclient remapsthekeyboard using core protocol requests, XKB examinesthe
map to determine likely default values for the components that cannot be specified using the core protocol.

Some aspects of this automatic mapping are configurable, and make it fairly easy to take advantage of
many XKB features using existing tools like xmodmap , but much of the process of mapping a core
keyboard description into an XKB description is designed to preserve compatible behavior for pre-XKB
clients and cannot be redefined by the user. Clients or users that want behavior that cannot be described
using this mapping should use XKB functions directly.

Explicit Keyboard Mapping Components

This automatic remapping might accidentally replace definitions that were explicitly requested by an ap-
plication, so the XKB keyboard description defines a set of explicit components for each key; any com-
ponents that are listed in the explicit components for a key are not changed by the automatic keyboard
mapping. The explicit componentsfield for a key can contain any combination of the following values:

42

Interactions Between XKB
and the Core Protocol

Bit in Explicit Mask Protects Against

ExplicitKeyTypel Automatic determination of the key type associated with Groupl (see As-
signing Types To Groups of Symbolsfor aKey)

ExplicitkeyType2 Automatic determination of the key type associated with Group2 (see As-
signing Types To Groups of Symbolsfor aKey)

ExplicitkeyType3 Automatic determination of the key type associated with Group3 (see As-
signing Types To Groups of Symbolsfor aKey).

ExplicitKeyTyped Automatic determination of the key type associated with Group4 (see As-

signing Types To Groups of Symbolsfor aKey).

Explicitinterpret Application of any of the fields of a symbal interpretation to the key in ques-
tion (see Assigning Actions To Keys).

ExplicitAutoRepeat Automatic determination of autorepeat status for the key, as specified in a
symbol interpretation (see Assigning Actions To Keys).

ExplicitBehavior Automatic assignment of the KB_Lock behavior to the key, if the Lock-
ingKey flag is set in a symbol interpretation (see Assigning Actions To
Keys).

ExplicitVModMap Automatic determination of the virtual modifier map for the key based on the

actions assigned to the key and the symboal interpretations which match the
key (see Assigning Actions To Keys).

Assigning Symbols To Groups

The first step in applying the changes specified by a core protocol ChangeKeyboardMapping request
to the XKB description of a keyboard is to determine the number of groups that are defined for the key
and the width of each group. The XKB extension does not change key types in response to core protocol
SetModifierMapping requests, but it does choose key actions as described in Assigning Actions To Keys.

Determining the number of symbols required for each group is straightforward. If the key type for some
group is not protected by the corresponding ExplicitKeyType component, that group has two symbols. If
any of the explicit components for the key include ExplicitKeyType3 or ExplicitkeyType4 , the width of
the key type currently assigned to that group determines the number of symbols required for the group in
the core protocol keyboard description. The explicit type components for Groupl and Group2 behave
similarly, but for compatibility reasons the first two groups must have at least two symbols in the core
protocol symbol mapping. Even if an explicit type assigned to either of the first two keyboard groups has
fewer than two symbols, XKB requires two symbols for it in the core keyboard description.

If the core protocol request contains fewer symbols than XKB needs, XKB adds trailing NoSymbol
keysymsto the request to pad it to the required length. If the core protocol request includes more symbols
than it needs, XKB truncates the list of keysyms to the appropriate length.

Finally, XKB divides the symbols from the (possibly padded or truncated) list of symbols specified by
the core protocol request among the four keyboard groups. In most cases, the symbols for each group are
taken from the core protocol definition in sequence (i.e. the first pair of symbolsis assigned to Groupl
, the second pair of symbolsis assigned to Group2 , and so forth). If either Groupl or Group2 has an
explicitly defined key type with awidth other than two, it gets alittle more complicated.

Assigning Symbols to Groups One and Two with Explicitly Defined
Key Types

The server assignsthefirst four symbolsfrom the expanded or truncated map to the symbol positionsG1L1
, G1L2, G2L1 and G2L2, respectively. If the key type assigned to Groupl reports more than two shift

43

Interactions Between XKB
and the Core Protocol

levels, thefifth and following symbols contain the extrakeysymsfor Group2 . If the key type assigned to
Group2 reports more than two shift levels, the extra symbols follow the symbols (if any) for Groupl in
the core protocol list of symbols. Symbols for Group3 and Group4 are contiguous and follow the extra
symboals, if any, for Groupl and Group2 .

For example, consider akey with akey typethat returnsthree shift level sbound to each group. The symbols
bound to the core protocol are assigned in sequence to the symbol positions:

GlL1l, CGlL2, &L1, &KL2, GlL3, &XRL3, G3L1l, G3L2, G3L3, (AL1l, AL2, and AL3

For a key with awidth one key type on group one, a width two key type on group two and a width three
key type on group three, the symbols bound to the key by the core protocol are assigned to the following
key positions:

GlL1, (GlL2), &L1, &L2, G3L1, &3L2, G3L3

Note that the second and fourth symbols (positions G1L2 and G2L2) can never be generated if the key
type associated with the group yields only one symbol. XK B accepts and ignoresthemin order to maintain
compatibility with the core protocol.

Assigning Types To Groups of Symbols for a Key

Once the symbols specified by ChangeKeyboardMapping have been assigned to the four keyboard groups
for akey, the X server assigns a key type to each group on the key from a canonical list of key types. The
first four key typesin any keyboard map are reserved for these standard key types:

Key Type Name Standard Definition

ONE_LEVEL Describes keys that have exactly one symbol per group. Most special or func-
tion keys (such as Return) are ONE_LEVEL keys. Any combination of
modifiersyieldslevel 0. Index 0inany key symbol map specifies key type
ONE_LEVEL .

TWO_LEVEL Describes non-keypad and non-al phabetic keys that have exactly two sym-
bols per group. By default, the TWO_LEVEL typeyields column 1 if the
Shift modifier is set, column 0 otherwise. Index 1 in any key symbol map
specifies key type TWO_LEVEL .

ALPHABETIC Describes a phabetic keys that have exactly two symbols per group. The de-
fault definition of the ALPHABETIC type provides shift-cancel s-caps behav-
ior as described in Key Types. Index 2 in any key symbol map specifies key
type ALPHABETIC .

KEYPAD Describes numeric keypad keys with two symbols per group. Yields column
1if either of the Shift modifier or the real modifier bound to the virtual mod-
ifier named NumLock are set. Yields column O if neither or both modifiers
are set. Index 3in any key symbol map specifies key type KEYPAD .

Users or applications may change these key types to get different default behavior (to make shift cancel
caps lock, for example) but they must always have the specified number of symbols per group.

Before assigning key types to groups, the X server expands any alphanumeric symbol definitions as fol-
lows:

If the second symbol of either group is NoSymbol and the first symbol of that group is an aphabetic
keysym for which both lowercase and uppercase forms are defined, the X server treatsthe key asif thefirst

44

Interactions Between XKB
and the Core Protocol

element of the group were the lowercase form of the symbol and the second element were the uppercase
form of the symbol. For the purposes of this expansion, XKB ignoresthe locale and uses the capitalization
rules defined in Default Symbol Transformations.

For each keyboard group that does not have an explicit type definition, XKB chooses a key type from the
canonical key types. If the second symbol assigned to agroup is NoSymbol (after alphabetic expansion),
the server assigns key type ONE_LEVEL . If the group contains the lowercase and uppercase forms of
a single glyph (after alphanumeric expansion), the server assigns key type ALPHABETIC . If either of
the symbols in a group is a numeric keypad keysym (KP_*), the server assigns key type KEYPAD .
Otherwise, it assigns key type TWO _LEVEL .

Finally, XKB determines the number of groups of symbols that are actually defined for the key. Trailing
empty groups (i.e. groups that have NoSymbol in all symbol positions) are ignored.

There aretwo last special cases for compatibility with the core protocol: If, after trailing empty groups are
excluded, all of the groups of symbols bound to the key have identical type and symbol bindings, XKB
assigns only one group to the key. If Group2 is empty and either of Group3 or Group4 are not, and if
neither Groupl nor Group2 have explicit key types, XKB copiesthe symbols and key type from Groupl
into Group2 .

Assigning Actions To Keys

Once symbols have been divided into groups and key types chosen for the keys affected by a ChangeKey-
boardMapping request, XKB examines the symbols and modifier mapping for each changed key and as-
signs server actions where appropriate. XKB also automatically assigns server actions to changed keys
if the client issues a core protocol SetModifierMapping request, and does so optionaly in response to
XkbSetMap and XkbSetCompatMap requests.

The compatibility map includes alist of symbol interpretations , which XKB compares to each symbol
associated with any changed keysin turn, unlessthe Explicitinterp component is set for akey. Setting the
Explicitinterp component prevents the application of symbol interpretations to that key.

If the modifiers and keysym specified in asymbol interpretation match the modifier mapping and asymbol
bound to achanged key that isnot protected by Explicitinterp, the server appliesthe symbol interpretation
to the symbol position. The server considers all symbol interpretations which specify an explicit keysym
before considering any that do not. The server uses the first interpretation which matches the given com-
bination of keysym and modifier mapping; other matching interpretations are ignored.

XKB uses four of the fields of a symbol interpretation to decide if it matches one of the symbols bound
to some changed key:

» The symbol field is akeysym which matchesif it has the value NoSymbol or isidentical to the symbol
in question.

» Themodifiers specified in the mods field are compared to the modifiers affected by the key in question
asindicated by match .

» The match field can specify any of the comparisons. NoneOf , AnyOfOrNone, AnyOf , AIIOf or
Exactly .

e The levelOneOnly setting, indicates that the interpretation in question should only use the modifiers
bound tothiskey by the modifier mappingif the symbol that matchesinlevel oneof itsgroup. Otherwise,
if the symbol being considered is not in shift level one of its group, the server behaves asif the modifier
map for the key were empty. Note that it is still possible for such an interpretation to apply to a symbol
in ashift level other than oneif it matches akey without modifiers; the levelOneOnly flag only controls

45

Interactions Between XKB
and the Core Protocol

the way that matches are determined and that the key modifiers are applied when an interpretation does
match.

Applying a symbol interpretation can affect several aspects of the XKB definition of the key symbol
mapping to which it is applied:

» The action specified in the symbol interpretation is bound to the symbol position; any key event which
yields that symbol will also activate the new action.

« If thematching symbol isin position G1L 1, the autorepeat behavior of thekey is set from the autorepeat
field of the symbol interpretation. The ExplicitAutoRepeat component protects the autorepeat status of
akey from symbol interpretation initiated changes.

* If the symbol interpretation specifies an associated virtual modifier, that virtual modifier is added to the
virtual modifier map for the key. The ExplicitVModMap component guards the virtual modifier map
for akey from automatic changes. If the levelOneOnly flag is set for the interpretation, and the symbol
in question is not in position G1L 1, the virtual modifier map is not updated.

* If thematching symbol isin position G1L 1, and the locking key field is set in the symbol interpretation,
the behavior of the key ischanged to KB_Lock (see Key Behavior). The ExplicitBehavior component
prevents this change.

If no interpretations match a given symbol or key, the server uses: SA NoAction , autorepeat enabled,
non-locking key. with no virtual modifiers.

If al of the actions computed for akey are SA NoAction , the server assigns an length zero list of actions
to the key.

If the core protocol modifier mapping is changed, the server regenerates actions for the affected keys. The
XkbSetMap and XkbSetCompatMap requests can also cause actions for some or all keyboard keys to be
recomputed.

Updating Everything Else

Changes to the symbols or modifier mapping can affect the bindings of virtual modifiers. If any virtual
modifiers change, XKB updates all of its data structures to reflect the change. Applying virtual modifier
changes to the keyboard mapping night result in changes to types, the group compatibility map, indicator
maps, internal modifiers or ignore locks modifiers.

Effects of XKB on Core Protocol Events

After applying server actions which modify the base, latched or locked modifier or group state of the
keyboard, the X server recomputesthe effective group and state. Several components of the keyboard state
are reported to XKB-aware clients depending on context (see Keyboard State for a detailed description
of each of the keyboard state components):

» The effective modifier state is reported in XkbStateNotify events and in response to XkbGetSate re-
quests.

» The symbol lookup state is reported to XK B-aware clients in the state field of core protocol and input
extension key press and release eventsthat do not activate passive grabs. Unlessthe LookupState\WWhen-
Grabbed per-client flag is set, thelookup state is only reported in these events when no grabs are active.

e Thegrab state is reported to XKB-aware clients in the state field of all core protocol events that report
keyboard state, except KeyPressand KeyRelease events that do not activate passive grabs.

46

Interactions Between XKB
and the Core Protocol

» Theeffective group is the sum of the base, latched and locked keyboard groups. An out of range effec-
tive group is wrapped or truncated into range according to the setting of the groupsWrap flag for the
keyboard.

The server reports compatibility states to any clients that have not issued a successful XkbUseExtension
request. The server computes the compatibility symbol lookup state and the compatibility effective grab
state by applying the compatibility modifier map to the corresponding computed XKB states.

The compatibility symbol lookup state is reported to non-XKB clients whenever an XKB-aware client
would receive the XKB lookup state. The compatibility grab state is reported to XKB-unaware clients
whenever an XKB client would receive the XKB grab state.

If the GrabsUseXKBSate per-client option is not set, even XKB-aware clients receive the compatibility
grab state in events that trigger or terminate passive grabs. If thisflag is not set, XKB clients also receive
the compatibility grab or lookup state whenever any keyboard grab is active.

If the LookupStateWhenGrabbed per-client option is set, clients receive either the XKB or compatibility
lookup state when the keyboard is grabbed, otherwise they receive either the XKB or compatibility grab
state. All non-XKB clients receive the compatibility form of the appropriate state component; the form
that is sent to an XKB-aware client depends on the setting of the GrabsUseXKBSate option for that client.

Effect of XKB on Core Protocol Requests

Whenever a client updates the keyboard mapping using a core protocol request, the server saves the re-
guested core protocol keyboard mapping and reportsit to any clients that issue GetKeyboardMapping or
GetModifierMapping requests. Whenever a client updates the keyboard mapping using XK B requests, the
server discards the affected portion of the stored core keyboard description and regenerates it based on
the XKB description of the keyboard.

The symbols associated with the XKB keyboard description appear in the order:

GlL1 GlL2 &L1 &RL2 GlL3-n &L3-n G3L* AL*

If the type associated with Groupl is width one, the second symbol is NoSymbol ; if the type associated
with Group2 iswidth one, the fourth symbol is NoSymbol .

If akey has only one group but the keyboard has several, the symbols for Groupl are repeated for each
group. For example, given akeyboard with three groups and akey with one group that containsthe symbols
{ aA}, the core protocol description would contain the six symbols: { a A a A a A}. Asadightly
more complicated example, an XKB key which had a single width three group with the symbols{ a b
¢ } would show up in the generated core protocol keyboard description with the symbols{ a b a b ¢
c a b c} for akeyboard with three groups.

The generated modifier mapping for akey contains all of the modifiers affected by all of the actions asso-
ciated with the key plus all of the modifiers associated with any virtual modifiers bound to the key by the
virtual modifier mapping. If any of the actions associated with akey affect any component of the keyboard
group, any modifiers specified in any entry of the group compatibility map (see Group Compatibility Map)
are reported in the modifier mask. The SA_1SOLock action can theoretically affect any modifier, but the
modifier map of an SA 1SOLock key contains only the modifiers or group state that it sets by default.

The server notifiesinterested clients of keyboard map changesin one of two ways. It sends XkbMapNotify
to clients that have explicitly selected them and core protocol MappingNotify events to clients that have
not. Once a client requests XkbMapNotify events, the server stops sending it MappingNotify events to
inform it of keyboard changes.

47

Interactions Between XKB
and the Core Protocol

Sending Events to Clients

XKB normally assumesthat events sent to clients using the core protocol SendEvent request contain acore
protocol state, if applicable. If the client which will receive the event is not XK B-capable, XKB attempts
to convert the core state to an XKB state asfollows: if any of the modifiers bound to Group2 in the group
compatibility map are set in the event state, XKB clears them in the resulting event but sets the effective
group in the event stateto Group?2 .

If the PCF_SendEventUsesXKBSate per-client flag is set at the time of the SendEvent request, XKB
instead assumes that the event reported in the event is an XKB state. If the receiving client is not XKB-
aware, the extension converts the XKB state (which contains the effective state in bits 13-14) to a core
state by applying the group compatibility map just asit would for actual key events.

48

Chapter 13. The Server Database of
Keyboard Components

The X server maintains a database of keyboard components and common keyboard mappings. This
database contains five kinds of components; when combined, these five components provide a complete
description of akeyboard and its behavior.

The X Keyboard Extension providesrequeststo list the contents of this database, to assemble and complete
keyboard descriptions by merging the current keyboard description with the contents of this database, or
to replace the current keyboard description with a complete keyboard description assembled as described
below.

Component Names

Component and keymap names have the form " class (member)" where class describes a subset of the
available components for a particular type and the optional member identifies a specific component from
that subset. For example, the name " atlantis(acme)" might specify the symbolsused for the atlantis national
keyboard layout by the vendor "acme." Each class has an optional default member — references which
specify aclass but not amember refer to the default member of the class, if one exists.

The classand member names are both specified using characters from the Latin-1 character set. XKB
implementations must accept al aphanumeric characters, minus (‘-') and underscore (‘') in class or
member hames, and must not accept parentheses, plus, vertical bar, percent sign, asterisk, question mark
or white space. The use of other characters is implementation-dependent.

Partial Components and Combining Multiple
Components

Some of the elements in the server database contain describe only a piece of the corresponding keyboard
component. These partial components should be combined with other components of the same type to
be useful.

For example, a partial symbols map might describe the differences between a common ASCII keyboard
and some national layout. Such a partial map is not useful on its own because it does not include those
symbols that are the same on both the ASCII and national layouts (such as function keys). On the other
hand, this partial map can configure any ASCII keyboard to use anational layout.

Two components can be combined in two ways:

« If the second component overrides the first, any definitions that are present in both components are
taken from the second.

« If the second component augments the first, any definitions that are present in both components are
taken from the first.

Applications can use a component expression to combine multiple components of some time into a com-
plete description of some aspect of the keyboard. A component expression is a string which lists the com-
ponents to be combined separated by operators which specify the rules for combining them. A complete
description is assembled from the listed components, left to right, as follows:

49

The Server Database of
Keyboard Components

« If the new elements are being merged with an existing map, the special component name ‘%’ refersto
the unmodified value of the map.

» The '+ operator specifies that the next specified component should override the current assembled
definition.

* The'| operator specifies that the next specified component should augment the currently assembled
definition.

« If the new elements are being merged with an existing map and the component expression begins with
an operator, aleading ‘%’ isimplied.

« If any unknown or illegal characters appear anywhere in the string, the entire expression isinvalid and
isignored.

For example, the component expression "+de" specifies that the default element of the "de" map should
be applied to the current keyboard mapping, overriding any existing definitions.

A dlightly moreinvolved example: the expression "acme(ascii)+de(basic)|is09995-3" constructs a German
(de) mapping for the ASCII keyboard supplied by the "acme" vendor. The new definition begins with the
symbols for the default ASCII keyboard for Acme, overrides them with any keys that are defined for the
default German keyboard layout and then applies the definitions from the is09995-3 to any undefined keys
or groups of keys (part three of the 1509995 standard defines a common set of bindings for the secondary
group, but allows national layouts to override those definitions where necessary).

Component Hints

Each component has a set of flags that provide some additional hints about that component. XKB provides
these hints for clients that present the keyboard database to users and specifies their interpretation only
loosely. Clientscan usethese hintsto constrain thelist of componentsor to control theway that components
are presented to the user.

Hints for acomponent are reported with its name. The least significant byte of the hintsfield has the same
meaning for all five types of keyboard components, and can contain any combination of the following

values:

Flag Meaning

LC Hidden Indicates a component that should not normally be presented to the user.
LC_Default Indicates a component that is the default member of its class.
LC_Partial Indicates apartial component.

The interpretation of the most significant byte of the hints field is dependent on the type of component.
The hints defined for each kind of component are listed in the section below that describes that kind of
component.

Keyboard Components

The five types of components stored in the server database of keyboard components correspond to the
symbols, geometry, keycodes, compat and types symbolic names associated with a keyboard.

The Keycodes Component

The keycodes component of akeyboard mapping specifiesthe range and interpretation of the raw keycodes
reported by the device. It setsthe keycodes symbolic name, the minimum and maximum legal keycodes

50

The Server Database of
Keyboard Components

for the keyboard, and the symbolic namefor each key. The keycodes component might also contain aliases
for some keys, symbolic names for some indicators, and a description of which indicators are physically
present.

The special keycodes component named "computed” indicates that XKB should assign unused keycodes
to any unknown keys referenced by name by any of the other components. The computed keycodes com-
ponent is useful primarily when browsing keymaps because it makes it possible to use the symbols and
geometry components without having to find a set of keycodes that includes keycode definitions for all
of the keys listed in the two components.

XKB defines no hints that are specific to the keycodes component.

The Types Component

The typescomponent of akeyboard mapping specifiesthe key typesthat can be associated with the various
keyboard keys. It affects the types symbolic name and the list of types associated with the keyboard
(see Key Types). The types component of a keyboard mapping can also optionally contain real modifier
bindings and symbolic names for one or more virtual modifiers.

The special types component named "canonical" always contains the types and definitionslisted in Canon-
ical Key Types of this document.

XKB defines no hints that are specific to the types component.

The Compatibility Map Component

The compatibility map component of a keyboard mapping primarily specifies the rules used to assign
actions to keysyms. It affects the compat symbolic name, the symbol compatibility map and the group
compatibility map. The compat component might also specify mapsfor someindicators and the real mod-
ifier bindings and symbolic names of some virtual modifiers.

XKB defines no hints that are specific to the compatibility map component.

The Symbols Component

The symbols component of akeyboard mapping specifies primarily the symbols bound to each keyboard
key. It affects the symbols symbolic name, a key symbol mapping for each key, they keyboard modifier
mapping, and the symbolic names for the keyboard symbol groups. Optionally, the symbols component
can contain explicit actions and behaviorsfor somekeys, or the real modifier bindings and symbolic names
for some virtual modifiers.

XKB defines the following additional hints for the symbols component:

Flag Meaning

LC_AlphanumericKeys Indicates a symbol component that contains bindings primarily for an al-
phanumeric section of the keyboard.

LC ModifierKeys Indicates a symbol component that contains bindings primarily for modifier
keys.

LC_KeypadKeys Indicates a symbol component that contains bindings primarily for numeric
keypad keys.

LC FunctionKeys Indicates a symbol component that contains bindings primarily for function
keys.

LC_AlternateGroup Indicates a symbol component that contains bindings for an alternate key-
board group.

51

The Server Database of
Keyboard Components

These hints only apply to partial symbols components; full symbols components are assumed to specify
all of the pieceslisted above.

Note

The alphanumeric, modifier, keypad or function keys hints should describe the primary intent of
the component designer and should not simply an exhaustive list of the kinds of keys that are
affected. For example, national keyboard layouts affect primarily alphanumeric keys, but many
affect afew modifier keys too; such mappings should set only LC_AlphanumericKeys hint. In
general, symbol components should set only one of those four flags (though LC_AlternateGroup
may be combined with any of the other flags).

The Geometry Component

The geometry component of a keyboard mapping specifies primarily the geometry of the keyboard. It
contains the geometry symbolic name and the keyboard geometry description. The geometry component
might also contain aliases for some keys or symbolic names for some indicators and might affect the set
of indicators that are physically present. Key aliases defined in the geometry component of a keyboard
mapping override those defined in the keycodes component.

XKB defines no hints that are specific to the geometry component.

Complete Keymaps

The X server aso reports a set of fully specified keymaps. The keymaps specified in this list are usually
assembled from the components stored in the rest of the database and typically represent the most com-
monly used keymaps for a particular system.

XKB defines no hints that are specific to complete keymaps.

52

Chapter 14. Replacing the Keyboard
"On-the-Fly"

XKB supports the XkbNewKeyboardNotify event, which reports a change in keyboard geometry or the
range of supported keycodes. The server can generate an XkbNewKeyboardNotify event when it detects
anew keyboard, or in responseto an XkbGetKeyboardByName request (see Using the Server’s Database

of Keyboard Components) which loads a new keyboard description.

When aclient opens a connection to the X server, the server reports the minimum and maximum keycodes.
If the range of supported keycodesis changed, XKB keepstrack of the minimum and maximum keycodes
that were reported to each client and filters out any events that fall outside of that range. Note that these

events are simply ignored; they are not delivered to some other client.

When the server sendsan XkbNewKeyboar dNotify event to aclient to inform it of the new keycode range,
XKB resetsthe stored range of legal keycodesto the keycode range reported in the event. Non-XK B clients
and XK B-aware clientsthat do not request XkbNewKeyboardNotify events never receive eventsfrom keys

that fall outside of the legal range that XKB maintains for that client.

When aclient requests XkbNewKeyboardNotify events, the server compares the range of keycodesfor the
current keyboard to the range of keycodesthat are valid for the client. If they are not the same, the server
immediately sends that client an XkbNewKeyboardNotify event. Even if the "new" keyboard is not new

to the server, it is new to this particular client.

In addition to filtering out-of-range key events, XKB:

 Adjusts core protocol MappingNotify eventsto refer only to keys that match the stored legal range.

* Reportskeyboard mappingsfor keysthat match the stored legal rangeto clientsthat i ssue acore protocol

GetKeyboardMapping request.

» Reports modifier mappings only for keys that match the stored legal range to clients that issue a core

protocol GetModifierMapping request.

 Redtricts the core protocol ChangeKeyboardMapping and SetModifierMapping requests to keys that

fall inside the stored legal range.

In short, XKB does everything possible to hide the fact that the range of legal keycodes has changed from
clients non-XKB clients, which cannot be expected to deal with it. The corresponding XKB events and
requests do not pay attention to the legal keycode range in the same way because XKB makes it possible

for clientsto track changes to the keycode range for a device and respond to them.

53

Chapter 15. Interactions Between XKB
and the X Input Extension

All XKB interactions with the input extension are optional; implementors are free to restrict the effects of
the X Keyboard Extension to the core keyboard device. The XkbGetExtensionDevicelnfo request reports
whether or not an XKB implementation supports a particular capability for input extension devices.

XKB recognizes the following interactions with the X Input Extension:

Name Capability

X1_Keyboards If set, applications can use al XKB requests and events with extension key-
boards.

X1_ButtonActions If set, clients can assign key actions to buttons, even on input extension de-
vices that are not keyboards.

XI1_IndicatorNames If set, clients can assign names to indicators on non-keyboard extension de-
vices.

XI1_IndicatorMaps If set, clients can assign indicator maps to indicators on non-keyboard exten-
sion devices.

XI1_IndicatorState If set, clients can change the state of device indicators using the XkbSetEx-

tensionDevicel nfo request.

Attempts to use an XKB feature with an extension device fail with a Keyboard error if the server
does not support the XkbXl_Keyboards optional feature. If a capability particular capability other than
XkbXI_Keyboards is not supported, attempts to use it fail silently. The replies for most requests that can
use one of the other optional features include a field to report whether or not the request was successful,
but such requests do not cause an error condition.

Clients can also request an XkbExtensionDeviceNotify event. This event notifies interested clients of
changes to any of the supported XKB features for extension devices, or if arequest from the client that is
receiving the event attempted to use an unsupported feature.

Using XKB Functions with Input Extension
Keyboards

All XKB requests and events include a device identifier which can refer to an input extension KeyClass
device, if the implementation allows XKB to control extension devices. If the implementation does not
support XKB manipulation of extension devices, the device identifier isignored but it must be either 0
or UseCoreKbd .

I mplementationswhich do not support the use of XK B functionswith extension keyboards must not set the
XkbXI_Keyboards flag. Attempts to use XKB features on an extension keyboard with an implementation
that does not support this feature yield a Keyboard error.

Pointer and Device Button Actions

The XKB extension optionally allows clientsto assign any key action (see Key Actions) to core pointer or
input extension device buttons. This makes it possible to control the keyboard or generate keyboard key
events from extension devices or from the core pointer.

54

Interactions Between XKB
and the X Input Extension

XKB implementations are required to support actionsfor the buttons of the core pointer device, but support
for actions on extension devices is optional. |mplementations which do not support button actions for
extension devices must not set the XkbXI_ButtonActions flag.

Attemptsto query or assign button actions with an implementation that does not support thisfeature report
failure in the request reply and might cause the server to send an XkbExtensionDeviceNotify event to the
client which issued the request that failed. Such requests never cause an error condition.

Indicator Maps for Extension Devices

The XKB extension allows applications to assign indicator maps to the indicators of non-keyboard exten-
sion devices. If supported, maps can be assigned to all extension device indicators, whether they are part
of akeyboard feedback or part of an indicator feedback.

Implementations which do not support indicator maps for extension devices must not set the
XKbXI_IndicatorMaps flag.

Attemptsto query or assign indicator mapswith animplementation that does not support thisfeature report
failure in the request reply and might cause the server to send an XkbExtensionDeviceNotify event to the
client which issued the request that failed. Such requests never cause an error condition.

If thisfeatureis supported, the maps for the default indicators on the core keyboard device are visible both
as extension indicators and as the core indicators. Changes made with XkbSetDevicelnfo are visible via
XkbGetlndicatorMap and changes made with XkbSetlndicatorMap are visible via XkbGetDevicelnfo .

Indicator Names for Extension Devices

The XKB extension allows applications to assign symbolic names to the indicators of non-keyboard ex-
tension devices. If supported, symbolic names can be assigned to all extension device indicators, whether
they are part of akeyboard feedback or part of an indicator feedback.

Implementations which do not support indicator maps for extension devices must not set the
XkbXI_IndicatorMaps flag.

Attempts to query or assign indicator names with an implementation that does not support this feature
report failure in the request reply and might cause the server to send an XkbExtensionDeviceNotify event
to the client which issued the request that failed. Such requests never cause an error condition.

If this feature is supported, the names for the default indicators on the core keyboard device are visible
both as extension indicators and as the core indicators. Changes made with XkbSetDevicelnfo are visible
via XkbGetNames and changes made with XkbSetNames are visible via XkbGetDevicelnfo .

55

Chapter 16. XKB Protocol Requests

This document uses the syntactic conventions and common types defined by the specification of the core
X protocol with a number of additions, which are detailed below.

Errors

If aclient attempts to use any other XKB request except XkbUseExtension before the extension is prop-
erly initialized, XKB reports an Access error and ignores the request. XKB is properly initialized once
XkbUseExtension reports that the client has asked for a supported or compatible version of the extension.

Keyboard Errors

In addition to all of the errors defined by the core protocol, the X Keyboard Extension defines a single
error, Keyboard , which indicates that some request specified an illegal device identifier or an extension
device that is not a member of an appropriate. Unless otherwise noted, any request with an argument of
type KB_DEVICESPEC can cause Keyboard errorsif anillegal or inappropriate device is specified.

When the extension reports a Keyboard error, the most significant byte of the resource id is a further
refinement of the error cause, as defined in the table below. The least significant byte contains the device,
class, or feedback id as indicated:

high-order byte value meaning low-order byte
XkbErr_BadDevice Oxff device not found deviceid
XkbErr_BadClass Oxfe devicefound, but isthewrong class classid
XKbErr_Badld Oxfd device found, class ok, but device feedback id
does not have a feedback with the in-
dicated id

Side-Effects of Errors

With the exception of Alloc or Implementation errors, which might result in an inconsistent internal state,
no XKB request that reports an error condition has any effect. Unless otherwise stated, requests which

update some aspect of the keyboard description will not apply only part of arequest — if part of arequest
fails, the whole thing isignored.

Common Types

The following types are used in the request and event definitions in subsequent sections:

Name Value

LISTofITEMs The type LISTofITEMsis special. It issimilar to the LISTof VAL-
UE defined by the core protocol, but the elements of a LISTof-
ITEMs are not necessarily all the same size. The use of aBITMASK
to indicate which members are present is optional for a LISTof-
ITEMs— it ispossible for the set of elementsto be derived from
one or more fields of the request.

KB _DEVICESPEC 8 hit unsigned integer, UseCoreKbd, or UseCorePtr

KB_LEDCLASSSPEC { KbdFeedbackClass, LedFeedbackClass, DfltXIClass, AllXI-
Classes, XINone}

56

XKB Protocol Requests

Name

Value

KB_BELLCLASSSPEC

KB_IDSPEC
KB_VMODMASK
KB_GROUPMASK
KB_GROUPSWRAP
KB_GROUPINFO

KB_NKNDETAILSMASK
KB_STATEMASK
KB_STATEPARTMASK

KB_BOOLCTRLMASK

KB_CONTROLSMASK

KB_MAPPARTMASK

KB_CMDETAILMASK
KB_NAMEDETAILMASK

KB_AXNDETAILMASK

KB_AXSKOPTSMASK
KB_AXFBOPTSMASK

KB_AXOPTIONSMASK
KB_GBNDETAILMASK

KB_BELLDETAILMASK
KB_MSGDETAILMASK
KB_EVENTTYPE

{ KbdFeedbackClass, BellFeedbackClass, DfltXIClass, AllXI-
Classes}

8 bit unsigned integer or DfltXIld

CARD16, each bit corresponds to avirtual modifier

{ Groupl, Group2, Group3, Group4}

{ WrapIntoRange, ClamplntoRange, RedirectintoRange}

{ groupsWrap: KB_GROUPSWRAP redirectGroup: 1...4, num-
Groups: 1...4}

{ NKN_Keycodes, NKN_Geometry, NKN_DevicelD }
KEYBUTMASK or KB_GROUPMASK

{ ModifierSate, ModifierBase, ModifierLatch, ModifierLock
, GroupState, GroupBase, GroupLatch, GroupLock, Compat-
Sate, GrabMods, CompatGrabMods, LookupMods, Compat-
LookupMods, PointerButtons }

{ RepeatKeys, SowKeys, BounceKeys, SickyKeys, MouseKeys
, MouseKeysAccel , AccessXKeys, AccessXTimeout, Ac-
cessXFeedback , AudibleBell , Overlayl, Overlay2, IgnoreGrou-
pLock }

{ GroupsWrap, InternalMods, IgnoreLockMods, PerKeyRepeat ,
ControlsEnabled } or KB_ BOOLCTRLMASK

{ KeyTypes, KeySyms, ModifierMap , ExplicitComponents,
KeyActions, KeyBehaviors, VirtualMods, VirtualModMap }

{ Syminterp, GroupCompat }

{ KeycodesName, GeometryName, SymbolsName, PhysSymbol-
sName, TypesName, CompatName, KeyTypeNames, KTLevel-
Names, IndicatorNames, KeyNames, KeyAliases, VirtualMod-
Names, GroupNames, RGNames}

{ AXN_SKPress, AXN_SKAccept, AXN_SKReject
, AXN_SKRelease, AXN_BKAccept, AXN_BKRgject,
AXN_AXKWarning }

{ AX_TwoKeys, AX LatchTolLock }

{ AX KPressFB, AX_SKAcceptFB, AX FeatureFB,
AX_SowWarnFB, AX IndicatorFB, AX StickyKeysFB
, AX_SKReleaseFB , AX_SKRejectFB, AX_BKRejectFB,
AX_DumbBelIFB }

KB_AXFBOPTSMASK or KB_AXSKOPTSMASK

{ GBN_Types, GBN_CompatMap, GBN_ClientSymbols,
GBN_ServerSymbols, GBN_IndicatorMap , GBN_KeyNames,
GBN_Geometry, GBN_OtherNames }

{ XkbAlIBellNotifyEvents}
{ XkbAllActionMessages }

{ XkbNewKeyboardNotify , XkbMapNotify , XkbStateNotify, Xk-

bControlsNotify , Xkblndicator SateNotify , XkblndicatorMapNoti-
fy, XkbNamesNotify , XkbCompatMapNotify , XkbBellNotify , Xk-
bActionMessage, XkbAccessXNotify , XkbExtensionDeviceNotify }

57

XKB Protocol Requests

Name Value

KB_ACTION [type: CARDS data: LISTofCARDS]
KB_BEHAVIOR [type: CARDS, data: CARD 8]

KB_MODDEF [mask: KEYMASK, mods: KEYMASK, vmods:

KB_KTMAPENTRY
KB_KTSETMAPENTRY
KB_KEYTYPE

KB_SETKEYTYPE

KB_KEYSYMMAP

KB_KEYVMODMAP
KB_KEYMODMAP
KB_EXPLICITMASK

KB_INDICATORMASK
KB_IMFLAGS
KB_IMMODSWHICH

KB_IMGROUPSWHICH

KB_INDICATORMAP

KB_SYMINTERPMATCH

KB_SYMINTERP

KB_PCFMASK

KB_LCFLAGSMASK
KB_LCSYMFLAGSMASK

KB_VMODMASK]
[active: BOOL, level: CARDS, mods: KB_MODDEF]
[level: CARDS, mods: KB_MODDEF]

[mods: KB_MODDEF, numLevels: CARD8, map:
LISTofKB_KTMAPENTRY, preserve: LISTofKB_MODDEF]

[realMods: KEYMASK, vmods: CARD16, numLevels:
CARDS, map: LISTofKB_KTSETMAPENTRY, preserve:
LISTofKB_MODDEF]

[ktindex: LISTof CARDS, width: CARD8 numGroups: 0...4,
groupsWrap: KB_ GROUPSWRAP, redirectGroup: 0...3, syms:
LISTofKEYSYM]

[key: KEY CODE, vmods: CARD16]

[key: KEY CODE, mods: KEYMASK]

{ ExplicitkeyTypel, ExplicitKeyType2, ExplicitKeyType3, Ex-
plicitkeyType4 , Explicitinterpret, ExplicitAutoRepeat, Explicit-
Behavior , ExplicitVYModMap }

CARD32, each bit corresponds to an indicator

{ IM_NoExplicit, IM_NoAutomatic, IM_LEDDrivesKB }

{ IM_UseNone, IM_UseBase, IM_UselLatched, IM_Uselocked ,
IM_UseEffective, IM_UseCompat }

{ IM_UseNone, IM_UseBase, IM_Uselatched, IM_UselLocked ,
IM_UseEffective }

[flags: CARDS, mods: KB_MODDEF, whichMaods: groups:
KB_GROUPMASK, whichGroups: ctrls;: KB_BOOLCTRLMASK]

{ 9_NoneOf, 9_AnyOfOrNone, S_AnyOf, S_AIIOf,
S Exactly}
[sym: KEYSYM, mods; KEYMASK, levelOneOnly: BOOL,

match: KB_SYMINTERPMATCH, virtualMod: CARDS, autoRe-
peat: BOOL, lockingKey: BOOL]

{ PCF_DetectableAutorepeat, PCF_GrabsUseXkbSate,
PCF_AutoResetControls, PCF_LookupStateWhenGrabbed ,
PCF_SendEventUsesXKBState }

{ LC_Hidden, LC Default, LC Partial }

{ LC_AlphanumericKeys, LC_ModifierKeys, LC_KeypadKeys,
LC_FunctionKeys, LC_AlternateGroup }

These types are used by the XkbGetGeometry and XkbSetGeometry requests:

Name Value
KB_PROPERTY [name, value: STRINGS]
KB_POINT [X, y: CARD16]

58

XKB Protocol Requests

Name Value

KB_OUTLINE [cornerRadius: CARDS, points: LISTofKB_POINT]

KB_SHAPE [name: ATOM, outlines: LISTofKB_OUTLINE primaryNdx, ap-
proxNdx: CARDS8]

KB_KEYNAME [name: LISTofCHAR]

KB_KEYALIAS [red: LISTofCHAR, dias: LISTofCHAR]

KB_KEY [name: KB_KEYNAME, gap: INT16, shapeNdx, colorNdx:
CARDS8]

KB_ROW [top, left: INT16, vertical: BOOL, keys LISTofKB_KEY]

KB_OVERLAYKEY
KB_OVERLAYROW
KB_OVERLAY
KB_SHAPEDOODAD

KB_TEXTDOODAD

KB_INDICATORDOODAD

KB_LOGODOODAD

KB_DOODAD

KB_SECTION

[over, under: KB_KEYNAME]
[rowUnder: CARDS, keys: LISTofKB_OVERLAYKEY]
[sectionUnder: CARDS, rows: LISTofKB_OVERLAYROW]

[name: ATOM, priority: CARDS, top, left: INT16, type: { Solid-
Doodad, OutlineDoodad }, angle: INT16, width, height: CARD16
colorNdx, shapeNdx: CARDS8]

[name: ATOM, priority: CARDS, top, left: INT16, angle: INT16,
width, height: CARD16, colorNdx: CARDS, text: STRINGS, font:
STRINGS8]

[name: ATOM, priority: CARDS, top, left: INT16, angle: INT16,
shapeNdx, onColorNdx, offColorNdx: CARDS]

[name: ATOM, priority: CARDS, top, left: INT16, angle: INT16,
colorNdx, shapeNdx: CARDS, logoName: STRINGS]
KB_SHAPEDOODAD, or KB_TEXTDOODAD, or
KB_INDICATORDOODAD, or KB_LOGODOODAD

[name: ATOM, top, left, angle: INT16, width, height:

CARD1S6, priority: CARDS, rows; LISTofKB_ROW, doodads:
LISTofKB_DOODAD, overlays: LISTofKB_OVERLAY]

These types are used by XkbGetDevicelnfo and XkbSetDevicelnfo :

Name

Value

KB_XIDEVFEATUREMASK

KB_XIFEATUREMASK
KB_XIDETAILMASK
KB_DEVICELEDINFO

{ XI_ButtonActions, Xl_IndicatorNames, Xl_IndicatorMaps,
XI_IndicatorSate }

{ KB_XIDEVFEATURES or XlI_Keyboards
{ KB_XIFEATURES or XI_UnsupportedFeature }

[ledClass: KB_LEDCLASSSPEC, ledID: KB_IDSPEC, physindi-
cators: CARD32, state: CARD32, names: LISTofATOM, maps:
LISTofKB_INDICATORMARP]

Requests

This section lists all of the requests supported by the X Keyboard Extension, separated into categories of

related requests.

59

XKB Protocol Requests

Initializing the X Keyboard Extension

XkbUseExtension

wantedM gjor, wantedMinor: CARD16
supported: BOOL

serverMgjor, serverMinor: CARD16

This request enables XKB extension capabilities for the client that issues the request; the wantedMajor
and wantedMinor fields specify the extension version in use by the requesting client. The supported field
is Trueif the server supports a compatible version, False otherwise. The serverMajor and server Minor
fields return the actual version supported by the server.

Until a client explicitly and successfully requests the XKB extension, an XKB capable server reports
compatibility statein all core protocol eventsand requests. Onceaclient asksfor XK B extension semantics
by issuing this request, the server reports the extended XKB keyboard state in some core protocol events
and requests, as described in the overview section of this specification.

Clients should issue an XkbUseExtension request before using any other extension requests.

Selecting Events

XkbSelectEvents

deviceSpec: KB_DEVICESPEC

affectWhich, clear, selectAll: KB_EVENTTYPE
affectMap, map: KB_MAPPARTMASK

details: LISTofITEMs

Errors. Keyboard, Match, Value

Thisrequest updatesthe event masks of the keyboard indicated by deviceSpec for thisclient. If deviceSpec
specifiesanillegal device, a Keyboard error results.

The affectMap and map fields specify changes to the event details mask for the XkbMapNotify event. If
any map components are set in map but not in affectMap , a Match error results. Otherwise, any map
components that are set in affectMap are set or cleared in the map notify details mask, depending on the
value of the corresponding field in map .

The affectWhich, clear , and selectAll fields specify changes to any other event details masks. If any
event typesare set in both clear and selectAll , a Match error results; if any event types are specified in
either clear or selectAll but not in affectWhich , a Match error results. Otherwise, the detail masks for
any event types specified in the affectWhich field of this request are changed as follows:

» If theevent typeisaso setin clear , the detail mask for the corresponding event isset to 0 or False
, 8s appropriate.

 If theevent typeisalso setin selectAll , the detail mask for the corresponding event is set to include
al legal detail valuesfor that type.

 If theevent typeisnot set in either clear or selectAll , the corresponding element of detailslists a set
of explicit changes to the details mask for the event, as described below.

60

XKB Protocol Requests

Each entry of the details list specifies changes to the event details mask for a single type of event, and
consists of an affects mask and a values mask. All details that are specified in affects are set to the
corresponding value from values ; if any details are listed in values but not in affects, a Match error
results.

Thedetailslist containsentriesonly for those event types, if any, that arelisted in the affectWhich mask and
not in either clear or selectAll . When present, the items of the detailslist appear in the following order:

Event Type Legal Details Type

XkbNewKeyboar dNotify KB_NKNDETAILSMASK CARD16
XkbSateNotify KB_STATEPARTMASK CARD16
XkbControlsNotify KB_CONTROLMASK CARD32
Xkbl ndicator MapNotify KB_INDICATORMASK CARD32
Xkbl ndicator SateNotify KB_INDICATORMASK CARD32
XkbNamesNotify KB_NAMEDETAILMASK CARD16
XkbCompatMapNotify KB_CMDETAILMASK CARDS
XkbBellNotify KB_BELLDETAILMASK CARDS8
XkbActionMessage KB_MSGDETAILMASK CARDS
XkbAccessXNotify KB_AXNDETAILMAK CARD16
XkbExtensionDeviceNotify KB_XIDETAILMASK CARD16

Detail masks for event types that are not specified in affectWhich are not changed.

If any components are specified in a client’s event masks, the X server sends the client an appropriate
event whenever any of those components change state. Unless explicitly modified, al event detail masks
are empty. Events describes all XKB events and the conditions under which the server generates them.

Generating Named Keyboard Bells

XkbBell

deviceSpec: KB_DEVICESPEC
bellClass: KB_BELLCLASSSPEC
belllD: KB_IDSPEC

percent: INT8

forceSound: BOOL

eventOnly: BOOL

pitch, duration: INT16

name: ATOM

window: WINDOW

Errors: Keyboard, Value, Match

This request generates audible bells and/or XkbBellNotify events for the bell specified by the bellClass
and belllD on the device specified by deviceSpec at the specified pitch, duration and volume (percent).
If deviceSpec specifies adevice that does not have a bell or keyboard feedback, a Keyboard error resullts.

If both forceSound and eventOnly are set, this request yields a Match error. Otherwise, if forceSoundis
True, thisrequest aways generates a sound and never generates an event; if eventOnlyis True, it causes

61

XKB Protocol Requests

an event but no sound. If neither forceSound nor eventOnly are True, this request always generates an
event; if the keyboard' s global AudibleBell control is enabled, it also generates a sound.

Any bell event generated by this request contains all of the information about the bell that was requested,
including the symbolic name specified by name and the event window specified by window. The name
and window are not directly interpreted by XKB, but they must have the value None or specify alegal
Atom or Window, respectively. XkbBellNotify events generated in response to core protocol or X input
extension bell requests aways report None as their name.

The bellClass, bellD , and percent fields are interpreted as for the X input extension DeviceBell
request. If pitch and duration are zero, the server uses the corresponding values for that bell from the
core protocol or input extension, otherwise pitch and duration are interpreted as for the core protocol
ChangeKeyboardControl request; if they do not include legal values, a Value error results. The window
field must specify alegal Window or have the value None, or a Value error results. The name field must
specify alegal Atom or havethevalue None, or an Atom error results. If an error occurs, this request has
no other effect (i.e. does not cause a sound or generate an event).

The pitch, volume, and duration are suggested values for the bell, but XKB does not require the server
to honor them.

Querying and Changing Keyboard State

XkbGetState

deviceSpec: KB_DEVICESPEC

devicelD: CARDS

mods, baseM ods, latchedM ods, lockedMods: KEY MASK
group, lockedGroup: KB_GROUP

baseGroup, latchedGroup: INT16

compatState; KEY MASK

grabMods, compatGrabMods: KB_ GROUP
lookupM ods, compatL cokupMods: KEY MASK
ptrBtnState: BUTMASK

Errors: Keyboard

This request returns a detailed description of the current state of the keyboard specified by deviceSpec .

The devicel D return value containsthe input extension identifier for the specified device, or 0Oif the server
does not support the input extension.

The baseMods return value reports the modifiers that are set because one or more modifier keys are
logically down. The latchedMods and lockedMods return values report the modifiers that are latched or
locked respectively. The mods return value reports the effective modifier mask which results from the
current combination of base, latched and locked modifiers.

The baseGroup return value reports the group state selected by group shift keys that are logically down.
The latchedGroup and lockedGroup return values detail the effects of latching or locking group shift
keysand XkbLatchLockState requests. The group return value reportsthe effective keyboard group which
results from the current combination of base, latched and locked group values.

The lookupModsreturn value reportsthe lookup modifiers, which consist of the current effective modifiers
minus any server internal modifiers. The grabMods return value reports the grab modifiers, which consist

62

XKB Protocol Requests

of thelookup modifiers minus any members of theignorelocks mask that are not either latched or logically
depressed. Keybhoard State describes the lookup modifiers and grab modifiersin more detail.

The ptrBtnSate return value reports the current logical state of up to five buttons on the core pointer
device.

The compatSate return value reports the compatibility state that corresponds to the effective keyboard
group and modifier state. The compatLookupMods and compatGrabMods return values report the core
protocol compatibility states that correspond to the XKB lookup and grab state. All of the compatibility
states are computed by applying the group compatibility mapping to the corresponding XKB modifier and
group states, as described in Group Compatibility Map.

XkbL atchL ock State

deviceSpec: KB_DEVICESPEC
affectModL ocks, modLocks: KEYMASK
lockGroup: BOOL

groupLock: KB_GROUP

affectModL atches,modL atches: KEY MASK
latchGroup: BOOL

groupL atch: INT16

Errors. Keyboard, Value

This request locks or latches keyboard modifiers and group state for the device specified by deviceSpec .
If deviceSpec specifiesanillegal or non-keyboard device, a Keyboard error occurs.

The locked state of any modifier specified in the affectModLocks mask is set to the corresponding value
from modLocks . If lockGroup is True, the locked keyboard group is set to the group specified by
groupLock . If any modifiers are setin modLocks but not affectModLocks, a Match error occurs.

Thelatched state of any modifier specified in the affectModLatches mask is set to the corresponding value
from modLatches. If latchGroup is True, the latched keyboard group is set to the group specified by
groupLatch . if any modifiersare set in modLatches but not in affectModLatches, a Match error occurs.

If the locked group exceeds the maximum number of groups permitted for the specified keyboard, it is
wrapped or truncated back into range as specified by the global GroupsWrap control. No error results
from an out-of-range group specification.

After changing the locked and latched modifiers and groups as specified, the X server recalculates the
effective and compatibility keyboard state and generates XkbStateNotify events as appropriateif any state
components have changed. Changing the keyboard state might also turn indicators on or off which can
cause Xkblndicator SateNotify events as well.

If any errors occur, this request has no effect.

63

XKB Protocol Requests

Querying and Changing Keyboard Controls

XkbGetControls

deviceSpec: KB_DEVICESPEC

devicelD: CARDS

mouseK eysDfltBtn: CARD8

numGroups: CARDS8

groupsWrap: KB_GROUPINFO

internal M ods,ignoreL ockM ods; KB_MODDEF
repeatDelay,repeatinterval: CARD16

slowKeysDelay, debounceDelay: CARD16

mouseK eysDelay, mouseKeysinterval: CARD16

mouseK eysTimeToMax, mouseK eysMaxSpeed: CARD16
mouseKeysCurve: INT16

accessX Options: KB_AXOPTIONMASK

accessX Timeout: CARD16

accessX TimeoutOptionsMask, accessX TimeoutOptionValues. CARD16
accessX TimeoutMask,accessX TimeoutValues: CARD32
enabledControls: KB_BOOLCTRLMASK

perKeyRepeat: LISTofCARD8

Errors. Keyboard

This request returns the current values and status of all controls for the keyboard specified by deviceSpec
. If deviceSpec specifiesanillegal device a Keyboard error results. On return, the devicel D specifiesthe
identifier of the requested device or zero if the server does not support the input extension.

The numGroups return value reports the current number of groups, and groups\Wiap reportsthe treatment
of out-of-range groups, as described in Key Symbol Map. The internalModsand ignorelLockMods return
values report the current values of the server internal and ignore locks modifiers asdescribed in Keyboard
State. Both are modifier definitions (Modifier Definitions) which report the real modifiers, virtual modi-
fiers, and the resulting combination of real modifiers that are bound to the corresponding control.

The repeatDelay, repeatinterval , slowKeysDelay and debounceDelay fields report the current values
of the for the autorepeat delay, autorepeat interval, slow keys delay and bounce keys timeout, respective-
ly. The mouseKeysDelay , mouseKeysinterval , mouseKeysTimeToMax and mouseKeysMaxSpeed and
mouseKeysCurve return values report the current accel eration applied to mouse keys, as described in The
MouseK eysAccel Control. All times are reported in milliseconds.

The mouseKeysDfItBtn return value reports the current default pointer button for which events are syn-
thesized by the mouse keys server actions.

The accessXOptions return value reports the current settings of the various AccessX options flags which
govern the behavior of the StickyKeys control and of AccessX feedback.

The accessXTimeout return value reports the length of time, in seconds, that the keyboard must remain
idle before AccessX controls are automatically changed; an accessXTimeout of 0 indicates that AccessX
controls are not automatically changed. The accessXTimeoutMask specifies the boolean controls to be

64

XKB Protocol Requests

changed if the AccessX timeout expires; the accessXTimeoutValues field specifies new values for al of
the controls in the timeout mask. The accessXTimeoutOptionsMask field specifies the AccessX options
to be changed when the AccessX timeout expires; the accessXTimeoutOptionValues return val ue reports
the valuesto which they will be set.

The enabledControls return value reports the current state of all of the global boolean controls.

The perKeyRepeat array consists of one bit per key and reports the current autorepeat behavior of each
keyboard key; if a bit is set in perKeyRepeat , the corresponding key repeats if it is held down while
global keyboard autorepeat is enabled. Thisarray parallels the core protocol and input extension keyboard
controls, if the autorepeat behavior of a key is changed via the core protocol or input extension, those
changes are automatically reflected in the perKeyRepeat array.

XkbSetControls

deviceSpec: KB_DEVICESPEC

affectinternalRealM ods, internalRealMods: KEY MASK
affectinternalVirtual M ods,interna Virtua M ods: KB_VMODMASK
affectlgnorel ockReal M ods,ignorel. ockRealMods: KB_MODMASK
affectlgnoreLockVirtualMods,ignoreLockVirtualMods;: KB_VMODMASK
mouseK eysDfltBtn: CARD8

groupsWrap: KB_GROUPINFO

accessXOptions: CARD16

affectEnabledControls; KB_BOOLCTRLMASK

enabledControls: KB_BOOLCTRLMASK

changeControls: KB CONTROLMASK

repeatDel ay,repeetinterval: CARD16

slowKeysDelay, debounceDelay: CARD16

mouseK eysDelay, mouseK eysinterval: CARD16

mouseK eysTimeToMax, mouseK eysMaxSpeed: CARD16
mouseKeysCurve: INT16

accessX Timeout: CARD16

accessX TimeoutMask, accessX TimeoutValues: KB_BOOLCTRLMASK
accessX TimeoutOptionsM ask,accessX TimeoutOptionsVaues: CARD16
perKeyRepeat: LISTofCARDS8

Errors. Keyboard , Value

This request sets the keyboard controls indicated in changeControls for the keyboard specified by de-
viceSpec . Each hit that is set in changeControls indicates that one or more of the other request fields
should be applied, asfollows:

65

XKB Protocol Requests

Bit in changeControls Field(s) to be Applied

XkbRepeatKeysMask repeatDelay , repeatinterval

XkbS owKeysMask slowKeysDelay

XkbSti ckyKeysMask accessXOptions (only the XkbAX_TwoKeys and the
XkbAX_LatchToLock options are affected)

XkbBounceKeysMask debounceDelay

XkbMouseKeysMask mouseK eysDfItBtn

XkbMouseKeysAccel Mask mouseKeysDelay , mouseKeysinterval , mouseKeysCurve ,
mouseKeysTimeToMax , mouseKeysMaxSpeed

XkbAccessXKeysMask accessXOptions (all options)

XkbAccessXTimeoutMask accessXTimeout , accessXTimeoutMask , accessXTimeoutValues,

accessXTimeoutOptionsMask , accessXTimeoutOptionsValues
XkbA ccessX FeedbackM ask accessXOptions (all options except those affected by the XkbStick-

yKeysMask hit)

XkbGroupswWrapMask groupsWrap

Xkbl nter nal ModsMask affectInternal RealMods, internalRealMods, affectlnternal Vir-
tualMods, internalVirtualMods

XkblgnoreLockModsMask affectlgnoreLockRealMods, ignorelLockRealMods, affectignore-
LockVirtualMods, ignorelockVirtualMods

XkbPer KeyRepeatMask perKeyRepeat

XkbControl sEnabledMask affectEnabledControls, enabledControls

If any other bits are set in changeControls, a Value error results. If any of the bits listed above are not
setin changeControls, the corresponding fields must have the value 0, or a Match error results.

If applied, repeatDelay and repeatinterval change the autorepeat characteristics of the keyboard, as
described in The RepeatKeys Control. If specified, repeatDelay and repeatinterval must both be non-
zero or a Value error results.

If applied, the slowKeysDelay field specifies a new delay for the SowKeys control, as defined in The
SlowKeys Control. If specified, slowKeysDelay must be non-zero, or a Value error results.

If applied, the debounceDelay field specifies a new delay for the BounceKeys control, as described in
The BounceKeys Control. If present, the debounceDelay must be non-zero or a Value error results.

If applied, the mouseKeysDfItBtn field specifies the core pointer button for which events are generated
whenever a SA_PtrBtn or SA_LockPtrBtn key action is activated. If present, mouseKeysDfltBtn must
specify a legal button for the core pointer device, or a Value error results. Key Actions describes the
SA PtrBtnand SA LockPtrBtn actions in more detail.

If applied, the mouseKeysDelay , mouseKeysinterval , mouseKeysTimeToMax , mouseKeysMaxSpeed
and mouseKeysCurve fields change the rate at which the pointer moves when a key which generates a
SA MovePtr action isheld down. The MouseK eysAccel Control describesthese MouseKeysAccel param-
etersin more detail. If defined, the mouseKeysDelay , mouseKeysinterval , mouseKeysTimeToMax and
mouseKeysMaxSpeed values must all be greater than zero, or a Value error results. The mouseKeysCurve
value must be greater than -1000 or a Value error results.

If applied, the accessXOptions field sets the AccessX options, which are described in detail in The
AccessXKeys Control. If either one of XkbSickyKeysMask and XkbAccessXFeedbackMask are set in

66

XKB Protocol Requests

changeControls and XkbAccessXKeysMask is not, only a subset of the AccessX options are changed, as
described in the table above; if both are set or if the AccessXKeys bit is set in changeControls , all of
the AccessX options are updated. Any bit in accessXOptions whose interpretation is undefined must be
zero, or a Value error results.

If applied, the accessXTimeout , accessXTimeoutMask , accessXTimeoutValues, accessXTimeoutOp-
tionsMask and accessXTimeoutOptionsValuesfields change the behavior of the AccessX Timeout control,
as described in The AccessX Timeout Control. The accessXTimeout must be greater than zero, or a Value
error results. The accessXTimeoutMask or accessXTimeoutValues fields must specify only legal boolean
controls, or a Value error results. The accessXTimeoutOptionsMask and accessXTimeoutOptionsValues
fields must contain only legal AccessX optionsor a Value error results. If any bits are set in either values
field but not in the corresponding mask, a Match error results.

If present, the groupsWrap field specifies the treatment of out-of-range keyboard groups, as described
in Key Symbol Map. If the groupsWrap field does not specify alegal treatment for out-of-range groups,
a Value error results.

If present, the affectinternalRealMods field specifies the set of real modifiers to be changed in the in-
ternal modifier definition and the internalRealMods field specifies new values for those modifiers. The
affectinternal VirtualMods and internal VirtualMods fields update the virtual modifier component of the
modifier definition that describesthe internal modifiersin the sameway. If any bitsare set in either values
field but not in the corresponding mask field, a Match error results.

If present, the affectlgnoreLockRealMods field specifies the set of real modifiers to be changed in the
ignore locks modifier definition and the ignorel.ockRealMods field specifies new values for those mod-
ifiers. The affectlgnorelockVirtualMods and ignorelLockVirtualMods fields update the virtual modifier
component of the ignore locks modifier definition in the sameway. If any bitsare set in either valuesfield
but not in the corresponding mask field, a Match error results.

If present, the perKeyRepeat array specifiestherepeat behavior of theindividual keyboard keys. Thecorre-
sponding core protocol or input extension per-key autorepeat information is updated to reflect any changes
specified in perKeyRepeat . If the bits that correspond to any out-of-range keys are set in per KeyRepeat
, a Value error results.

If present, the affectEnabledControls and enabledControls field enable and disable global boolean con-
trols. Any controls set in both fields are enabled; any controlsthat are set in affectEnabledControls but not
in enabledControls are disabled. Controls that are not set in either field are not affected. If any controls
are specified in enabledControls but not in affectEnabledControls, a Match error results. If either field
contains anything except boolean controls, a Value error results.

67

XKB Protocol Requests

Querying and Changing the Keyboard Mapping

XkbGetM ap

deviceSpec: KB_DEVICESPEC

full, partial: KB_MAPPARTMASK

firstType, nTypes. CARD8

firstKeySym, firstKeyAction: KEY CODE
nKeySyms, nKeyActions: CARD8
firstKeyBehavior, firstkeyExplicit: KEY CODE
nKeyBehaviors,nKeyExplicit: CARD8
firstModMapK ey firstVModMapKey: KEY CODE
nModMapK eys, nVModMapKeys: CARDS
virtualMods: KB_VMODMASK

devicelD: CARDS

minK eyCode, maxKeyCode: KEY CODE

present: KB_MAPPARTMASK

firstType, nTypes, nTotal Types: CARD8
firstKeySym, firstKeyAction: KEY CODE
nKeySyms, nKeyActions: CARD8

total Syms, totalActions: CARD16
firstKeyBehavior, firstKeyExplicit: KEY CODE
nKeyBehaviors, nKeyExplicit: CARD8
totalKeyBehaviors, totalKeyExplicit: CARD8
firsstModMapKey, firstVModMapKey: KEY CODE
nModMapKeys, nVModMapKeys: CARDS8
totalModM apK eys, totalV ModMapK eys: CARD8
virtualMods: KB_VMODMASK

typesRtrn: LISTofKB_KEYTYPE

symsRtrn; LISTofKB_KEYSYMMAP

actsRtrn: { count: LISTofCARDS, acts: LISTofKB_ACTION }
behaviorsRtrn: LISTofKB_SETBEHAVIOR
vmodsRtrn: LISTof SETofKEY MASK
explicitRtrn: LISTofKB_SETEXPLICIT
modmapRtrn: LISTofKB_KEYMODMAP
vmodMapRtrn: LISTofKB_KEYVMODMAP
Errors. Keyboard, Value, Match, Alloc

This request returns the indicated components of the server and client maps of the keyboard specified by
deviceSpec . The full mask specifiesthe map componentsto be returned in full; the partial mask specifies
the components for which some subset of thelegal elements areto be returned. The server returnsa Match
error if any component is specified in both full and partial , or a Value error if any undefined bits are
setin either full or partial .

68

XKB Protocol Requests

Eachbitinthe partial mask controlstheinterpretation of one or more of the other request fields, asfollows:

Bit in the Partial Mask Type Corresponding Field(s)
XkbKeyTypesMask key types firstType, nTypes
XkbKeySymsMask keycodes firstKeySym, nKeySyms
XkbKeyActionsMask keycodes firstkeyAction, nKeyActions
XkbKeyBehaviorsMask keycodes firstKeyBehavior , nKeyBehaviors
XkbExplicitComponentsMask keycodes firstkeyExplicit, nKeyExplicit
XkbModifierMapMask keycodes firstModMapKey , nModMapKeys
XkbVirtualModMapMask keycodes firstVModMapKey , nVModMapKeys
XkbVirtualModsMask virtual modifiers virtualMods

If any of these keyboard map components are specified in partial , the corresponding values must specify
avalid subset of the requested components or this request reportsa Value error. If a keyboard map com-
ponent is not specified in partial , the corresponding fields must contain zeroes, or a Match error results.

If any error is generated, the request aborts and does not report any values.

On successful return, the devicel D field reportsthe X input extension device ID of the keyboard for which
information is being returned, or 0if the server does not support the X input extension. The minKeyCode
and maxKeyCode return valuesreport the minimum and maximum keycodesthat arelegal for the keyboard
in question.

The present return value lists al of the keyboard map components contained in the reply. The bits in
present affect the interpretation of the other return values as follows:

If XkbKeyTypesMaskissetin present :
« firstType and nTypes specify the types reported in the reply.
» nTotal Types reports the total number of types defined for the keyboard

* typesRtrn has nTypes elements of type KB_KEY TY PE which describe consecutive key types starting
from firstType.

If XkbKeySymsMaskissetin present :
« firstkeySymand nKeySyms specify the subset of the keyboard keys for which symbolswill be reported.
* total Syms reports the total number of keysyms bound to the keys returned in this reply.

» symsRirn has nKeySyms elements of type KB_KEY SYMMAP, which describe the symbols bound to
consecutive keys starting from firstkKeySym.

If XkbKeyActionsMaskissetin present :
« firstKeyAction and nKeyActions specify the subset of the keys for which actions are reported.
* total Actions reports the total number of actions bound to the returned keys.

e The count field of the actsRtrnreturn value has nKeyActions entries of type CARDS, which specify the
number of actions bound to consecutive keys starting from firstkKeyAction . The actsfield of actsRirn
has total Actions elements of type KB_ACTION and specifies the actions bound to the keys.

69

XKB Protocol Requests

If

If

If

XkbKeyBehaviorsMask is set in present :

The firstkeyBehavior and nKeyBehaviors return values report the range of keyboard keys for which
behaviors will be reported.

The totalKeyBehaviors return value reports the number of keys in the range to be reported that have
non-default values.

The behaviorsRtrn value has totalKeyBehaviorsentries of type KB_BEHAVIOR. Each entry specifies
akey intherangefor which behaviors are being reported and the behavior associated with that key. Any
keysin that range that do not have an entry in behaviorsRtrn have the default behavior, KB_Default .

XkbExplicitComponentsMask is set in present :

The firstkeyExplicit and nKeyExplicit return values report the range of keyboard keys for which the
set of explicit componentsis to be returned.

The totalKeyExplicit return value reports the number of keysin therange specified by firstKeyExplicit
and nKeyExplicit that have one or more explicit components.

The explicitRirn return value has totalKeyExplicit entries of type KB_KEYEXPLICIT. Each entry
specifies the akey in the range for which explicit components are being reported and the explicit com-
ponents that are bound to it. Any keys in that range that do not have an entry in explicitRtrn have no
explicit components.

XkbModifierMapMask is set in present :

The firstModMapKey and nModMapKeys return values report the range of keyboard keys for which
the modifier map is to be reported.

The totalModMapKeys return val ue reports the number of keysin the range specified by firstModMap-
Key and nModMapKeys that are bound with to one or more modifiers.

The modmapRtrn return value has totalModMapKeys entries of type KB_ KEY MODMAP. Each entry
specifies the a key in the range for which the modifier map is being reported and the set of modifiers
that are bound to that key. Any keys in that range that do not have an entry in modmapRtrn are not
associated with any modifiers by the modifier mapping.

XkbVirtualModMapMask is set in present :

The firstVModMapKey and nVModMapKeys return val ues report the range of keyboard keysfor which
the virtual modifier map isto be reported.

The totalVModMapKeys return value reports the number of keys in the range specified by firstV-
ModMapKey and hVModMapKeys that are bound with to or more virtual modifiers.

The vmodmapRtirn return value has total VModMapKeys entries of type KB_KEYVMODMAP. Each
entry specifies the akey in the range for which the virtual modifier map is being reported and the set
of virtual modifiers that are bound to that key. Any keys in that range that do not have an entry in
vmodmapRtrn are not associated with any virtual modifiers,

XkbVirtualModsMask is set in present :

The virtualMods return value is a mask with one bit per virtual modifier which specifies the virtua
modifiers for which a set of corresponding real modifiersisto be returned.

The vmodsRtrn return value is alist with one entry of type KEYBUTMASK for each virtual modifier
that is specified in virtualMods . The entries in vmodsRtrn contain the real modifier bindings for

70

XKB Protocol Requests

the specified virtual modifiers, beginning with the lowest-numbered virtual modifier that is present in
virtualMods and proceeding to the highest.

If any of these bits are not set in present , the corresponding numeric fields al have the value zero, and
the corresponding lists are all of length zero.

XkbSetM ap

deviceSpec: KB_DEVICESPEC

flags: { SetMapResizeTypes, SetMapRecomputeActions }
present: KB_MAPPARTMASK

minKeyCode, maxKeyCode: KEY CODE
firstType, nTypes: CARD8

firstKeySym, firstKeyAction: KEY CODE
nKeySyms, nKeyActions: CARD8

total Syms, totalActions: CARD16
firstKeyBehavior, firstKeyExplicit: KEY CODE
nKeyBehaviors, nKeyExplicit: CARD8
totalKeyBehaviors, totalKeyExplicit: CARD8
firsstModMapKey, firstVModMapKey: KEY CODE
nModMapKeys, nVModMapKeys: CARDS8
totalModMapK eys, totalVModMapKeys: CARD8
virtualMods: VMODMASK

types: LISTofKB_KEYTYPE

syms: LISTofKB_KEYSYMMAP

actions: { count: LISTofCARDS, actions. LISTofKB_ACTION }
behaviors: LISTofKB_BEHAVIOR

vmods: LISTofKEYMASK

explicit: LISTofKB_EXPLICIT

modmap: LISTofKB_KEYMODMAP

vmodmap: LISTofKB_KEYVMODMAP

Errors. Keyboard, Value, Match, Alloc

This request changes the indicated parts of the keyboard specified by deviceSpec . With XKB, the effect
of akey release is independent of the keyboard mapping at the time of the release, so this request can be
processed regardless of the logical state of the modifier keys at the time of the request.

The present field specifies the keyboard map components contained to be changed. The bitsin present
affect the interpretation of the other fields as follows:

If XkbKeyTypesMaskissetin present, firstTypeand nTypes specify a subset of the key types bound to
the keyboard to be changed or created. The index of the first key type to be changed must be less than or
equal to the unmodified length of the list of key typesor a Value error results.

If XkbKeyTypesMaskissetin present and SetMapResizeTypesissetin flags, the server resizesthe list
of key types bound to the keyboard so that the last key type specified by this request is the last element
inthelist. If thelist of key typesis shrunk, any existing key definitions that use key types that eliminated
are automatically assigned key typesfrom the list of canonical key typesasdescribed in Assigning Types

71

XKB Protocol Requests

To Groups of Symbolsfor aKey. Thelist of key types bound to a keyboard must always include the four
canonical types and cannot have more than XkbMaxTypesPerKey (32) types; any attempt to reduce the
number of types bound to a keyboard below four or above XkbMaxTypesPerKey causes a Value error.
Symbolic names for newly created key types or levels within akey type areinitialized to None.

If XkbKeyTypesMask is set in present , the types list has nTypes entries of type KB_KEYTY PE.Each
key type specified in types must be valid or a Value error results. To be valid a key type definition must
meet the following criteria:

» The numLevelsfor the type must be greater than zero.
 If thekey typeis ONE_LEVEL (i.e. index zero in the list of key types), numLevels must be one.

 If the key typeis TWO_LEVEL or KEYPAD , or ALPHABETIC (i.e. index one, two, or three in the
lest of key types) group width must be two.

Each key type in types must also be internally consistent, or a Match error results. To be internally con-
sistent, akey type definition must meet the following criteria:

» Each map entry must specify aresulting level that islegal for the type.

» Any rea or virtual modifiers specified in any of the map entries must also be specified in the mods
for the type.

If XkbKeySymsMask is set in present , firstKeySym and nKeySyms specify a subset of the keyboard
keys to which new symbols are to be assigned and total Syms specifies the total number of symbolsto be
assigned to those keys. If any of the keys specified by firstKeySymand nKeySymsare not legal, a Match
error results. The symslist has nKeySyms elements of type KB_KEY SY MMAP. Each key in theresulting
key symbol map must be valid and internally consistent or a Value error results. To be valid and internally
consistent, akey symbol map must meet the following criteria:

» Thekey typeindices must specify legal result key types.

e The number of groups specified by grouplnfo must beintherange 0...4 .

» The width of the key symbol map must be equal to numLevels of the widest key type bound to the key.
» The number of symbols, nSyms, must equal the number of groupstimes width .

If XkbKeyActionsMaskissetin present, firstkeyActionand nKeyActions specify asubset of the keyboard
keys to which new actions are to be assigned and total Actions specifies the total number of actionsto be
assigned to those keys. If any of the keys specified by firstkKeyAction and nKeyActions are not legal, a
Match error results. The count field of the actionsreturn value has nKeyActions elementsof type CARDS;
each element of count specifies the number of actions bound to the corresponding key. The actions list
inthe actionsfield has total Actions elements of type KB_ACTION. These actions are assigned to each
target key in turn, as specified by count . Thelist of actions assigned to each key must either be empty or
have exactly as many actions as the key has symbols, or a Match error results.

If XkbKeyBehaviorsMask is set in present, firstKeyBehavior and nKeyBehaviors specify a subset of
the keyboard keys to which new behaviors are to be assigned, and total KeyBehaviors specifies the total
number of keysin that range to be assigned non-default behavior. If any of the keys specified by firstKey-
Behavior and nKeyBehaviorsare not legal, a Match error results. The behaviorslist has total KeyBehav-
iorselements of type KB_ BEHAVIOR; each entry of behaviors specifies akey in the specified range and
anew behavior for that key; any key that falls in the range specified by firstBehavior and nBehaviors
for which no behavior is specified in behaviorsis assigned the default behavior, KB_Default . The new
behaviors must be legal, or a Value error results. To be legal, the behavior specified in the XkbSetMap
request must:

72

XKB Protocol Requests

» Specify akey intherangeindicated by firstkeyBehavior and nKeyBehaviors.

» Not specify the permanent flag; permanent behaviors cannot be set or changed using the XkbSetMap
request.

« If present, the KB_Overlayl and KB_Overlay2 behaviors must specify a keycode for the overlay key
that isvalid for the current keyboard.

 If present, the KB_RadioGroup behavior must specify a legal index (0...31) for the radio group to
which the key belongs.

Key behaviors that are not recognized by the server are accepted but ignored. Attempts to replace a " per-
manent" behavior are silently ignored; the behavior isnot replaced, but not error is generated and any other
components specified in the XkbSetMap request are updated, as appropriate.

If XkbVirtualModsMask isset in present , virtualMods is a mask which specifies the virtual modifiers
to be rebound. The vmods list specifies the real modifiers that are bound to each of the virtual modifiers
specified in virtualMods , starting from the lowest numbered virtual modifier and progressing upward.
Any virtual modifier that is not specified in virtualMods has no corresponding entry in vmods , so the
vmods list has one entry for each bit that isset in virtualMods .

If XkbExplicitComponentsMaskissetin present, firstKeyExplicit and nKeyExplicit specify a subset of
the keyboard keys to which new explicit components are to be assigned, and totalKeyExplicit specifies
the total number of keys in that range that have at least one explicit component. The explicit list has
total KeyExplicit elements of type KB_KEYEXPLICIT; each entry of explicit specifiesakey in the spec-
ified range and a new set of explicit components for that key. Any key that fallsin the range specified by
firstkeyExplicit and nKeyExplicit that is not assigned some valuein explicit has no explicit components.

If XkbModifierMapMask is set in present , firstModMapKey and nModMapKeys specify a subset of
the keyboard keys for which new modifier mappings are to be assigned, and totalModMapKeys specifies
the total number of keys in that range to which at least one modifier is bound. The modmap list has
totalModMapKeys elements of type KB_KEYMODMAP; each entry of modmap specifies a key in the
specified range and a new set of modifiers to be associated with that key. Any key that fallsin the range
specified by firstModMapKey and nModMapKeys that is not assigned some value in modmap has no
associated modifiers.

If the modifier map is changed by the XkbSetMap request, any changes are aso reflected in the core
protocol modifier mapping. Changes to the core protocol modifier mapping are reported to XK B-unaware
clients via MappingNotify events and can be retrieved with the core protocol GetModifierMapping re-
quest.

If XkbVirtualModMapMaskissetin present, firstVModMapKey and nVModMapKeys specify a subset of
the keyboard keysfor which new modifier mappings are to be assigned, and total VModMapKeys specifies
the total number of keysin that range to which at least one virtual modifier is bound. The vmodmap list
has totalVModMapKeys elements of type KB_KEYVMODMAP; each entry of vmodmap specifies a
key in the specified range and a new set of virtual modifiers to be associated with that key. Any key that
fallsin the range specified by firstVModMapKey and nVModMapKeys that is not assigned some value
in vmodmap has no associated virtual modifiers.

If the resulting keyboard map is legal, the server updates the keyboard map. Changes to some keyboard
components have indirect effects on others:

If the XkbSetMapRecomputeActions bit is set in flags, the actions associated with any keys for which
symbol or modifier bindings were changed by this request are recomputed as described in Assigning Ac-
tions To Keys. Note that actions are recomputed after any actions specified in this request are bound to

73

XKB Protocol Requests

keys, so the actions specified in this request might be clobbered by the automatic assignment of actions
to keys.

If the group width of an existing key type is changed, the list of symbols associated with any keys of the
changed type might be resized accordingly. If the list increases in size, any unspecified new symbols are
initialized to NoSymbol .

If the list of actions associated with a key is not empty, changing the key type of the key resizes the
list. Unspecified new actions are calculated by applying any keyboard symbol interpretations to the cor-
responding symbols.

The number of groups global to the keyboard is always equal to the largest number of groups specified
by any of the key symbol maps. Changing the number of groups in one or more key symbol maps may
change the number of groups global to the keyboard.

Assigning key behavior KB_RadioGroup to akey addsthat key as a member of the specified radio group.
Changing a key with the existing behavior KB_RadioGroup removes that key from the group. Changing
the elements of a radio group can cause synthetic key press or key release events if the key to be added
or removed islogically down at the time of the change.

Changing a key with behavior KB_Lock causes a synthetic key release event if the key is logically but
not physically down at the time of the change.

This request sends an XkbMapNotify event which reflects both explicit and indirect map changes to any
interested clients. If any symbolic names are changed, it sends a XkbNamesNotify reflecting the changes
to any interested clients. XKB-unaware clients are notified of keyboard changes via core protocol Map-
pingNotify events.

Key press and key release events caused by changing key behavior may cause additional XkbStateNotify
or Xkblndicator SateNotify events.

Querying and Changing the Compatibility Map

XkbGetCompatM ap

deviceSpec: KB_DEVICESPEC
groups: KB_GROUPMASK
getAllSl: BOOL

firstSl, nSl: CARD16

devicelD: CARDS

groupsRtrn: KB_GROUPMASK
firstSIRtrn, nSIRtrn, nTotalSI: CARD16
siRtrn: LISTofKB_SYMINTERP
groupRtrn: LISTofKB_MODDEF
Errors. Keyboard, Match, Alloc

This request returns the listed compatibility map components for the keyboard specified by deviceSpec .
If deviceSpec does not specify avalid keyboard device, a Keyboard Error results. On return, devicelD
reports the input extension identifier of the keyboard device or 0 if the server does not support the input
extension.

If getAllS is False, firstS and nS specify asubset of the symbol interpretationsto be returned; if used,
nS must be greater than 0 and all of the elements specified by firstS and nS must be defined or a Value

74

XKB Protocol Requests

error results. If getAllSymsis True, the server ignores firstSymand nSyms and returns all of the symbol
interpretations defined for the keyboard.

The groups mask specifies the groups for which compatibility maps are to be returned.

The nTotalS return value reports the total number of symbol interpretations defined for the keyboard.
On successful return, the siRtrn return list contains the definitions for nSRtrn symbol interpretations
beginning at firstSRtrn.

The groupRtrn return values report the entries in the group compatibility map for any groups specified
inthe groupsRtrn return value.

XkbSetCompatMap

deviceSpec: KB_DEVICESPEC
recomputeActions; BOOL

truncateSl: BOOL

groups: KB_GROUPMASK

firstSl, nSl: CARD16

si: LISTofKB_SYMINTERPRET
groupMaps:. LISTofKB_MODDEF

Errors. Keyboard, Match, Value, Alloc

Thisrequest changes a specified subset of the compatibility map of the keyboard indicated by deviceSpec
. If deviceSpec specifies an invalid device, a Keyboard error results and nothing is changed.

The firstS and nd fields specify a subset of the keyboard symbol interpretations to be changed. The si
list specifies new values for each of the interpretations in that range.

Thefirst symbol interpretation to be changed, firstS , must be lessthan or equal to the unchanged length
of the list of symbol interpretations, or a Value error results. If the resulting list would be larger than
the unchanged ligt, it server list of symbol interpretationsis automatically increased in size. Otherwise, if
truncateSymsis True, the server deletes any symbol interpretations after the last element changed by this
request, and reduces the length of the list accordingly.

The groupMapsfields contain new definitions for a subset of the group compatibility map; groups spec-
ifies the group compatibility map entries to be updated from groupMaps .

All changed compatibility maps and symbol interpretations must either ignore group state or specify a
legal range of groups, or a Value error results.

If the recomputeActionsfieldis True, the server regeneratesrecal cul atesthe actionsbound to all keyboard

keys by applying the new symbol interpretations to the entire key symbol map, as described in Assigning
Actions To Keys.

Querying and Changing Indicators

XkbGetlndicator State

deviceSpec: KB_DEVICESPEC

devicelD: CARDS state: KB_INDICATORMASK
Errors. Keyboard

75

XKB Protocol Requests

This request reports the current state of the indicators for the keyboard specified by deviceSpec . If de-
viceSpec does not specify avalid keyboard, a Keyboard error results.

On successful return, the devicelD field reports the input extension identifier of the keyboard or O if
the server does not support the input extension. The state return value reports the state of each of the
thirty-two indicators on the specified keyboard. The least-significant bit corresponds to indicator 0, the
most significant bit to indicator 31; if abit is set, the corresponding indicator islit.

XkbGetlndicatorMap

deviceSpec: KB_DEVICESPEC

which: KB_INDICATORMASK
devicelD: CARDS8

which: KB_INDICATORMASK
realIndicators: KB_INDICATORMASK
nlndicators. CARD8

maps. LISTofKB_INDICATORMAP
Errors. Keyboard, Value

This request returns a subset of the maps for the indicators on the keyboard specified by deviceSpec . If
deviceSpec does not specify avalid keyboard device, a Keyboard error results.

The which field specifies the subset to be returned; a set bit in the which field indicates that the map for
the corresponding indicator should be returned.

On successful return, the devicelD field reports the input extension identifier of the keyboard or O if
the server does not support the input extension. Any indicators specified in reallndicators are actually
present on the keyboard; the rest are virtual indicators. Virtual indicators do not directly cause any visible
or audible effect when they change state, but they do cause Xkblndicator SateNotify events.

The maps return value reports the requested indicator maps. Indicator maps are described in Indicator
Maps

XkbSetIndicator M ap

deviceSpec: KB_DEVICESPEC
which; KB_INDICATORMASK
maps: LISTofKB_INDICATORMAP
Errors. Keyboard, Value

This request changes a subset of the maps on the keyboard specified by deviceSpec . If deviceSpec does
not specify avalid keyboard device, a Keyboard error results.

The which field specifies the subset to be changed; the maps field contains the new definitions.

If successful, the new indicator maps are applied immediately. If any indicators change state as aresult of
the new maps, the server generates Xkblndicator SateNotify events as appropriate.

76

XKB Protocol Requests

XkbGetNamedI ndicator
deviceSpec: KB_DEVICESPEC
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC

indicator: ATOM

devicelD: CARDS8

supported: BOOL

indicator: ATOM

found: BOOL

on: BOOL

realIndicator: BOOL

ndx: CARD8

map: KB_INDICATORMAP
Errors. Keyboard, Atom, Value

This request returns information about the indicator specified by ledClass, ledID , and indicator on
the keyboard specified by deviceSpec . The indicator field specifies the name of the indicator for which
information is to be returned.

If deviceSpec does not specify a device with indicators, a Keyboard error results. If ledClass does not
have the value DfltXIClass, LedFeedbackClass, or KbdFeedbackClass, a Value error results. If ledID
does not have the value DfltXIld or specify the identifier of afeedback of the class specified by ledClass
on the device specified by deviceSpec , a Match error results. If indicator is not avalid ATOM other
than None, an Atom error results.

This request is always supported with default class and identifier on the core keyboard device. If the re-
guest specifies a device other than the core keyboard device or afeedback class and identifier other than
the defaults, and the server does not support indicator names or indicator maps for extension devices, the
supported return value is False and the values of the other fields in the reply are undefined. If the client
which issued the unsupported request has also selected to do so, it will aso receive an XkbExtension-
DeviceNotify event which reports the attempt to use an unsupported feature, in this case one or both of
XkbXI_IndicatorMaps or XkbXI_IndicatorNames .

Otherwise, supportedis Trueand the devicel D field reportstheinput extension identifier of the keyboard
or 0if the server does not support the input extension. The indicator return value reports the name for
which information was requested and the found return value is True if an indicator with the specified
name was found on the device.

If amatching indicator was found:
» The onreturn value reports the state of the indicator at the time of the request.

e The reallndicator return value is True if the requested indicator is actually present on the keyboard
or Falseif itisvirtual.

» The ndx return value reports the index of the indicator in the requested feedback.

» The map return valuereportstheindicator map used by to automatically change the state of the specified
indicator in response to changes in keyboard state or controls.

If no matching indicator is found, the found return valueis False, and the on, reallndicator , ndx,
and map return values are undefined.

77

XKB Protocol Requests

XkbSetNamedI ndicator
deviceSpec: KB_DEVICESPEC
ledClass: KB_LEDCLASSSPEC
ledID: KB_IDSPEC

indicator: ATOM

setState: BOOL

on: BOOL

setMap: BOOL

createMap: BOOL

map: KB_SETINDICATORMAP
Errors. Keyboard, Atom, Access

This request changes various aspects of the indicator specified by ledClass, ledID , and indicator on
the keyboard specified by deviceSpec . The indicator argument specifies the name of the indicator to
be updated.

If deviceSpec does not specify a device with indicators, a Keyboard error results. If ledClass does not
have the value DfltXIClass, LedFeedbackClass, or KbdFeedbackClass, a Value error results. If ledID
does not have the value DfItXIld or specify theidentifier of afeedback of the class specified by ledClass
on the device specified by deviceSpec , a Match error results. If indicator is not avalid ATOM other
than None, an Atom error results.

This request is always supported with default class and identifier on the core keyboard device. If the re-
quest specifies a device other than the core keyboard device or afeedback class and identifier other than
the defaults, and the server does not support indicator names or indicator maps for extension devices, the
supported return value is False and the values of the other fields in the reply are undefined. If the client
which issued the unsupported request has also selected to do so, it will also receive an XkbExtension-
DeviceNotify event which reports the attempt to use an unsupported feature, in this case one or both of
XkbXI_IndicatorMaps and XkbXI_IndicatorNames .

Otherwise, supportedis Trueand the devicel D field reportsthe input extension identifier of the keyboard
or 0if the server does not support the input extension. The indicator return value reports the name for
which information was requested and the found return value is True if an indicator with the specified
name was found on the device.

If no indicator with the specified name is found on the specified device, and the createMap field is True
, XKB assigns the specified name to the lowest-numbered indicator that has no name (i.e. whose name
is None) and applies the rest of the fields in the request to the newly named indicator. If no unnamed
indicators remain, this request reports no error and has no effect.

If no matching indicator isfound or new indicator assigned this request reports no error and has no effect.
Otherwise, it updates the indicator as follows:

If setMap is True, XKB changes the map for the indicator (see Indicator Maps) to reflect the values
specifiedin map .
If setSateis True, XKB attemptsto explicitly change the state of the indicator to the state specified in

on . The effects of an attempt to explicitly change the state of an indicator depend on the valuesin the map
for that indicator and are not guaranteed to succeed.

If thisrequest affects both indicator map and state, it updatestheindicator map before attempting to change
its state, so the success of the explicit change depends on the indicator map values specified in the request.

78

XKB Protocol Requests

If this request changes the indicator map, it applies the new map immediately to determine the appropriate
state for the indicator given the new indicator map and the current state of the keyboard.

Querying and Changing Symbolic Names

XkbGetNames
deviceSpec: KB_DEVICESPEC
which: KB_NAMEDETAILMASK

devicelD: CARD8 which: KB_NAMESMASK minKeyCode, maxKeyCode: KEY CODE nTypes:
CARDS8 nKTLevels: CARD16 groupNames: KB_GROUPMASK virtuaMods: KB_VMODMASK
firstKey: KEY CODE nKeys: CARDS8 indicators: KB_INDICATORMASK nRadioGroups, nKeyAlias-
es. CARDS present: KB_NAMEDETAILMASK valueList: LISTofITEMs

Errors: Keyboard, Value

This request returns the symbolic names for various components of the keyboard mapping for the device
specified by deviceSpec . The which field specifies the keyboard components for which names are to
be returned. If deviceSpec does not specify a valid keyboard device, a Keyboard error results. If any
undefined bitsin which are non-zero, a Value error results.

The devicel D return value contains the X Input Extension device identifier of the specified deviceor 0
if the server does not support the input extension. The present and valuelist return values specify the
componentsfor which names are being reported. If acomponent is specifiedin present , the corresponding
element is present in the valuelist , otherwise that component has length 0 . The components of the
valuel.ist appear in the following order, when present:.

Component Size Type
XkbKeycodesName 1 ATOM
XkbGeometryName 1 ATOM
XkbSymbolsName 1 ATOM
XkbPhysSymbol sName 1 ATOM
XkbTypesName 1 ATOM
XkbCompatName 1 ATOM
XkbKeyTypeNames nTypes LISTofATOM
XKkbKTLevel Names nTypes, nKTLevels { count: LISTof CARDS, names:
LISTofATOM }
XkblndicatorNames One per bit set in indicators LISTofATOM
XkbVirtualModNames Oneper bit setin virtualMods LISTofATOM
XkbGroupNames One per bit setin groupNames LISTofATOM
XkbKeyNames nKeys LISTofKB_KEYNAME
XkbKeyAliases nKeyAliases LISTofKB_KEYALIAS
XkbRGNames nRadioGroups LISTofATOM

If type names are reported, the nTypes return value reports the number of types defined for the keyboard,
and the list of key type namesin valuelist has nTypes elements.

If key type level names are reported, the list of key type level names in the valuelList has two parts:
The count array has nTypes elements, each of which reports the number of level names reported for

79

XKB Protocol Requests

the corresponding key type. The names array has nKTLevels atoms and reports the names of each type
sequentially. The nKTLevels return value is aways equal to the sum of al of the elements of the count

array.

If indicator names are reported, the indicators mask specifies the indicators for which names are defined;
any indicators not specified in indicators have the name None. Thelist of indicator namesin valueList
containsthe names of thelisted indicators, beginning with the lowest-numbered indicator for which aname
is defined and proceeding to the highest.

If virtual modifier names are reported, the virtualMods mask specifies the virtual modifiers for which
names are defined; any virtual modifiers not specified in virtualMods have the name None . Thelist of
virtual modifier namesin valuelist contains the names of the listed virtual modifiers, beginning with the
lowest-numbered virtual modifier for which a name is defined and proceeding to the highest.

If group names are reported, the groupNames mask specifies the groups for which names are defined;
any groups not specified in groupNames have the name None . The list of group namesin valueList
contains the names of the listed groups, beginning with the lowest-numbered group for which a name is
defined and proceeding to the highest.

If key names are reported, the firstKey and nKeys return values specify arange of keyswhich includesall
keys for which names are defined; any key that does not fall in the range specified by firstKey and nKeys
has the name NullKeyName . The list of key namesin the valueList has nKeys entries and specifiesthe
names of the keys beginning at firstKey .

If key aliases are reported, the nKeyAliases return value specifies the total number of key aliases defined
for the keyboard. The list of key aliasesin valueList has nKeyAliases entries, each of which reports an
alias and the real name of the key to which it corresponds.

If radio group names are reported, the nRadioGroups return value specifies the number of radio groupson
the keyboard for which names are defined. The list of radio group namesin valueList reports the names
of each group and has nRadioGroups entries.

XkbSetNames

deviceSpec: KB_DEVICESPEC
which: KB_NAMEDETAILMASK
virtualMods: KB_VMODMASK
firstType, nTypes. CARD8
firstKTLevel, nKTLevels: CARD8
tota KTLevelNames: CARD16
indicators: KB_INDICATORMASK
groupNames: KB_GROUPMASK
nRadioGroups: CARD8

firstKey: KEY CODE

nKeys, nKeyAliases: CARD8
valuelList: LISTofITEMs

Errors. Keyboard, Atom, Value, Match, Alloc

This request changes the symbolic names for the requested components of the keyboard specified by
deviceSpec . The which field specifies the components for which one or more names are to be updated.

80

XKB Protocol Requests

If deviceSpec does not specify avalid keyboard device, a Keyboard error results. If any undefined bits
in which are non-zero, a Value error results. If any error (other than Alloc or Implementation) occurs,
this request returns without modifying any names.

The which and valuelist fields specify the components to be changed; the type of each valueList entry,
the order in which components appear in the valueList when specified, and the correspondence between
componentsin which and the entriesin the valueList are as specified for the XkbGetNames request.

If keycodes, geometry, symbols, physical symbols, types or compatibility map names are to be changed,
the corresponding entries in the valuelist must have the value None or specify avalid ATOM, else an
Atom error occurs.

If key type names are to be changed, the firstType and nTypes fields specify arange of types for which
new names are supplied, and thelist of key type namesin valuelist has nTypes elements. Namesfor types
that fall outside of the range specified by firstType and nTypes are not affected. If this request specifies
names for types that are not present on the keyboard, a Match error results. All of the type namesin the
valueList must be valid ATOMs or have the value None, or an Atom error results.

The names of the first four keyboard types are specified by the XKB extension and cannot be changed;
including any of the canonical typesin this request causes an Access error, as does trying to assign the
name reserved for a canonical type to one of the other key types.

If key type level names are to be changed, the firstKTLevel and nKTLevels fields specify arange of key
types for which new level names are supplied, and the list of key type level namesin the valueList has
two parts: The count array has nKTLevels elements, each of which specifies the number of levels for
which names are supplied on the corresponding key type; any levels for which no names are specified are
assigned the name None . The names array has total KTLevels atoms and specifies the names of each
type sequentially. The totalKTLevelsfield must always equal the sum of all of the elements of the count
array. Level namesfor typesthat fall outside of the specified range are not affected. If thisrequest specifies
level names for types that are not present on the keyboard, or if it specifies more names for a type than
thetype haslevels, a Match error results. All specified type level names must be None or avalid ATOM
or an Atom error results.

If indicator names are to be changed, the indicators mask specifies the indicators for which new names
are specified; the names for indicators not specified in indicators are not affected. The list of indicator
namesin valuelList contains the new names for the listed indicators, beginning with the lowest-numbered
indicator for which a name is defined and proceeding to the highest. All specified indicator names must
beavalid ATOM or None, or an Atom error results.

If virtual modifier names areto be changed, the virtualMods mask specifiesthevirtual modifiersfor which
new names are specified; names for any virtual modifiers not specified in virtualMods are not affected.
Thelist of virtual modifier namesin valueList contains the new names for the specified virtual modifiers,
beginning with the lowest-numbered virtual modifier for which a name is defined and proceeding to the
highest. All virtual modifier names must be valid ATOMs or None, or an Atom error results.

If group names are to be changed, the groupNames mask specifies the groups for which new names are
specified; the name of any group not specified in groupNames is not changed. The list of group names
in valuelist contains the new names for the listed groups, beginning with the lowest-numbered group for
which anameis defined and proceeding to the highest. All specified group names must beavaid ATOM
or None, or an Atom error results.

If key names are to be changed, the firstKey and nKeys fields specify a range of keys for which new
names are defined; the name of any key that does not fall in the range specified by firstKey and nKeys
is not changed. The list of key namesin the valuelist has nKeys entries and specifies the names of the
keysbeginning at firstkey .

81

XKB Protocol Requests

If key aliases are to be changed, the nKeyAliases field specifies the length of anew list of key aliases for
the keyboard. The list of key aliases can only be replaced in its entirety; it cannot be replaced. The list
of key dliasesin valuelList has nKeyAliases entries, each of which reports an alias and the real name of
the key to which it corresponds.

XKB does not check key names or aliases for consistency and validity, so applications should take care
not to assign duplicate names or aliases

If radio group names are to be changed, the nRadioGroups field specifies the length of a new list of
radio group names for the keyboard. There is no way to edit the list of radio group names; it can only be
replaced in its entirety. The list of radio group namesin valueList reports the names of each group and
has nRadioGroups entries. If the list of radio group names specifies names for more radio groups than
XKB allows (32), a Match error results. All specified radio group names must be valid ATOMs or have
thevalue None, or an Atom error results.

Querying and Changing Keyboard Geometry

XkbGetGeometry

deviceSpec: KB_DEVICESPEC
name: ATOM

devicelD: CARDS

name: ATOM

found: BOOL

widthMM, heightMM: CARD16
baseColorNdx, label ColorNdx: CARD8
properties: LISTofKB_PROPERTY
colors: LISTof STRINGS

shapes: LISTofKB_SHAPE
sections: LISTofKB_SECTION
doodads: LISTofKB_DOODAD
keyAliases: LISTofKB_KEYALIAS
Errors. Keyboard

This request returns a description of the physical layout of a keyboard. If the name field has the value
None, or if name is identical to the name of the geometry for the keyboard specified by deviceSpec ,
this request returns the geometry of the keyboard specified by deviceSpec ; otherwise, if nameisavalid
atom other than None, the server returns the keyboard geometry description with that name in the server
database of keyboard components (see The Server Database of Keyboard Components) if one exists. If
deviceSpec does not specify avalid keyboard device, a Keyboard error results. If name has avalue other
than Noneor avaid ATOM, an Atom error results.

On successful return, the devicel D field reports the X Input extension identifier of the keyboard device
specified in the request, or 0 if the server does not support the input extension.

The found return value reports whether the requested geometry was available. If found is False, no
matching geometry was found and the remaining fields in the request reply are undefined; if found is
True, the remaining fields of the reply describe the requested keyboard geometry. The interpretation of
the components that make up a keyboard geometry is described in detail in Keyboard Geometry

82

XKB Protocol Requests

XkbSetGeometry

deviceSpec: KB_DEVICESPEC
name: ATOM

widthMM, heightMM, CARD16
baseColorNdx, labelColorNdx: CARDS8
shapes: LISTofKB_SHAPE
sections: LISTofKB_SECTION
properties: LISTofKB_PROPERTY
colors: LISTofSTRING8

doodads: LISTofKB_DOODAD
keyAliases: LISTofKB_KEYALIAS
Errors. Keyboard, Atom, Value

This request changes the reported description of the geometry for the keyboard specified by deviceSpec .
If deviceSpec does not specify avalid keyboard device, a Keyboard error resullts.

The namefield specifies the name of the new keyboard geometry and must be avalid ATOM or an Atom
error results. The new geometry is not added to the server database of keyboard components, but it can
be retrieved using the XkbGetGeometry request for aslong as it is bound to the keyboard. The keyboard
geometry symbolic nameisalso updated from the name field, and an XkbNamesNotify event is generated,
if necessary.

The list of colors must include at least two definitions, or a Value error results. All color definitions
in the geometry must specify a legal color (i.e. must specify a valid index for one of the entries of the
colors list) or a Match error results. The baseColorNdx and the labelColorNdx must be different or a
Match error results.

Thelist of shapes must include at least one shape definition, or a Value error results. If any two shapes
have the same name, a Match error result. All doodads and keys which specify shape must specify avalid
index for one of the elements of the shapeslist, or a Match error results.

All section, shape and doodad names must be valid ATOMs or an Atom error results; the constant None
is not permitted for any of these components.

All doodads must be of a known type; XKB does not support "private”" doodad types.

If, after rotation, any keys or doodads fall outside of the bounding box for a section, the bounding box is
automatically adjusted to the minimum size which encloses all of its components.

If, after adjustment and rotation, the bounding box of any section or doodad extends below zero on either
the X or Y axes, the entire geometry is translated so that the minimum extent along either axisis zero.

If, after rotation and translation, any keyboard componentsfall outside of the rectangle specified by width-
MM and heightMM , the keyboard dimensions are automatically resized to the minimum bounding box
that surrounds all components. Otherwise, the width and height of the keyboard are |eft as specified.

The under field of any overlay key definitions must specify akey that is in the section that contains the
overlay key, or a Match error results. Thisrequest does not check the value of the over field of an overlay
key definition, so applications must be careful to avoid conflicts with actual keys.

Thisrequest does not verify that key names or aliases are unique. It also does not verify that all key names
specified in the geometry are bound to some keycode or that al keys that are named in the keyboard

83

XKB Protocol Requests

definition are also available in the geometry. Applications should make sure that keyboard geometry has
no internal conflicts and is consistent with the other components of the keyboard definition, but XKB does

not check for or guarantee it.
Querying and Changing Per-Client Flags

XkbPerClientFlags

deviceSpec: KB_DEVICESPEC

change: KB_PCFMASK

vaue: KB_PCFMASK

ctrlsToChange: KB_ BOOLCTRLMASK
autoCtrls: KB_BOOLCTRLMASK
autoCtrlValues: KB_BOOLCTRLMASK

devicelD: CARDS supported: KB_ PCFMASK vaue: KB_PCFMASK autoCtrls:
KB_BOOLCTRLMASK autoCtrlVaues. KB_BOOLCTRLMASK where: KB_PCFMASK:

Errors: Keyboard, Value, Match, Alloc

Changes the client specific flags for the keyboard specified by deviceSpec . Reports a Keyboard error if
deviceSpec does not specify avalid keyboard device.

Any flags specified in change are set to the corresponding values in value , provided that the server
supports the requested control. Legal per-client-flags are:

Flag... Described in...
XkbPCF_DetectableAutorepeat Detectable Autorepeat
XkbPCF_GrabsUseXKBStateMask Setting a Passive Grab for an XKB State
XkbPCF_AutoResetControlsMask Automatic Reset of Boolean Controls
XkbPCF_L ookupSateWhenGrabbed Effects of XKB on Core Protocol Events
XkbPCF_SendEventUsesXKBState Sending Eventsto Clients

If PCF_AutoResetControlsissetin both changeand value, the client’ s mask of controlsto be changedis
updated from ctrlsToChange, autoCtrls, and autoCtrlValues. Any controlsspecifiedin ctrlsToChange
are modified in the auto-reset controls mask for the client; the corresponding bits from the autoCtrls
field are copied into the auto-reset controls mask and the corresponding bits from autoCtrlValues are
copied into the auto-reset controls state values. If any controls are specified in autoCtrlValues but not in
autoCtrls, a Match error results. If any controls are specified in autoCtrls but not in ctrlsToChange,
a Match error results.

If PCF_AutoResetControlsissetin change but notin value, the client’s mask of controlsto be changed
isreset to al zeroes (i.e. the client does not change any controls when it exits).

Thisrequest reportsa Match error if abit is set in any of the value masks but not in the control mask that
governsit or a Value error if any undefined bits are set in any of the masks.

On successful return, the devicel D field reports the X Input extension identifier of the keyboard, or 0 if
the server does not support the X Input Extension.

The supported return value reports the set of per-client flags that are supported by the server; in this
version of XKB, only the XkbPCF_DetectableAutorepeat per-client flag is optional; all other per-client
flags must be supported.

XKB Protocol Requests

The value return value reports the current settings of all per-client flags for the specified keyboard. The
autoCitrls return value reports the current set of controls to be reset when the client exits, while the au-
toCtrlValues return value reports the state to which they should be set.

Using the Server’s Database of Keyboard Components

XkbListComponents

deviceSpec: KB_DEVICESPEC

maxNames: CARD16

keymapsSpec: STRING8

keycodesSpec: STRINGS

typesSpec: STRINGS

compatM apSpec: STRING8

symbolsSpec: STRING8

geometrySpec: STRINGS

devicelD: CARDS

extra CARD16

keymaps,keycodes,types,compatMaps. LISTofKB_COMPONENTNAME
symbols, geometries. LISTofKB_ COMPONENTNAME
Where:

KB_COMPONENTNAME { hints: CARDS, name: STRING8 }
Errors. Keyboard, Alloc

Thisrequest returns one or morelists of keyboard componentsthat are availablefromthe X server database
of keyboard componentsfor the device specified by deviceSpec . The X server isallowed, but not required
or expected, to maintain separate databases for each keyboard device. A Keyboard error resultsif device-
Soec does not specify avalid keyboard device.

The maxNames field specifies the maximum number of component names to be reported, in total, by
this request.

The keymapspec , keycodesSpec , typesSpec, compatMapSpec, symbolsSpec and geometrySpec
request fields specify a pattern to be matched against the names of all components of the corresponding
type in the server database of keyboard components.

Each pattern uses the 1SO Latin-1 encoding and should contain only parentheses, the wildcard characters
"?"and"*" or charactersthat are permitted in acomponent class or member name (see Component Names).
Illegal charactersin a pattern are simply ignored; no error results if a pattern containsillegal characters.

Comparison is case-sensitive and, in a pattern, the "?' wildcard character matches any single character
except parentheses while the "*" character matches any number of characters except parentheses. If an
implementation accepts characters other than those required by XKB, whether or not those characters
match either wildcard is al so implementation dependent. An empty pattern does not match any component
names.

On successful return, the devicelD return value reports the X Input Extension device identifier of the
specified device, or 0if the server does not support the X input extension. The extra return value reports
the number of matching component names that could not be returned due to the setting of the maxNames
field in the request.

85

XKB Protocol Requests

The keymaps, keycodes, types, compatMaps, symbolsand geometriesreturn the hints (see Component
Hints) and names of any components from the server database that match the corresponding pattern.

The Server Database of Keyboard Components describes the X server database of keyboard components
in more detail.

XkbGetK bdByName

deviceSpec: KB_DEVICESPEC

need, want: KB_GBNDETAILMASK
load: BOOL

keymapsSpec: STRING8

keycodesSpec, typesSpec: STRINGS
compatMapSpec, symbolsSpec: STRING8
geometrySpec: STRING8

devicelD: CARD8

minKeyCode, maxKeyCode: KEY CODE
loaded, newK eyboard: BOOL

found, reported: KB GBNDETAILMASK
map: optional XkbGetMap reply

compat: optional XkbGetCompatMap reply
indicators: optional XkbGetlndicatorMap reply
names: optional XkbGetNames reply
geometry: optional XkbGetGeometry reply
Errors. Keyboard, Access, Alloc

Assemblesand returns akeymap from the current mapping and specified el ementsfrom the server database
of keymap components for the keyboard specified by deviceSpec , and optionally replaces the current
keyboard mapping with the newly generated description. If deviceSpec does not specify avalid keyboard
device, a Keyboard error results.

The keymapspec, keycodespec, typespec, compatMapSpec, symbolsSpec and geometrySpec com-
ponent expressions (see Partial Components and Combining Multiple Components) specify the database
components to be used to assembl e the keyboard description.

The want field lists the pieces of the keyboard description that the client wants to have reported for the
newly constructed keymap. The need field listsall of the pieces that must be reported. If any of the pieces
in need cannot be loaded from the specified names, no description of the keyboard is returned.

The want and need fields can include any combinationsof these XkbGetMapByName (GBN) components:

86

XKB Protocol Requests

XkbGetM apByName Keyboard Database Component...

Component...

Components of Keyboard De-
scription

XKbGBN_Types
XkbGBN_CompatMap

XkbGBN_ClientSymbols
XKbGBN_ Server Symbols
XkbGBN_IndicatorMap
XkbGBN_KeyNames

XKbGBN_Geometry
XkbGBN_OtherNames

types
compat

symbols, types, keycodes
symbols, types, keycodes
compat

keycodes

geometry
all

key types
symbol interpretations, group
compatibility map

key types, key symbol mappings,
modifier mapping

key behaviors, key actions, key
explicit components, virtual mod-
ifiers, virtual modifier mapping

indicator maps, indicator names
key names, key aliases

keyboard geometry

key types, symbol interpretations,

indicator maps, names, geometry

If either field containsa GBN component that depends on some database component for which the request
does not supply an expression, XKB automatically substitutes the special pattern "%" which copies the
corresponding component from the current keyboard description, as described in Partial Components and
Combining Multiple Components.

The load flag asks the server to replace the current keyboard description for deviceSpec with the newly
constructed keyboard description. If load is True, the request must include component expressions for
all of the database components; if any are missing, XKB substitutes "%" as described above.

If al necessary components are both specified and found, the new keyboard description is loaded. If the
new keyboard description has a different geometry or keycode range than the previous keyboard descrip-
tion, XKB sends XkbNewKeyboardNotify events to al interested clients. See Replacing the Keyboard
"On-the-Fly" for more information about the effects of replacing the keyboard description on the fly.

If the range of keycodes changes, clients that have requested XkbNewKeyboar dNotify events are not sent
any other change notification events by this request. Clients that do not request XkbNewKeyboar dNotify
eventsare sent other XK B change notification events (e.g. XkbMapNotify, XkbNamesNotify) asnecessary
to aert them to as many of the keyboard changes as possible.

If no error occurs, the request reply reports the GBN components that were found and sends a description
of any of the resulting keyboard that includes and of the components that were regquested.

The devicel D return value reports the X Input extension device identifier of the keyboard that was used,
or 0if the server does not support the X input extension.

The minKeyCode and maxKeyCode return values report the legal range of keycodes for the keyboard
description that was created. If the resulting keyboard description does not include at least one of the key
names, client symbols or server symbols components, minKeyCode and maxKeyCode are both 0.

The loaded return value reports whether or not the existing keyboard definition was replaced with the
newly created one. If loaded is True, the newKeyboard return value reports whether or not the new
map changed the geometry or range of keycodes and caused XkbNewKeyboardNotify events for clients
that have requested them.

The found return value reportsthe GBN components that were present in the keymap that was constructed
by this request. The reported return value lists the subset of those components for which descriptions
follow. if any of the components specified in the need field of the request were not found, reported is

87

XKB Protocol Requests

empty, otherwise it contains the intersection of the found return value with the union of the need and
want request fields.

If any of GBN_Types, GBN_ClientSymbolsor GBN_Server Symbolsare set in reported , the map return
value has the same format as the reply to an XkbGetMap request and reports the corresponding pieces of
the newly constructed keyboard description.

If GBN_CompatMap issetin reported, the compat return value has the same format as the reply to an
XkbGetCompatMap request and reports the symbol interpretations and group compatibility map for the
newly constructed keyboard description.

If GBN_IndicatorMap is set in reported , the indicators return value has the same format as the reply
to an XkbGetlndicatorMap request and reports the physical indicators and indicator maps for the newly
constructed keyboard description.

If GBN_KeyNames or GBN_OtherNames are set in reported , the names return value has the same
format as the reply to an XkbGetNames reply and reports the corresponding set of symbolic names for
the newly constructed keyboard description.

If GBN_Geometry is set in reported , the geometry return value has the same format as the reply to
an XkbGetGeometryMap request and reports the keyboard geometry for the newly constructed keyboard
description.

Querying and Changing Input Extension Devices

XkbGetDevicel nfo

deviceSpec: KB_DEVICESPEC
wanted: KB_XIDEVFEATUREMASK
ledClass: KB_LEDCLASSSPEC
lediD: KB_IDSPEC

alButtons: BOOL

firstButton, nButtons: CARDS8
devicelD: CARDS8

present: KB_XIDEVFEATUREMASK
supported: KB_XIFEATUREMASK
unsupported: KB_XIFEATUREMASK
firstBtnWanted: CARD8
nBtnsWanted: CARD8

firstBtnRtrn: CARD8

nBtnsRtrn: CARDS

total Btns: CARD8

hasOwnState: BOOL

dfltKbdFB, dfltLedFB: KB_IDSPEC
devType: ATOM

name: STRING

btnActions: LISTofKB_ACTION

leds: LISTofKB_DEVICELEDINFO
Errors. Device, Match, Access, Alloc

88

XKB Protocol Requests

Reports a subset of the XK B-supplied information about the input device specified by deviceSpec . Unlike
most XKB requests, the device specified for XkbGetDevicelnfo need not be a keyboard device. Nonethe-
less, a Keyboard error resultsif deviceSpec does not specify avalid core or input extension device.

The wanted field specifies the types of information to be returned, and controls the interpretation of the
other request fields.

If the server does not support assignment of XKB actions to extension device buttons, the allButtons,
firstButton and nButtons fields are ignored.

Otherwise, if the XkbXI_ButtonActions flag is set in wanted , the allButtons, firstButton and nButtons
fields specify the device buttons for which actions should be returned. Setting allButtonsto True requests
actionsfor al device buttons; if allButtonsis False, firstButton and nButtons specify arange of buttons
for which actions are requested. If the device has no buttons or if firstButton and nButtons specify illegal
buttons, a Match error results. If allButtonsis True, firstButton and nButtons are ignored.

If the server does not support XKB access to any aspect of the indicators on extension devices, or if the
wanted field does not include any of the indicator flags, the ledClassand ledID fields are ignored. Oth-
erwise, ledClassand ledID specify one or more feedback(s) for which indicator information is requested.
If ledClassor ledID haveillegal values, a Value error results. If they have legal values but do not specify
akeyboard or indicator class feedback for the device in question, a Match error results.

The ledClass field can specify either KbdFeedbackClass, LedFeedbackClass, XkbDfltXIClass, or
XkbAlIXIClasses. If at least one keyboard feedback is defined for the specified device, XkbDfltXIClassis
equivalent to KbdFeedbackClass, otherwiseitisequivalent to LedFeedbackClass. If XkbAllXIClassesis
specified, thisrequest returnsinformation about both indicator and keyboard class feedbacks which match
the requested identifier, as described below.

The ledID field can specify any valid input extension feedback identifier, XkbDfltXIld, or XkbAlIXIlds.
Thedefault keyboard feedback isthe onethat isaffected by core protocol requests; the default led feedback
is implementation-specific. If XkbAlIXIIds is specified, this request returns indicator information about
all feedbacks of the class(es) specified by ledClass.

If no error results, the devicel D return value reports the input extension device identifier of the device for
which values are being returned. The supported return value reports the set of optional XKB extension
devicefeaturesthat are supported by thisimplementation (see Interactions Between XKB and the X Input
Extension) for the specified device, and the unsupported return value reports any unsupported features.

If hasOwnSateis True, the deviceis also a keyboard, and any indicator maps bound to the device use
the current state and control settingsfor this deviceto control automatic changes. If hasOwnStateis False
, the state and control settings of the core keyboard device control automatic indicator changes.

The namefield reportsthe X Input Extension name for the device. The devTypefield reportsthe X Input
Extension device type. Both fields are provided merely for convenience and are not interpreted by XKB.

The present return value reports the kinds of device information being returned, and controls the inter-
pretation of the remaining fields. The present field consists of the wanted field from the original request
minus the flags for any unsupported features.

If XkbXl_ButtonActionsissetin present, the totalBtns return value reports the total number of buttons
present on the device, firstBtnWanted and nBtnswWanted specify the range of buttons for which actions
wererequested, and the firstBtnRtrn and nBtnsRtrn values specify the range of buttons for which actions
arereported. The actionsRtrnlist has nButtonsRtrn entrieswhich contai n the actions bound to the specified
buttons on the device. Any buttons for which actions were requested but not returned have the action
NoAction() .

89

XKB Protocol Requests

If any indicator information is reported, the ledslist contains one element for each requested feedback. For
example, if ledClassis XkbAllIXIClassesand ledID is XkbAllXIIds, ledsdescribesall of the indicators
on the device and has one element for each keyboard or led class feedback defined for the device. If
any information at all is reported about a feedback, the set of physical indicators is also reported in the
physlndicators field of the corresponding element of leds.

If the server supports assignment of indicator maps to extension device indicators, and if the
XkbXI_IndicatorMaps flag is set in wanted , each member of leds reports any indicators on the corre-
sponding feedback to which names have been assigned. Any indicators for which no map is reported have
the default map, which allows explicit changes and does not request any automatic changes.

If the server supports assignment of indicator names to extension device indicators, and the
XkbXI_IndicatorNames flag is set in wanted , each member of leds reports any indicators on the corre-
sponding feedback to which names have been assigned. Any indicators for which no name is reported
have the name None.

If the server supports XK B accessto the state of extension deviceindicators, and the XkbXI_Indicator Sate
flag isset in wanted, each member of leds reportsthe state of the indicators on the corresponding feedback.

If any unsupported features are requested, and the requesting client has selected for them, the server sends
the client an XkbExtensionDeviceNotify event which indicates that an unsupported feature was requested.
This event is only generated if the client which issued the unsupported regquest has selected for it and, if
generated, is not sent to any other clients.

XkbSetDevicel nfo

deviceSpec: KB_DEVICESPEC
change: KB_XIDEVFEATUREMASK
firstBtn, nBtns: CARDS8
btnActions.LISTofKB_ACTION

leds: LISTofKB_DEVICELEDINFO
Errors. Device, Match, Access, Alloc

Changes a subset of the XKB-supplied information about the input device specified by deviceSpec .
Unlike most XKB requests, the device specified for XkbGetDevicelnfo need not be a keyboard device.
Nonetheless, a Keyboard error resultsif deviceSpec does not specify avalid core or input extension device

The change field specifies the features for which new values are supplied, and controls the interpretation
of the other request fields.

If the server does not support assignment of XKB actions to extension device buttons, the firstButton and
nButtons fields are ignored.

Otherwise, if the XkbXI_ButtonActions flag is set in change, the firstBtn and nBtns fields specify a
range of buttons for which actions are specified in this request. If the device has no buttons or if firstBtn
and nBtns specify illegal buttons, a Match error results.

Each element of the leds list describes the changes for a single keyboard or led feedback. If the ledClass
field of any element of leds contains any value other than KbdFeedbackClass, LedFeedbackClass or
XkbDfltXIClass, a Value error results. If the ledid field of any element of leds contains any value other
than a valid input extension feedback identifier or XkbDfltXlId , a Value error results. If both fields are
valid, but the device has no matching feedback, a Match error resuilts.

Thefields of each element of leds areinterpreted as follows:

90

XKB Protocol Requests

 If XkbXI_IndicatorMapsissetin change and the server supports XKB assignment of indicator mapsto
the corresponding feedback, the maps for all indicators on the corresponding feedback are taken from
leds . If the server does not support this feature, any maps specified in leds are ignored.

o If XkbXl_IndicatorNames is set in change , and the server supports XKB assignment of names to
indicators for the corresponding feedback, the names for all indicators on the corresponding feedback
aretaken from leds. If the server does not support thisfeature, any names specifiedin ledsareignored.
Regardless of whether they are used, any names be avalid Atom or None, or an Atom error results.

e If XkbXI_IndicatorSate is set in change, and the server supports XKB changes to extension device
indicator state, the server attempts to change the indicators on the corresponding feedback as specified
by leds. Any indicator maps bound to the feedback are applied, so state changes might be blocked
or have side-effects.

If any unsupported features are requested, and the requesting client has selected for them, the server sends
the client an XkbExtensionDeviceNotify event which indicates that an unsupported feature was requested.
This event is only generated if the client which issued the unsupported regquest has selected for it and, if
generated, is not sent to any other clients.

Debugging the X Keyboard Extension

XkbSetDebuggingFlags

affectFlags, flags: CARD32
affectCirls, ctrls: CARD32

message: STRING

currentFlags, supportedFlags: CARD32
currentCtrls, supportedCtrls: CARD32

This request sets up various internal XKB debugging flags and contrals. It is intended for developer use
and may be disabled in production servers. If disabled, XkbSetDebuggingFlags has no effect but returns
Success.

The affectFlags field specifies the debugging flags to be changed, the flags field specifies new values
for the changed flags. The interpretation of the debugging flags is implementation-specific, but flags are
intended to control debugging output and should not otherwise affect the operation of the server.

The affectCtrlsfield specifies the debugging controls to be changed, the ctrisfield specifies new values
for the changed controls. The interpretation of the debugging controls is implementation-specific, but
debugging controls are allowed to affect the behavior of the server.

The message field provides amessage that the X server can print in any logging or debugging files before
changing the flags. The server must accept thisfield but it is not required to actually display it anywhere.

The X Test Suite makes some assumptions about the implementation of locking modifier keys that do not
apply when XKB is present. The XkbDF_Disablelocks debugging control provides asimple workaround
to these test suite problems by simply disabling all locking keys. If XkbDF_Disablelocksis enabled, the
SA LockModsand SA LockGroup actions behave like SA_SetModsand SA LockMods, respectively. If
itisdisabled, SA LockModsand SA LockGroup actions behave normally.

Implementations are free to ignore the XkbDF_Disablel ocks debugging control or to define others.

The currentFlags return value reports the current setting for the debugging flags, if applicable. The cur-
rentCtrlsreturn value reportsthe setting for the debugging contrals, if applicable. The supportedFlagsand

91

XKB Protocol Requests

supportedCtrlis fields report the flags and controls that are recognized by the implementation. Attempts to
change unsupported fields or controls are silently ignored.

If the XkbSetDebuggingFlags request contains more data than expected, the server ignores the extradata,
but no error results. If the request has |ess data than expected, a Length error results.

If the XkbSetDebuggingFlags reply contains more data than expected, the client just ignores any uninter-
preted data without reporting an error. If the reply has less data than expected, a Length error results.

Events

All XKB eventsreport thetime at which they occurred in afield named time and the device on which they
occurred in afield named devicelD . XKB usesasingle X event code for all events and uses a common
field to distinguish XKB event type.

Tracking Keyboard Replacement

XkbNewK eyboar dNotify

time: TIMESTAMP

devicelD: CARDS

changed: KB_NKNDETAILMASK
minKeyCode, maxKeyCode: KEY CODE
oldDevicelD: CARDS8

oldMinKeyCode, oldMaxKeyCode: KEY CODE
requestMajor, requestMinor: CARD8

An XkbNewKeyboardNotify event reports that a new core keyboard has been installed. New keyboard
notify events can be generated:

» When the X server detects that the keyboard was changed.

* When a client installs a new extension device as the core keyboard using the X Input Extension
ChangeKeyboardDevice request.

* When aclient issues an XkbGetMapByName request which changes the keycodes range or geometry.

The changed field of the event reports the aspects of the keyboard that have changed, and can contain any
combination of the event details for this event:

Bit in Changed M eaning

NKN_Keycodes The new keyboard has a different minimum or maximum keycode.
NKN_Geometry The new keyboard has a different keyboard geometry.
NKN_DevicelD The new keyboard has anew X Input Extension device identifier

The server sends an XkbNewKeyboardNotify event to a client only if at least one of the bitsthat is set in
the changed field of the event is also set in the appropriate event details mask for the client.

The minKeyCode and maxKeyCode fields report the minimum and maximum keycodes that can be re-
turned by the new keyboard. The oldMinKeyCode and oldMaxKeyCode fields report the minimum and

92

XKB Protocol Requests

maximum values that could be returned before the change. This event always reports all four values, but
the old and new values are the same unless NKN_Keycodesissetin changed .

Onceaclient receivesanew keyboard notify event which reportsanew keycoderange, the X server reports
events from all keys in the new range to that client. Clients that do not request or receive new keyboard
notify events receive events only from keysthat fall in the last range for legal keys reported to that client.
See Replacing the Keyboard "On-the-Fly" for a more detailed explanation.

If NKN_Keycodes is set in changed , the XkbNewKeyboardNotify event subsumes all other change
notification events (e.g. XkbMapNotify, XkbNamesNotify) that would otherwise result from the keyboard
change. Clientswho receive an XkbNewKeyboardNotify event should assume that al other aspects of the
keyboard mapping have changed and regenerate the entire local copy of the keyboard description.

The devicel D field reports the X Input Extension device identifier of the new keyboard device; oldDevi-
cel D reports the device identifier before the change. This event always includes both values, but they are
the same unless NKN_DevicelD isset in changed . If the server does not support the X Input Extension,
both fields have the value 0.

The requestMajor and requestMinor fields report the major and minor opcode of the request that caused
the keyboard change. If the keyboard change was not caused by some client request, both fields have the
value 0.

Tracking Keyboard Mapping Changes

XkbM apNotify

time: TIMESTAMP

devicelD: CARD8

ptrBtnActions: CARD8

changed: KB_MAPPARTMASK

minK eyCode, maxKeyCode: KEY CODE
firstType, nTypes: CARDS8

firstKeySym, firstKeyAction: KEY CODE
nKeySyms, nKeyActions: CARD8
firstKeyBehavior, firstKeyExplicit: KEY CODE
nKeyBehaviors, nKeyExplicit: CARD8
virtualMods: KB_VMODMASK
firssModMapKey, firstVModMapKey: KEY CODE
nModMapKeys, nVModMapKeys: CARDS

An XkbMapNotify event reports that some aspect of XKB map for a keyboard has changed. Map notify
events can be generated whenever some aspect of the keyboard map ischanged by an XKB or core protocol
request.

The devicel D field reports the keyboard for which some map component has changed and the changed
field reports the components with new values, and can contain any of the valuesthat arelegal for the full
and partial fields of the XkbGetMap request. The server sends an XkbMapNotify event to a client only
if at least one of the bits that is set in the changed field of the event is also set in the appropriate event
details mask for the client.

93

XKB Protocol Requests

The minKeyCode and maxKeyCode fields report the range of keycodes that are legal on the keyboard
for which the change is being reported.

If XkbKeyTypesMaskissetin changed, the firstType and nTypesfieldsreport arange of key types that
includes all changed types. Otherwise, both fieldsare 0.

If XkbKeySymsMaskissetin changed, the firstKeySymand nKeySymsfields report arange of keycodes
that includes al keys with new symbols. Otherwise, both fieldsare 0.

If XkbKeyActionsMask is set in changed , the firstkeyAction and nKeyActions fields report a range of
keycodes that includes al keys with new actions. Otherwise, both fieldsare 0.

If XkbKeyBehaviorsMask is set in changed , the firstKeyBehavior and nKeyBehaviors fields report a
range of keycodes that includes all keys with new key behavior. Otherwise, both fieldsare 0.

If XkbVirtualModsMask is set in changed , virtualMods contains all virtual modifiers to which a new
set of real modifiersis bound. Otherwise, virtualModsis 0.

If XkbExplicitComponentsMask isset in changed , the firstkKeyExplicit and nKeyExplicit fields report a
range of keycodesthat includes all keys with changed explicit components. Otherwise, both fieldsare 0.

If XkbModifierMapMask is set in changed , the firstModMapKey and nModMapKeys fields report a
range of keycodes that includes all keys with changed modifier bindings. Otherwise, both fieldsare 0.

If XkbVirtualModMapMaskissetin changed, the firstVModMapKey and nVModMapKeys fields report
arange of keycodesthat includes all keys with changed virtual modifier mappings. Otherwise, both fields
ae 0.

Tracking Keyboard State Changes

XkbStateNotify

time: TIMESTAMP

devicelD: CARDS

mods, baseM ods, latchedM ods, lockedMods: KEY MASK
group, lockedGroup: CARD8

baseGroup, latchedGroup: INT16

compatState; KEY MASK

grabMods, compatGrabMods: KEY MASK
lookupM ods, compatL ookupMods: KEY MASK
ptrBtnState: BUTMASK

changed: KB_STATEPARTMASK

keycode: KEY CODE

eventType: CARDS8

requestMajor, requestMinor: CARD8

An XkbStateNotify event reports that some component of the XKB state (see Keyboard State) has changed.

State notify events are usually caused by key or pointer activity, but they can also result from explicit state
changes requested by the XkbLatchLockState request or by other extensions.

The devicelD field reports the keyboard on which some state component changed. The changed field
reportsthe XK B state components (see K eyboard State) that have changed and contain any combination of ;

94

XKB Protocol Requests

Bit in changed Event field Changed component

Modifier Sate mods The effective modifiers

ModifierBase baseMods The base modifiers

ModifierLatch latchedMods The latched modifiers

ModifierLock lockedMods The locked modifiers

GroupSate group The effective keyboard group
GroupBase baseGroup The base keyboard group

GroupLatch latchedGroup The latched keyboard group
GrouplLock lockedGroup The locked keyboard group

Pointer Buttons ptrBtnState The state of the core pointer buttons
GrabMods grabMods The XKB state used to compute grabs
LookupMods lookupMods The XKB state used to look up symbols
CompatState compatSate Default state for non-XKB clients
CompatGrabMods compatGrabMods The core state used to compute grabs

CompatLookupMods compatLookupMods The core state used to look up symbols

The server sendsan XkbStateNotify event to aclient only if at least one of the bitsthat isset inthe changed
field of the event is also set in the appropriate event details mask for the client.

A state notify event reports current values for all state components, even those with unchanged values.

The keycode field reports the key or button which caused the change in state while the eventType field
reports the exact type of event (e.g. KeyPress). If the change in state was not caused by key or button
activity, both fields have the value 0.

The requestMajor and requestMinor fields report the major and minor opcodes of the request that caused
the change in state and have the value 0 if it was resulted from key or button activity.

Tracking Keyboard Control Changes

XkbControlsNotify

time: TIMESTAMP

devicelD: CARDS

numGroups: CARDS8

changedControls: KB_CONTROLMASK
enabledControls,enabledControl Changes: KB_BOOLCTRLMASK
keycode: KEY CODE

eventType: CARDS8

requestMajor: CARDS

requestMinor: CARD8

An XkbControlsNotify event reports a change in one or more of the global keyboard controls (see Global
Keyboard Controls) or in the internal modifiers or ignore locks masks (see Server Internal Modifiers and
Ignore Locks Behavior). Controls notify events are usually caused by and XkbSetControls request, but
they can also be caused by keyboard activity or certain core protocol and input extension requests.

95

XKB Protocol Requests

The devicelD field reports the keyboard for which some control has changed, and the changed field
reports the controls that have new values.

The changed field can contain any of the values that are permitted for the changeControls field of the
XkbSetControlsrequest. The server sendsan XkbControlsNotify event to aclient only if at least one of the
bitsthat isset inthe changed field of the event isal so set in the appropriate event details mask for the client.

The numGroups field reports the total number of groups defined for the keyboard, whether or not the
number of groups has changed.

The enabledControls field reports the current status of all of the boolean controls, whether or not any
boolean controls changed state. If EnabledControls is set in changed , the enabledControlChanges
field reports the boolean controls that were enabled or disabled; if a control is specified in enabledCon-
trolChanges, the value that is reported for that control in enabledControls represents a change in state.

The keycode field reports the key or button which caused the change in state while the eventType field
reports the exact type of event (e.g. KeyPress). If the change in state was not caused by key or button
activity, both fields have thevalue 0.

The requestMajor and requestMinor fields report the major and minor opcodes of the request that caused
the change in state and have the value 0O if it was resulted from key or button activity.

Tracking Keyboard Indicator State Changes

Xkblndicator StateNotify

time: TIMESTAMP

devicelD: CARD8

stateChanged, state: KB_INDICATORMASK

An Xkblndicator SateNotify event indicates that one or more of the indicators on akeyboard have changed
state. Indicator state notify events can be caused by:

» Automatic updateto reflect changesin keyboard state (keyboard activity, XkbLatchLockState requests).

» Automatic update to reflect changes in keyboard controls (XkbSetControls, keyboard activity, certain
core protocol and input extension requests).

» Explicit attempts to change indicator state (core protocol and input extension requests, XkbSet-
Namedindicator requests).

» Changes to indicator maps (XkbSetIndicatorMap and XkbSetNamedindicator requests).

The devicel D field reports the keyboard for which some indicator has changed, and the state field reports
the new state for all indicators on the specified keyboard. The stateChanged field specifies which of the
values in dstate represent a new state for the corresponding indicator. The server sends an Xkblndica-
tor SateNotify event to a client only if at least one of the bits that is set in the stateChanged field of the
event is also set in the appropriate event details mask for the client.

Tracking Keyboard Indicator Map Changes

Xkblndicator M apNotify

time: TIMESTAMP

devicelD: CARDS

state: KB_INDICATORMASK
mapChanged: KB_INDICATORMASK

96

XKB Protocol Requests

An Xkblndicator MapNotify event indicates that the maps for one or more keyboard indicators have been
changed. Indicator map notify events can be caused by XkbSetindicatorMap and XkbSetNamedIndicator
requests.

The devicel D field reportsthe keyboard for which someindicator map has changed, and the mapChanged
field reports the indicators with changed maps. The server sends an XkblndicatorMapNotify event to a
client only if at least one of the bits that is set in the mapChanged field of the event is also set in the
appropriate event details mask for the client.

The state field reports the current state of all indicators on the specified keyboard.
Tracking Keyboard Name Changes

XkbNamesNotify

time: TIMESTAMP

devicelD: CARD8

changed: KB_NAMEDETAILMASK
firstType, nTypes: CARD8

firstLevelName, nLevelNames: CARDS
firstkey: KEY CODE

nKeys, nKeyAliases, nRadioGroups: CARD8
changedGroupNames: KB_ GROUPMASK
changedVirtuaMods: KB_VMODMASK
changedindicators: KB_INDICATORMASK

An XkbNamesNotify event reports a change to one or more of the symbolic names associated with a
keyboard. Symbolic names can change when:

» Some client explicitly changes them using XkbSetNames .
* Thelist of key types or radio groupsisresized
» The group width of some key type is changed

The devicelD field reports the keyboard on which names were changed. The changed mask lists the
components for which some names have changed and can have any combination of the values permitted
for the which field of the XkbGetNames request. The server sends an XkbNamesNotify event to a client
only if at least one of the bits that is set in the changed field of the event is also set in the appropriate
event details mask for the client.

If KeyTypeNamesissetin changed, the firstTypeand nTypesfieldsreport arange of typesthat includes
all types with changed names. Otherwise, both fieldsare O .

If KTLevelNamesissetin changed, the firstLevelName and nLevelNamesfields report arange of types
that includes all types with changed level names. Otherwise, both fieldsare 0.

If IndicatorNamesis set in changed , the changedindicators field reports the indicators with changed
names. Otherwise, changedindicatorsis 0.

If VirtualModNamesissetin changed, the changedVirtualModsfield reports the virtual modifiers with
changed names. Otherwise, changedVirtualModsis 0.

97

XKB Protocol Requests

If GroupNamesissetin changed, the changedGroupNamesfield reportsthe groupswith changed names.
Otherwise, changedGroupNamesis 0.

If KeyNamesissetin changed, the firstKey and nKeysfields report arange of keycodes that includes
all keys with changed names. Otherwise, both fieldsare 0.

The nKeyAliases field reports the total number of key aliases associated with the keyboard, regardless of
whether KeyAliasesissetin changed .

The nRadioGroups field reports the total number of radio group names associated with the keyboard,
regardless of whether RGNamesissetin changed .

Tracking Compatibility Map Changes

XkbCompatM apNotify

time: TIMESTAMP

devicelD: CARDS

changedGroups: KB_GROUPMASK
firstSl, nSl: CARD16

nTotalSI: CARD16

An XkbCompatMapNotify event indicates that some component of the compatibility map for a keyboard
has been changed. Compatibility map notify eventscan be caused by XkbSetCompatMap and XkbGetMap-
ByName requests.

The devicel D field reports the keyboard for which the compatibility map has changed; if the server does
not support the X input extension, devicelD is O.

The changedGroups field reports the keyboard groups, if any, with a changed entry in the group compati-
bility map. The firstS and nd fields specify arange of symbol interpretationsin the symbol compatibility
map that includes all changed symbol interpretations; if the symbol compatibility map is unchanged, both
fieldsare 0. The nTotalS field always reports the total number of symbol interpretations present in the
symbol compatibility map, regardless of whether any symbol interpretations have been changed.

The server sendsan XkbCompatMapNotify event to aclient only if at least one of the following conditions
is met:

» The nd field of the event is non-zero, and the XkbSymlnterpMask bit is set in the appropriate event
details mask for the client.

» The changedGroups field of the event contains at least one group, and the XkbGroupCompatMask bit
is set in the appropriate event details mask for the client.

98

XKB Protocol Requests

Tracking Application Bell Requests

XkbBellINotify
time TIMESTAMP
devicelD: CARDS
bellClass: { KbdFeedbackClass, BellFeedbackClass }
belllID: CARDS8
percent: CARD8
pitch: CARD16
duration: CARD16
eventOnly: BOOL
name: ATOM
window: WINDOW

An XkbBellNotify event indicates that some client has requested a keyboard bell. Bell notify events are
usually caused by Bell , DeviceBell , or XkbBell requests, but they can also be generated by the server
(e.g. if the AccessXFeedback control is active).

The server sends an XkbBellNotify event to aclient if the appropriate event details field for the client has
thevalue True.

The devicel D field specifies the device for which a bell was requested, while the bellClass and belllID
fields specify the input extension class and identifier of the feedback for which the bell was requested. 1f
the reporting server does not support the input extension, all three fields have the value O.

The percent, pitch and duration fields report the volume, tone and duration requested for the bell as
specified by the XkbBell request. Bell notify events caused by core protocol or input extension requests
use the pitch and duration specified in the corresponding bell or keyboard feedback control.

If the bell was caused by an XkbBell request or by the X server, name reports an optional symbolic
name for the bell and the window field optionally reports the window for which the bell was generated.
Otherwise, both fields have the value None.

If the eventOnly field is True, the server did not generate a sound in response to the request, otherwise
the server issues the beep before sending the event. The eventOnly field can be Trueif the AudibleBell
control isdisabled or if aclient explicitly requests eventOnly when it issues an XkbBell request.

Tracking Messages Generated by Key Actions

XkbActionM essage
time: TIMESTAMP
devicelD: CARDS
keycode: KEY CODE
press. BOOL

mods: KEYMASK
group: KB_GROUP
keyEventFollows; BOOL
message: LISTof CARD8

99

XKB Protocol Requests

An XkbActionMessage event is generated when the user operates a key to which an SA ActionMessage
message is bound under the appropriate state and group. The server sendsan XkbActionMessage event to
aclient if the appropriate event details field for the client has the value True.

The devicelD field specifies the keyboard device that contains the key which activated the event. The
keycode field specifies the key whose operation caused the message and pressis Trueif the message was
caused by the user pressing the key. The modsand group fields report the effective keyboard modifiers
and group in effect at the time the key was pressed or released.

If keyEventFollowsis True, the server will also send a key press or release event, as appropriate, for
the key that generated the message. If it is False, the key causes only a message. Note that the key
event is delivered normally with respect to passive grabs, keyboard focus, and cursor position, so that
keyEventFollows does hot guarantee that any particular client which receivesthe XkbActionMessage notify
event will also receive akey press or release event.

The messagefieldis NULL -terminated string of up to ActionMessagelength (6) bytes, which reports
the contents of the message field in the action that caused the message notify event.

Tracking Changes to AccessX State and Keys

XkbAccessXNotify

time: TIMESTAMP

devicelD: CARDS

detail: KB_AXNDETAILMASK

keycode: KEY CODE

slowKeysDelay: CARD16

debounceDelay: CARD16

An XkbAccessXNotify event reports on some kinds of keyboard activity when any of the SowKeys ,

BounceKeys or AccessXKeys controls are active. Compatibility map notify events can only be caused by
keyboard activity.

The devicelD and keycode fields specify the keyboard and key for which the event occurred. The detail
field describes the event that occurred and has one of the following values:

Detail Control Meaning

AXN_SKPress SowKeys Key pressed

AXN_SKAccept JowKeys K ey held until it was accepted.
AXN_SKReject SowKeys Key released before it was accepted.
AXN_SKRelease SowKeys Key released after it was accepted.
AXN_BKAccept BounceKeys Key pressed while it was active.
AXN_BKRegject BounceKeys Key pressed while it was still disabled.
AXN_AXKWarning AccessXKeys Shift key held down for four seconds

Each subclass of the AccessX notify event is generated only when the control specified in the table above
is enabled. The server sends an XkbAccessXNotify event to a client only if the bit which corresponds to
the value of the detail field for the event is set in the appropriate event details mask for the client.

Regardless of the value of detail , the dowKeysDelay and debounceDelay fields always reports the
current slow keys acceptance delay (see The SlowKeys Control) and debouncedel ay (see The BounceKeys
Control) for the specified keyboard.

100

XKB Protocol Requests

Tracking Changes To Extension Devices

XkbExtensionDeviceNotify

time: TIMESTAMP

devicelD: CARD16

ledClass: { KbdFeedbackClass, L edFeedbackClass }
ledID: CARD16

reason: KB_XIDETAILMASK
supported: KB_XIFEATUREMASK
unsupported: KB_XIFEATUREMASK
ledsDefined: KB_INDICATORMASK
ledState: KB_INDICATORMASK
firstButton, nButtons: CARDS8

An XkbExtensionDeviceNotify event reports:
A changeto some part of the XKB information for an extension device.

« An attempt to use an XKB extension device feature that is not supported for the specified device by
the current implementation.

The devicelD field specifies the X Input Extension device identifier of some device on which an XKB
feature was requested, or XkbUseCorePtr if the request affected the core pointer device. The reason
field explains why the event was generated in response to the request, and can contain any combination
of XkbXI_UnsupportedFeature and the values permitted for the change field of the XkbSetDevicelnfo
request.

If XkbXI_ButtonActionsissetin reason, thisevent reports asuccessful change to the XK B actions bound
to one or more buttons on the core pointer or an extension device. The firstButton and nButtons fields
report arange of device buttons that include all of the buttons for which actions were changed.

If any combination of XkbXI_IndicatorNames, XkbXI_IndicatorMaps, or XkbXI_IndicatorSateis set
in either reason or unsupported , the ledClassand ledID fields specify the X Input Extension feedback
class and identifier of the feedback for which the change is reported. If this event reports any changes
to an indicator feedback, the ledsDefined field reports all indicators on that feedback for which either a
name or aindicator map are defined, and ledState reports the current state of all of the indicators on the
specified feedback.

If XkbXI_IndicatorNamesissetin reason, thisevent reports a successful change to the symbolic names
bound to one or more extension deviceindicatorsby XKB. If XkbXI_IndicatorMapsissetin reason, this
event reports a successful change to the indicator maps bound to one or more extension device indicators
by XKB. If XkbXI_IndicatorSate is set in reason, this event reports that one or more indicators in the
specified device and feedback have changed state.

If XkbXI_UnsupportedFeatureisset in reason, thisevent reportsan unsuccessful attempt to use some XKB
extension device feature that is not supported by the XKB implementation in the server for the specified
device. The unsupported mask reportsthe requested features that are not availabl e on the specified device.
See Interactions Between XKB and the X Input Extension for more information about possible XKB
interactions with the X Input Extension.

The server sends an XkbExtensionDeviceNotify event to aclient only if at least one of the bits that is set
inthe reason field of the event is also set in the appropriate event details mask for the client.

101

XKB Protocol Requests

Eventsthat report asuccessful change to some extension device feature are reported to all clientsthat have
expressed interest in the event; eventsthat report an attempt to use an unsupported feature are reported only
to the client which issued the request. Events which report a partial success are reported to all interested
clients, but only the client that issued the request isinformed of the attempt to use unsupported features.

102

Appendix A. Default Symbol
Transformations

Interpreting the Control Modifier

If the Control modifier isnot consumed by the symbol lookup process, routines that determine the symbol
and string that correspond to an event should convert the symbol to a string as defined in the table below.
Only the string to be returned is affected by the Control modifier; the symbol is not changed.

This table lists the decimal value of the standard control characters that correspond to some keysyms for
ASCII characters. Control characters for symbols not listed in this table are application-specific.

Keysyms Value Keysyms Value Keysyms Value Keysyms Value
atsign 0 h, H 8 p, P 16 X, X 24
aA 1 i, | 9 g, Q 17 vy, Y 25
b, B 2 jnd 10 r,R 18 z2,Z 26
c,C 3 k, K 11 s, S 19 left_bracket 27
d,D 4 [, L 12 t, T 20 backslash 28
e E 5 m, M 13 u, U 21 right_bracket 29
f,F 6 n, N 14 v,V 22 asciicircum 30
0,G 8 0,0 15 w, W 23 underbar 31

Interpreting the Lock Modifier

If the Lock modifier is not consumed by the symbol lookup process, routines that determine the symbol
and string that correspond to an event should capitalize the result. Unlike the transformation for Control
, the capitalization transformation changes both the symbol and the string returned by the event.

Locale-Sensitive Capitalization

If Lock is setin an event and not consumed, applications should capitalize the string and symbols that
result from an event according to the capitalization rulesin effect for the system on which the application
isrunning, taking the current state of the user environment (e.g. local€) into account.

Locale-Insensitive Capitalization

XKB recommends but does not require locale-sensitive capitalization. In cases where the locale is un-
known or where locale-sensitive capitaization is prohibitively expensive, applications can capitalize ac-
cording to the rules defined in this extension.

Thefollowing tableslist all of the keysymsfor which XKB defines capitalization behavior. Any keysyms
not explicitly listed in these tables are not capitalized by XKB when locale-insensitive capitalizationisin
effect and are not automatically assigned the ALPHABETIC type asdescribed in the Alphabetic Key Type.

Capitalization Rules for Latin-1 Keysyms

Thistable lists the Latin-11 keysyms for which XKB defines upper and lower case:

103

Default Symbol Transformations

Lower Uppe Lower Upper Lower Case Upper Case Lower Case Upper Case
Case Case Case Case
a A o] @] acircumflex Acircumflex eth ETH
b B p P adiaeresis Adiaeresis ntilde Ntilde
c C o} Q atilde Atilde ograve Ograve
d D r R aring Aring oacute Oacute
e E S S ae AE ocircumflex Ocircumflex
f F t T ccedilla Ccedilla otilde Otilde
g G u U egrave Egrave odiaeresis Odiaeresis
h H Y% \% eacute Eacute oslash Ooblique
i I w W ecircumflex Ecircumflex ugrave Ugrave
j J X X ediaeresis Ediaeresis uacute Uacute
k K y Y igrave Igrave ucircumflex Ucircumflex
I L z 4 iacute lacute udiaeresis Udiaeresis
m M agrave Agrave icircumflex Icircumflex yacute Y acute
n N aacute Aacute idiseresis Idiaeresis thorn THORN
Capitalization Rules for Latin-2 Keysyms
Thistable lists the Latin-2 keysyms for which XKB defines upper and lower case:
Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
aogonek Aogonek zabovedot Zabovedot dstroke Dstroke
Istroke Lstroke racute Racute nacute Nacute
Icaron Lcaron abreve Abreve ncaron Ncaron
sacute Sacute lacute Lacute odoubleacute Odoubleacute
scaron Scaron cacute Cacute rcaron Rcaron
scedilla Scedilla ccaron Ccaron uabovering Uabovering
tcaron Tcaron eogonek Eogonek udoubleacute Udoubleacute
zacute Zacute ecaron Ecaron tcedilla Tcedilla
zcaron Zcaron dcaron Dcaron
Capitalization Rules for Latin-3 Keysyms
Thistable lists the Latin-3 keysyms for which XKB defines upper and lower case:
Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
hstroke Hstroke jcircumflex Jeircumflex gcircumflex Gceircumflex
hcircumflex Hcircumflex cabovedot Cabovedot ubreve Ubreve
idotless | abovedot ccircumflex Ccircumflex scircumflex Scircumflex
gbreve Gbreve gabovedot Gabovedot

Capitalization Rules for Latin-4 Keysyms

Thistable lists the Latin-4 keysyms for which XKB defines upper and lower case:

104

Default Symbol Transformations

Lower Case Upper Case Lower Case Upper Case Lower Case Upper Case
rcedilla Rcedilla eng ENG omacron Omacron
itilde Itilde amacron Amacron kcedilla Kcedilla
Icedilla Lcedilla iogonek logonek uogonek Uogonek
emacron Emacron eabovedot eabovedot utilde Utilde
geedilla Gceedilla imacron Imacron umacron Umacron
tslash Tdlash ncedilla Ncedilla
Capitalization Rules for Cyrillic Keysyms

Thistable lists the Cyrillic keysyms for which XKB defines upper and lower case:

Lower Case Upper Case Lower Case Upper Case
Serbian_dje Serbian DJE Cyrillic_i Cyrillic_l
Macedonia gje Macedonia GJE Cyrillic_shorti Cyrillic SHORTI
Cyrillic_io Cyrillic_1O Cyrillic_ka Cyrillic_KA
Ukrainian _ie Ukrainian |E Cyrillic_el Cyrillic_EL
Macedonia dse Macedonia DSE Cyrillic_em Cyrillic EM
Ukrainian _i Ukrainian_| Cyrillic_en Cyrillic_EN
Ukrainian_yi Ukrainian_YI Cyrillic_o Cyrillic_ O
Cyrillic_je Cyrillic_JE Cyrillic_pe Cyrillic_PE
Cyrillic_lje Cyrillic_LJE Cyrillic_ya Cyrillic_YA
Cyrillic_nje Cyrillic_NJE Cyrillic_er Cyrillic_ ER
Serbian_tshe Serbian TSHE Cyrillic_es Cyrillic ES
Macedonia kje Macedonia KJE Cyrillic_te Cyrillic_TE
Byelorussian_shortu Byelorussian SHORTU Cyrillic_u Cyrillic_U
Cyrillic_dzhe Cyrillic DZHE Cyrillic_zhe Cyrillic ZHE
Cyrillic_yu Cyrillic_YU Cyrillic_ve Cyrillic_VE
Cyrillic_a Cyrillic_A Cyrillic_softsign Cyrillic_SOFTSIGN
Cyrillic_be Cyrillic BE Cyrillic_yeru Cyrillic YERU
Cyrillic_tse Cyrillic_TSE Cyrillic_ze Cyrillic_ZE
Cyrillic_de Cyrillic_ DE Cyrillic_sha Cyrillic_SHA
Cyrillic_ie Cyrillic_IE Cyrillic_e Cyrillic E
Cyrillic_ef Cyrillic_EF Cyrillic_shcha Cyrillic_SHCHA
Cyrillic_ghe Cyrillic_ GHE Cyrillic_che Cyrillic_ CHE
Cyrillic_ha Cyrillic HA Cyrillic_hardsign Cyrillic HARDSIGN

Capitalization Rules for Greek Keysyms

Thistable lists the Greek keysyms for which XKB defines upper and lower case:

105

Default Symbol Transformations

Lower Case Upper Case Lower Case Upper Case
Greek_omegaaccent Greek OMEGAACCENT Greek_iota Greek _10TA
Greek_alphaaccent Greek ALPHAACCENT Greek_kappa Greek KAPPA
Greek_epsilonaccent Greek EPSILONACCENT Greek_lamda Greek LAMDA
Greek_etaaccent Greek ETAACCENT Greek_lambda Greek LAMBDA
Greek _iotaaccent Greek IOTAACCENT Greek_mu Greek MU
Greek_iotadieresis Greek_|IOTADIERESIS Greek_nu Greek_NU
Greek_omicronaccent Greek_ OMICRONACCENT Greek _xi Greek_XI

Greek _upsilonaccent Greek UPSILONACCENT Greek_omicron Greek OMICRON
Greek_upsilondieresis Greek_UPSILONDIERESIS Greek_pi Greek Pl
Greek_alpha Greek_ALPHA Greek_rho Greek RHO
Greek_beta Greek BETA Greek_sigma Greek SIGMA
Greek_gamma Greek_ GAMMA Greek_tau Greek_TAU
Greek_delta Greek DELTA Greek_upsilon Greek UPSILON
Greek_epsilon Greek EPSILON Greek_phi Greek PHI
Greek_zeta Greek_ZETA Greek_chi Greek_CHI
Greek_eta Greek ETA Greek_psi Greek _PSI

Greek _theta Greek THETA Greek omega Greek OMEGA

Capitalization Rules for Other Keysyms

XKB defines no capitalization rules for symbolsin any other set of keysyms provided by the consortium.
Applications are free to apply additional rules for private keysyms or for other keysyms not covered by

XKB.

106

Appendix B. Canonical Key Types

Canonical Key Types
The ONE_LEVEL Key Type

The ONE_LEVEL key type describes groups that have only one symbol. The default ONE_LEVEL type
has no map entries and does not pay attention to any modifiers.

The TWO_LEVEL Key Type

The TWO_LEVEL key type describes groupsthat have two symbols but are neither al phabetic nor numeric
keypad keys. The default TWO_LEVEL type uses only the Shift modifier. It returns level two if Shift
is set, level oneif itisnot.

The ALPHABETIC Key Type

The ALPHABETIC key type describes groups that consist of two symbols — the lowercase form of a
symbol followed by the uppercase form of the same symbol. The default ALPHABETIC typeimplements
locale-sensitive "shift cancels caps lock” behavior using both the Shift and Lock modifiers asfollows:

» If Shift and Lock are both set, the default ALPHABETIC typeyields level one.
o If Shift dloneisset, ityieldslevel two.
» If Lock aloneisset, it yieldslevel one but preservesthe Lock modifier.

 If neither Shift nor Lock are set, it yields level one.

The KEYPAD Key Type

The KEYPAD key type describes that consist of two symbols, at least one of which is a numeric keypad
symbol. The default KEYPAD type implements "shift cancels numeric lock" behavior using the Shift
modifier and the real modifier bound to thevirtual modifier named "NumL ock™ (the"NumLock" modifier)
asfollows:

 If Shift and the "NumLock" modifier are both set, the default KEYPAD typeyields level one.
* If either Shift or the "NumLock" modifier alone are set, it yields level two.

 If neither Shift nor the "NumLock” modifier are set, it yields level one.

107

Appendix C. New KeySyms

New KeySyms

KeySyms Used by the ISO9995 Standard

Byte 3 Byte 4 Character Name

254 1 ISO LOCK

254 2 ISO LATCHING LEVEL TWO SHIFT
254 3 ISO LEVEL THREE SHIFT

254 4 ISO LATCHING LEVEL THREE SHIFT
254 5 ISO LEVEL THREE SHIFT LOCK
254 6 ISO LATCHING GROUP SHIFT
254 7 SO GROUP SHIFT LOCK

254 8 SO NEXT GROUP

254 9 ISO LOCK NEXT GROUP

254 10 SO PREVIOUS GROUP

254 11 ISO LOCK PREVIOUS GROUP
254 12 SO FIRST GROUP

254 13 ISO LOCK FIRST GROUP

254 14 ISO LAST GROUP

254 15 ISO LOCK LAST GROUP

254 32 LEFT TAB

254 33 MOVE LINE UP

254 34 MOVE LINE DOWN

254 35 PARTIAL LINE UP

254 36 PARTIAL LINE DOWN

254 37 PARTIAL SPACE LEFT

254 38 PARTIAL SPACE RIGHT

254 39 SET MARGIN LEFT

254 40 SET MARGIN RIGHT

254 41 RELEASE MARGIN LEFT

254 42 RELEASE MARGIN RIGHT

254 43 RELEASE MARGIN LEFT AND RIGHT
254 44 FAST CURSOR LEFT

254 45 FAST CURSOR RIGHT

254 46 FAST CURSOR UP

254 47 FAST CURSOR DOWN

254 48 CONTINUOUS UNDERLINE

108

New KeySyms

Byte 3 Byte 4 Character Name

254 49 DISCONTINUOUS UNDERLINE
254 50 EMPHASIZE

254 51 CENTER OBJECT

254 52 ISO_ENTER

KeySyms Used to Control The Core Pointer

Byte 3 Byte 4 Character Name

254 224 POINTER LEFT

254 225 POINTER RIGHT

254 226 POINTER UP

254 227 POINTER DOWN

254 228 POINTER UP AND LEFT

254 229 POINTER UP AND RIGHT

254 230 POINTER DOWN AND LEFT

254 231 POINTER DOWN AND RIGHT

254 232 DEFAULT POINTER BUTTON

254 233 POINTER BUTTON ONE

254 234 POINTER BUTTON TWO

254 235 POINTER BUTTON THREE

254 236 POINTER BUTTON FOUR

254 237 POINTER BUTTON FIVE

254 238 DEFAULT POINTER BUTTON DOUBLE
CLICK

254 239 POINTER BUTTON ONE DOUBLE CLICK

254 240 POINTER BUTTON TWO DOUBLE CLICK

254 241 POINTER BUTTON THREE DOUBLE CLICK

254 242 POINTER BUTTON FOUR DOUBLE CLICK

254 243 POINTER BUTTON FIVE DOUBLE CLICK

254 244 DRAG DEFAULT POINTER BUTTON

254 245 DRAG POINTER BUTTON ONE

254 246 DRAG POINTER BUTTON TWO

254 247 DRAG POINTER BUTTON THREE

254 248 DRAG POINTER BUTTON FOUR

254 249 ENABLE POINTER FROM KEYBOARD

254 250 ENABLE KEYBOARD POINTER ACCEL

254 251 SET DEFAULT POINTER BUTTON NEXT

254 252 SET DEFAULT POINTER BUTTON PREVIOUS

254 253 DRAG POINTER BUTTON FIVE

109

New KeySyms

KeySyms Used to Change Keyboard Controls

Byte 3 Byte 4 Character Name

254 112 ENABLE ACCESSX KEYS

254 113 ENABLE ACCESSX FEEDBACK
254 114 TOGGLE REPEAT KEYS

254 115 TOGGLE SLOW KEYS

254 116 ENABLE BOUNCE KEY S

254 117 ENABLE STICKY KEYS

254 118 ENABLE MOUSE KEY S

254 119 ENABLE MOUSE KEYS ACCELERATION
254 120 ENABLE OVERLAY1

254 121 ENABLE OVERLAY?2

254 122 ENABLE AUDIBLE BELL

KeySyms Used To Control The Server

Byte Byte Character Name

254 208 FIRST SCREEN

254 209 PREVIOUS SCREEN
254 210 NEXT SCREEN

254 211 LAST SCREEN

254 212 TERMINATE SERVER

110

New KeySyms

KeySyms for Non-Spacing Diacritical Keys

Byte Byte Character Name

254 80 DEAD GRAVE ACCENT

254 81 DEAD ACUTE ACCENT

254 82 DEAD CIRCUMFLEX

254 83 DEAD TILDE

254 84 DEAD MACRON

254 85 DEAD BREVE

254 86 DEAD DOT ABOVE

254 87 DEAD DIAERESIS

254 88 DEAD RING ABOVE

254 89 DEAD DOUBLE ACUTE ACCENT
254 0 DEAD CARON

254 91 DEAD CEDILLA

254 92 DEAD OGONEK

254 93 DEAD IOTA

254 94 DEAD VOICED SOUND

254 95 DEAD SEMI VOICED SOUND

254 96 DEAD DOT BELOW

111

Appendix D. Protocol Encoding

Syntactic Conventions

This document uses the same syntactic conventions as the encoding of the core X protocol, with the fol-
lowing additions:

A LISTofITEMs contains zero or more items of variable type and size. The encode form for a L1STof-

ITEMsis:

v LI STof | TEMs NANVE
TYPE MASK- EXPRESSI ON
val uel correspondi ng field(s)
val uen correspondi ng field(s)

The MASK-EXPRESSION is an expression using C-style boolean operators and fields of the request
which specifies the bitmask used to determine whether or not a mem ber of the LISTofI TEMs is present.
If present, TY PE specifies the interpretation of the resulting bitmask and the values are listed using the
symbolic names of the members of the set. If TY PE is blank, the values are numeric constants.

It is possible for asingle bit in the MASK-EXPRESSION to control more than one ITEM — if the bit is
set, al listed ITEMsare present. It isalso possiblefor multiple bitsin the MASK-EXPRESSION to control
asingle ITEM — if any of the bits associated with an ITEM are set, it is present in the LISTofI TEMs.

The size of aLISTofITEMSis derived from the items that are present in the list, so it is always given as
avariable in the request description, and the request is followed by a section of the form:

| TEMs

encode- form

encode- form

listing an encode-form for each ITEM. The NAME in each encode-form keysto the fields listed as corre-
sponding to each bit in the MASK-EXPRESSION. Items are not necessarily the same size, and the size

specified in the encoding form isthe size that the item occupiesif it is present.

Some types are of variable size. The encode-form for alist of items of asingle type but variable sizeis:

SO0+. . Ss LI STof TYPE name

Which indicates that the list has s elements of variable size and that the size of the list is the sum of the
sizes of al of the elements that make up the list. The notation Sn refers to the size of the n th element of
the list and the notation S* refers to the size of the list as awhole.

Thedefinition of atype of variable sizeincludes an expression which specifiesthesize. Thesizeisspecified
as aconstant plus avariable expression; the constant specifiesthe size of the fields that are always present
and the variables which make up the variabl e expression are defined in the constant portion of the structure.

112

Protocol Encoding

For example, the following definition specifies a counted string with a two-byte length field preceding

the string:

TYPE 2+n+p

2 n | ength

n STRI N8 string

p unused, p=pad(n)

Some fields are optional. The size of an optional field has the form: "[expr]" where expr specifies the
size of the field if it is present. An explanation of the conditions under which the field is present follows
the name in the encode form:

1 BOOL nor e
3 unused
[4] CARD32 optData, if nore==TRUE

This portion of the structure is four bytes long if more is FALSE or eight bytes long if more is TRUE.
This notation can a so be used in size expressions; for example, the size of the previous structure iswritten
as"4+[4]" bytes.

Common Types

SETof KB_EVENTTYPE

#x0001 XkbNewKeyboar dNot i fy
#x0002 XkbMapNot i fy
#x0004 XkbSt at eNot i fy
#x0008 XkbControl sNotify
#x0010 Xkbl ndi cat or St at eNot i fy
#x0020 Xkbl ndi cat or MapNoti fy
#x0040 XkbNanmesNot i fy
#x0080 XkbConpat MapNot i fy
#x0100 XkbBel | Noti fy
#x0200 XkbAct i onMessage
#x0400 XkbAccessXNoti fy
#x0800 XkbExt ensi onDevi ceNoti fy
SETof KB_NKNDETAI L
#x01 XkbNKN_Keycodes
#x02 XkbNKN_Geonet ry
#x04 XkbNKN_Devi cel D
SETof KB_AXNDETAI L
#x01 XkbAXN_SKPr ess
#x02 XkbAXN_SKAccept
#x04 XkbAXN_SKRej ect
#x08 XkbAXN_SKRel ease
#x10 XkbAXN_BKAccept
#x20 XkbAXN_BKRej ect
#x40 XkbAXN_AXKWAr ni ng

SETof KB_MAPPART

113

Protocol Encoding

#x0001 XkbKeyTypes
#x0002 XkbKeySyns
#x0004 XkbModi fi er Map
#x0008 XkbExpl i ci t Component s
#x0010 XkbKeyAct i ons
#x0020 XkbKeyBehavi or s
#x0040 XkbVi rt ual Mods
#x0080 XkbVi rt ual ModMap
SETof KB_ STATEPART
#x0001 XkbModi fi er St at e
#x0002 XkbModi fi er Base
#x0004 XkbModi fi er Lat ch
#x0008 XkbModi fi er Lock
#x0010 XkbGr oupSt at e
#x0020 XkbG oupBase
#x0040 XkbGr oupLat ch
#x0080 XkbG oupLock
#x0100 XkbConpat St at e
#x0200 XkbGr abMbds
#x0400 XkbConpat Gr abMods
#x0800 XkbLookupMbds
#x1000 XkbConpat LookupMods
#x2000 XkbPoi nt er But t ons
SETof KB_BOOLCTRL
#x00000001 XkbRepeat Keys
#x00000002 XkbSl owKeys
#x00000004 XkbBounceKeys
#x00000008 XkbSti ckyKeys
#x00000010 XkbMouseKeys
#x00000020 XkbMbuseKeysAccel
#x00000040 XkbAccessXKeys
#x00000080 XkbAccessXTi meout Mask
#x00000100 XkbAccessXFeedbackMask
#x00000200 XkbAudi bl eBel | Mask
#x00000400 XkbOver | ay1Mask
#x00000800 XkbOver | ay2Mask
#x00001000 Xkbl gnor eG oupLockMask

SETof KB_CONTROL
Encodi ngs are the sane as for SETof KB_BOOLCTRL, with the addition of:

#x080000000 XkbG oupsW ap

#x100000000 Xkbl nt er nal Mods

#x200000000 Xkbl gnor eLockMods

#x400000000 XkbPer KeyRepeat

#x800000000 XkbCont r ol sEnabl ed
SETof KB_AXFBOPT

#x0001 XkbAX_SKPr essFB

#x0002 XkbAX_SKAccept FB

#x0004 XkbAX_ Feat ur eFB

#x0008 XkbAX_SI owMar nFB

#x0010 XkbAX I ndi cat or FB

#x0020 XkbAX_Sti ckyKeysFB

114

Protocol Encoding

#x0100 XkbAX_SKRel easeFB

#x0200 XkbAX_SKRej ect FB

#x0400 XkbAX_BKRej ect FB

#x0800 XkbAX_DunbBel |
SETof KB_AXSKOPT

#x0040 XkbAX_TwoKeys

#x0080 XkbAX Lat chToLock

SETof KB_AXOPTI ON
Encodi ng sanme as the bitw se union of
SETof KB_AXFBOPT
SETof KB_AXSKOPT

KB_DEVI CESPEC
0..255 i nput extension device id
#x100 XkbUseCor eKbd
#x200 XkbUseCor ePt r

KB_LEDCLASSRESULT
0 KbdFeedbackC ass
4 LedFeedbackC ass

KB_LEDCLASSSPEC
Encodi ng same as KB _LEDCLASSRESULT, with the addition of:
#x0300 XkbDf I t XI Cl ass
#x0500 XkbAI'l XI Cl asses

KB_BELLCLASSRESULT
0 KbdFeedbackd ass
5 Bel | Feedbackd ass

KB_BELLCLASSSPEC
Encodi ng sanme as KB BELLCLASSRESULT, with the addition of:

#x0300 XkbDf | t XI Cl ass
KB_| DSPEC
0..255 i nput extension feedback id
#x0400 XkbDf It XI I d
KB_| DRESULT
Encodi ng same as KB _IDSPEC, with the addition of:
#xf f 00 XkbXl None

KB_MULTI | DSPEC
encodi ngs sane as KB I DSPEC, with the addition of:
#x0500 XkbAl | XI | ds

KB_GROUP
0 XkbG oupl
1 XkbG oup2
2 XkbG oup3
3 XkbG oup4

KB_GROUPS
Encodi ng same as KB_GROUP, with the addition of:

115

Protocol Encoding

254 XkbAnyGr oup

255 XkbAl' | Groups
SETof KB_GROUP

#x01 XkbG oupl

#x02 XkbG oup?2

#x04 XkbG oup3

#x08 XkbG oup4

SETof KB_GROUPS
Encodi ng sanme as SETof KB_GROUP, with the addition of:

#x80 XkbAnyGr oup
KB _GROUPSW\RAP
#x00 XkbW apl nt oRange
#x40 Xkbd anpl nt oRange
#x80 XkbRedi r ect | nt oRange
SETof KB_VMODSHI GH
#x80 virtual nodifier 15
#x40 virtual nodifier 14
#x20 virtual nodifier 13
#x10 virtual nodifier 12
#x08 virtual nodifier 11
#x04 virtual nodifier 10
#x02 virtual nodifier 9
#x01 virtual nodifier 8

SETof KB_VMODSLOW

#x80 virtual nodifier 7
#x40 virtual nodifier 6
#x20 virtual nodifier 5
#x10 virtual nodifier 4
#x08 virtual nodifier 3
#x04 virtual nodifier 2
#x02 virtual nodifier 1
#x01 virtual nodifier O

SETof KB_VMOD

#x8000 virtual nodifier 15
#x4000 virtual nodifier 14
#x2000 virtual nodifier 13
#x1000 virtual nodifier 12
#x0800 virtual nodifier 11
#x0400 virtual nodifier 10
#x0200 virtual nodifier 9
#x0100 virtual nodifier 8
#x0080 virtual nodifier 7
#x0040 virtual nodifier 6
#x0020 virtual nodifier 5
#x0010 virtual nodifier 4
#x0008 virtual nodifier 3
#x0004 virtual nodifier 2
#x0002 virtual nodifier 1
#x0001 virtual nodifier O

116

Protocol Encoding

SETof KB_EXPLICI T

#x80 XkbExpl i ci t VivbdMap
#x40 XkbExpl i ci t Behavi or
#x20 XkbExpl i ci t Aut oRepeat
#x10 XkbExplicitlnterpret
#x08 XkbExpl i cit KeyType4d
#x04 XkbExpl i cit KeyType3
#x02 XkbExpl i cit KeyType2
#x01 XkbExpl i cit KeyTypel
KB_SYM NTERPMATCH
#x80 XkbSI _Level OneOnl y
#xT7f operation, one of the follow ng:

0 XkbSI _NoneOr

1 XkbSI _AnyO Or None
2 XkbSI _AnyOf

3 XkbSI _All O

4 XkbSI _Exactly

SETof KB_| MFLAG

#x80 Xkbl M_NoExplicit

#x40 Xkbl M_NoAut onati c

#x20 Xkbl M_LEDDr i veskB
SETof KB_| MVODSWHI CH

#x10 Xkbl M_UseComnpat

#x08 Xkbl M _UseEf f ecti ve

#x04 Xkbl M _UselLocked

#x02 Xkbl M _UselLat ched

#x01 Xkbl M UseBase
SETof KB_| MGROUPSVHI CH

#x10 Xkbl M_UseConpat

#x08 Xkbl M UseEffective

#x04 Xkbl M UselLocked

#x02 Xkbl M UselLat ched

#x01 Xkbl M UseBase
KB_| NDI CATORVAP
1 SETof KB_| MFLAGS flags
1 SETof KB_| MGROUPSVHI CH whi chGr oups
1 SETof KB_GROUP groups
1 SETof KB_| MMODSWHI CH whi chMbds
1 SETof KEYMASK nods
1 SETof KEYMASK r eal Mods
2 SETof KB_VMOD vnods
4 SETof KB_BOOLCTRL ctrls
SETof KB_CMVDETAI L

#x01 XkbSym nterp

#x02 XkbG oupConpat
SETof KB_NAMEDETAI L

#x0001 XkbKeycodesNane

#x0002 XkbGeonet r yNane

117

Protocol Encoding

#x0004 XkbSynbol sNare
#x0008 XkbPhysSynbol sNane
#x0010 XkbTypesNamne
#x0020 XkbConpat Nanme
#x0040 XkbKeyTypeNamnes
#x0080 XkbKTLevel Names
#x0100 Xkbl ndi cat or Nanes
#x0200 XkbKeyNanes
#x0400 XkbKeyAl i ases
#x0800 XkbVi r t ual ModNames
#x1000 XkbG oupNanes
#x2000 XkbRGNanes
SETof KB_GBNDETAI L
#x01 XkbGBN_Types
#x02 XkbGBN_Conpat Map
#x04 XkbGBN_d i ent Synbol s
#x08 XkbGBN_Ser ver Synbol s
#x10 XkbGBN_| ndi cat or Maps
#x20 XkbGBN_KeyNames
#x40 XkbGBN_Geonetry
#x80 XkbGBN_O her Nanes
SETof KB_XI EXTDEVFEATURE
#x02 XkbXl _ButtonActions
#x04 XkbXI I ndi cat or Nanmes
#x08 XkbXI I ndi cat or Maps
#x10 XkbXI I ndicatorState

SETof KB_XI FEATURE
Encodi ng same as SETof KB_XI EXTDEVFEATURE, with the addition of:
#x01 XkbXl _Keyboar ds

SETof KB_XI DETAI L
Encodi ng same as SETof KB_XI FEATURE, with the addition of:

#x8000 XkbXl _Unsupport edFeat ure
SETof KB_PERCLI| ENTFLAG
#x01 XkbDet ect abl eAut or epeat
#x02 XkbGr absUseXKBSt at e
#x04 XkbAut oReset Control s
#x08 XkbLookupSt at eWhenGr abbed
#x10 XkbSendEvent Uses XKBSt at e
KB_MODDEF
1 SETof KEYMASK mask
1 SETof KEYMASK real Mods
2 SETof VMOD vnods
KB_COUNTED_STRI NGB
1 I [ength
I STRI NGB string

KB_COUNTED_STRI NG16
2 I | ength

118

Protocol Encoding

I STRI N8 string

KB_COUNTED_STRI NG16

p unused, p=pad(2+l)

Errors

1 0 Error

2 ?? code

2 CARD16 sequence

4 CARD32 error val ue
nost significant 8 bits of error value have the meaning:
Oxf f XkbEr r BadDevi ce
Oxfe XkbEr r BadCl ass
Oxfd XkbEr r Badl d

the | east significant 8 bits of the error value contain the device id,
cl ass, or feedback
id which failed.

2 CARD16 nm nor opcode
1 CARDS maj or opcode
21 unused

Key Actions

0 type
7 unused

=

1 1 type
Bl TMASK fl ags
#x01 XkbSA C ear Locks
#x02 XkbSA Lat chTolLock
#x04 XkbSA UseModMapMods
SETof KEYMASK mask
SETof KEYMASK real nmodifiers
SETof KB_VMODSHI GH virtual nodifiers high
SETof KB_VMODSLOW virtual nodifiers | ow
unused

=Y

NP R R

=Y

2 type
Bl TMASK fl ags
#x01 XkbSA C ear Locks
#x02 XkbSA Lat chToLock
#x04 XkbSA UseModMapMbods
SETof KEYMASK mask
SETof KEYMASK real nodifiers
SETof KB_VMODSHI GH virtual nodifiers high
SETof KB_ VMODSLOW virtual nodifiers |ow
unused

=Y

NP R R

=

3 type

Bl TMASK fl ags
#x01 XkbSA LockNoLock
#x02 XkbSA LockNoUnl ock

=

119

Protocol Encoding

#x04 XkbSA_UseMbdMapMods

NP R R R

[

=

AR RPRPRER NRRPRRPR

AR R R R

SETof KEYMASK mask
SETof KEYMASK real nodifiers
SETof KB_VMODSHI GH virtual nodifiers high
SETof KB_VMODSLOW virtual nodifiers |ow
unused
4 type
Bl TMASK flags
#x01 XkbSA C ear Locks
#x02 XkbSA Lat chToLock
#x04 XkbSA GroupAbsol ut e
| NT8 group
unused
5 type
Bl TMASK flags
#x01 XkbSA C ear Locks
#x02 XkbSA Lat chTolLock
#x04 XkbSA G oupAbsol ute
| NT8 group
unused
6 type
Bl TMASK flags
#x01 XkbSA LockNoLock
#x02 XkbSA LockNoUnl ock
#x04 XkbSA GroupAbsol ute
| NT8 group
unused
7 type
Bl TMASK flags
#x01 XkbSA NoAccel eration
#x02 XkbSA MoveAbsol ut eX
#x04 XkbSA MoveAbsol uteY
| NT8 x high
CARD8 X | ow
| NT8 y high
CARDS y | ow
unused
8 type
Bl TMASK fl ags
CARD8 count
CARDS button
unused
9 type
Bl TMASK fl ags
unused
CARDS button
unused
10 type

120

Protocol Encoding

[

N N

N A

[

w

Bl TMASK fl ags
#x02 XkbSA Df | t Bt nAbsol ute
BI TMASK af f ect
#x01 XkbSA AffectDf I tBtn
| NT8 val ue
unused
11 type
BI TMASK fl ags
#x01 XkbSA LockNoLock
#x02 XkbSA LockNoUnl ock
#x04 XkbSA UseMbdMapMods (if SA I1SODfItIsGoup is 0)
#x04 XkbSA GroupAbsolute (if SA I1SODflItIsGoup is 1)
#x80 XkbSA | SODf I t 1 sG oup
SETof KEYNASK mask
SETof KEYNASK real nmodifiers
| NT8 group
Bl TMASK af f ect
#x08 XkbSA | SONoAffectCtrls
#x10 XkbSA | SONoAf fect Ptr
#x20 XkbSA | SONoAf f ect G oup
#x40 XkbSA | SONoAf f ect Mbds
SETof KB_VMODSHI GH virtual nodifiers high
SETof KB_VMODSLOW virtual nodifiers |ow
12 type
unused
13 type
BI TMASK fl ags
#x01 XkbSA Swi t chApplication
#x04 XkbSA Swi t chAbsol ut e
| NT8 new screen

unused (must be 0)

14 type
unused (must be 0)

Bl TMASK bool ean control s high
#x01 XkbAccessXFeedbackMask
#x02 XkbAudi bl eBel | Mask
#x04 XkbOver | aylMask
#x08 XkbOver | ay2Mask
#x10 Xkbl gnor eG oupLockMask

Bl TMASK bool ean controls | ow
#x01 XkbRepeat Keys
#x02 XkbSI owKeys
#x04 XkbBounceKeys
#x08 XkbSt i ckyKeys
#x10 XkbMbuseKeys
#x20 XkbMbuseKeysAcce
#x40 XkbAccessXKeys
#x80 XkbAccessXTi meout Mask

unused (must be 0)

15 type

121

Protocol Encoding

w

[N

o]

PR RPRRPRRRER

WR R PR PR

B

=Y

[

unused (must be 0)

Bl TMASK bool ean control s high
#x01 XkbAccessXFeedbackMask
#x02 XkbAudi bl eBel | Mask
#x04 XkbOver | aylMask
#x08 XkbOver | ay2Mask
#x10 Xkbl gnor eG oupLockMask
Bl TMASK bool ean controls | ow
#x01 XkbRepeat Keys
#x02 XkbSI owKeys
#x04 XkbBounceKeys
#x08 XkbSt i ckyKeys
#x10 XkbMbuseKeys
#x20 XkbMbuseKeysAccel
#x40 XkbAccessXKeys
#x80 XkbAccessXTi meout Mask
16 type
unused (must be 0)
16 type
Bl TMASK flags
#x01 XkbSA MessageOnPress
#x02 XkbSA MessageOnRel ease
#x04 XkbSA MessageCGenKeyEvent
STRI NG message
17 type
KEYCODE new key
SETof KEYMASK mask
SETof KEYMASK real nodifiers
SETof KB_VMODSHI GH virtual nodfiiers mask high
SETof KB_VMODSLOW virtual nodifiers mask | ow
SETof KB_VMODSHI GH virtual nodifiers high
SETof KB_VMODSLOW virtual nodfiers |ow
18 type
0 flags
CARDS count
CARDS button
CARDS devi ce
unused (must be 0)
19 type
Bl TMASK flags
#x01 XkbSA LockNoLock
#x02 XkbSA LockNoUnl ock
unused
CARDS button
CARDS devi ce
20 type
CARDS devi ce
KB_SA VALWHAT val uator 1 what
#x00 XkbSA | gnor eVal

122

Protocol Encoding

#x01 XkbSA SetVal M n
#x02 XkbSA Set Val Cent er
#x03 XkbSA Set Val Max
#x04 XkbSA Set Val Rel ative
#x05 XkbSA Set Val Absol ut e

1 CARDS val uator 1 index

1 CARDS val uator 1 val ue

1 KB_SA VALWHAT val uat or
Encodi ngs as for "valuator 1 what”

1 CARDS val uator 2 index

1 CARDS val uator 2 val ue

Key Behaviors

1 #x00 type

1 unused

1 #x01 type

1 unused

1 #x02 type

1 0..31 group

1 #x03 type

1 KEYCODE key

1 #x04 type

1 CARDS key

1 #x81 type

1 unused

1 #x82 type

1 0..31 group

1 #x83 type

1 KEYCODE key

1 #x84 type

1 KEYCODE key

Requests

1 ?? opcode

1 0 xkb- opcode

2 2 request-1length

2 CARD16 want edMaj or

2 CARD16 want edM nor

1 1 Reply

1 BOOL support ed

2 CARD16 seqguence nunber

4 0 reply length

2 1 server Maj or

2 0 server M nor

123

Protocol Encoding

20 unused

1 ?? opcode

1 1 xkb- opcode

2 4+(V+p)/ 4 request-Ilength

2 KB_DEVI CESPEC devi ceSpec

2 SETof KB_EVENTTYPE af f ect Whi ch
2 SETof KB_EVENTTYPE cl ear

2 SETof KB_EVENTTYPE sel ect Al |
2 SETof KB_MAPDETAI LS af f ect Map
2 SETof KB_MAPDETAI LS map

\Y LI STof | TEMs details

SETof KB_EVENTTYPE
(af f ect Whi ch&(~cl ear) & ~sel ect Al 1))

XkbNewKeyboar dNot i fy af f ect NewKeyboar d, newKeyboar dDet ail s
XkbSt at eNot i fy affectState, stateDetails
XkbControl sNoti fy affectCrls, ctriDetails
Xkbl ndi cat or St at eNot i fy affectIndicatorState, indicatorStateDetails
Xkbl ndi cat or MapNot i fy af f ect I ndi cat or Map, i ndicatorMapDetails
XkbNanmesNot i fy af f ect Nanes, nanesDetail s
XkbConpat MapNot i fy af f ect Conpat, conpatDetails
XkbBel | Not i fy affectBell, bellDetails
XkbAct i onMessage af fect MsgDetails, nmegDetails
XkbExt ensi onDevi ceNot i fy af f ect Ext Dev, extdevDetails
| TEMs
p unused, p=pad(V)
| TEMs
2 SETof KB_NKNDETAI L af f ect NewKeyboar d
2 SETof KB_NKNDETAI L newKeyboar dDet ai | s
2 SETof KB_ STATEPART affectState
2 SETof KB_ STATEPART stateDetails
4 SETof KB_CONTRCL affectCrls
4 SETof KB_CONTRCL ctrlDetails
4 SETof KB_| NDI CATOR affectIndi catorState
4 SETof KB_| NDI CATOR i ndi cator StateDetails
4 SETof KB_| NDI CATOR af f ect I ndi cat or Maps
4 SETof KB_| NDI CATOR i ndi cat or MapDet ai | s
2 SETof KB_NAME_DETAI L af f ect Names
2 SETof KB_NAME_DETAI L nanmesDet ai | s
1 SETof KB_CMDETAI L af f ect Conmpat
1 SETof KB_CMDETAI L conpatDetail s
1 SETof KB_BELLDETAI L af f ect Bel |
1 SETof KB_BELLDETAI L bel | Details
1 SETof KB_MSGDETAI L af fect MsgDet ail s
1 SETof KB_MSGDETAI L nsgDet ai |l s
2 SETof KB_AXNDETAI L af f ect AccessX
2 SETof KB_AXNDETAI L accessXDet ai |l s
2 SETof KB_XI DETAI L af f ect Ext Dev
2 SETof KB_XI DETAI L ext devDetail s
1 ?? opcode
1 3 xkb- opcode
2 7 request-1length

124

Protocol Encoding

A BDANNNEFEPRERPEPENDNDDN

NNDNPEP PR

ONRPRPRPRPRPREPNNRRRRPRPRLANRR

NRPRRPRRPRPRPRRPRNNRR

[

KB_DEVI CESPEC

devi ceSpec

KB_BELLCLASSSPEC bel | d ass
KB_I DSPEC bel I 1 D
I NT8 per cent
BOOL f or ceSound
BOOL eventOnly
unused
| NT16 pitch
| NT16 duration
unused
ATOM name
W NDOW wi ndow
?? opcode
4 xkb- opcode
2 request-1ength
KB_DEVI CESPEC devi ceSpec
unused
1 Reply
CARDS devi cel D
CARD16 seqguence nunber
0 | ength
SETof KEYMASK nods
SETof KEYMASK baseMbods
SETof KEYMASK | at chedMbds
SETof KEYMASK | ockedMbds
KP_GROUP group
KP_GROUP | ockedGr oup
| NT16 baseG oup
| NT16 | at chedG oup

SETof KEYMASK
SETof KEYMASK
SETof KEYMASK
SETof KEYMASK
SETof KEYMASK

conpat St at e

gr abMbds

conpat G abMods

| ookupMbds
conpat LookupMbds

unused

SETof BUTMASK ptrBtnState
unused

?? opcode

5 xkb- opcode

4 request-1length

KB_DEVI CESPEC

SETof KEYMASK
SETof KEYMASK
BOOL
KB_GROUP
SETof KEYMASK
SETof KEYMASK

devi ceSpec
af f ect ModLocks
nodLocks

| ockG oup

grouplLock
af f ect ModLat ches
nodLat ches

unused
BOOL | at chGroup
| NT16 grouplLat ch
?? opcode

125

Protocol Encoding

NNDN P

WEABDBBEBNDNNNDNNNNNNNNNNNNNRERPRERPERPRPERPERPERPANEREPR

NNFPEFEPNMNNMNMNNNRPRPERPERPNNERPRE

6 xkb- opcode

2 request-1length

KB_DEVI CESPEC devi ceSpec
unused

1 Reply

CARDS devi cel D

CARD16 sequence nunber

15 | ength

CARDS nmouseKeysDf | t Bt n

CARD3 nunG oups

CARD3 groupsW ap

SETof KEYMASK
SETof KEYMASK
SETof KEYMASK
SETof KEYMASK
unused
SETof KB_VMOD
SETof KB_VMOD

i nt er nal Mods. nmask

i gnor eLockMods. mask

i nt er nal Mods. r eal Mods

i gnor eLockMods. r eal Mods

i nt er nal Mods. vnods
i gnor eLockMbds. vnods

CARD16 r epeat Del ay

CARD16 repeatl nterva
CARD16 sl owKeysDel ay
CARD16 debounceDel ay
CARD16 nouseKeysDel ay
CARD16 nmouseKeysl nt er val
CARD16 nmouseKeysTi meToMax
CARD16 nouseKeyshMaxSpeed
I NT16 mouseKeysCur ve

SETof KB_AXOPTI ON
CARD16
SETof KB_AXOPTI ON
SETof KB_AXOPTI ON
unused
SETof KB_BOOLCTRL
SETof KB_BOOLCTRL
SETof KB_BOOLCTRL

accessXOpti ons

accessXTi neout

accessXTi neout Opt i onsMask
accessXTi neout Opt i onVal ues

accessXTi neout Mask
accessXTi neout Val ues
enabl edControl s

LI STof CARDS per KeyRepeat
?? opcode
7 xkb- opcode
25 request-1length

KB_DEVI CESPEC
SETof KEYMASK
SETof KEYMASK
SETof KEYMASK
SETof KEYMASK
SETof KB_VMOD
SETof KB_VMOD
SETof KB_VMOD
SETof KB_VMOD

devi ceSpec
af f ect I nt er nal Real Mods
i nt er nal Real Mbds
af f ect I gnor eLockReal Mods
i gnor eLockReal Mbds
af fect I nt er nal Vi rt ual Mods
i nternal Virtual Mbds
af f ect I gnor eLockVi r t ual Mods
i gnor eLockVi rt ual Mods

CARDS nmouseKeysDf | t Bt n
CARD3 groupsW ap

SETof KB_AXOPTI ON
unused

accessXOpti ons

126

Protocol Encoding

WNNBEDRENNNNNNNNNNRAEAD

NRPRPRRPRPRPREPNRPRRPRPRPRPRPRPRLPNNNMNNONNRR

RPRPRRPRPNRPRPNDAMNR R

af f ect Enabl edControl s
enabl edControl s
changeControl s

SETof KB_BOOLCTRL
SETof KB_BOOLCTRL
SETof KB_CONTRCL

CARD16 r epeat Del ay

CARD16 repeat | nt erval
CARD16 sl owKeysDel ay
CARD16 debounceDel ay
CARD16 nouseKeysDel ay
CARD16 nmouseKeysl nt er val
CARD16 nmouseKeysTi meToMax
CARD16 nmouseKeyshMaxSpeed
I NT16 mouseKeysCur ve
CARD16 accessXTi meout

SETof KB_BOOLCTRL
SETof KB_BOOLCTRL
SETof KB_AXOPTI ON
SETof KB_AXOPTI ON

accessXTi neout Mask
accessXTi neout Val ues
accessXTi neout Opt i onsMask
accessXTi neout Opt i onsVal ues

LI STof CARDS per KeyRepeat
CARDS opcode
8 xkb- opcode
7 request-1length
KB_DEVI CESPEC devi ceSpec
SETof KB_MAPPART full
SETof KB_MAPPART parti al
CARDS firstType
CARD3 nTypes
KEYCODE firstKeySym
CARD3 nKey Sy s
KEYCODE firstKeyAction
CARDS nKeyActi ons
KEYCODE firstKeyBehavi or
CARDS nKeyBehavi or s
SETof KB_VMOD vi rt ual Mods
KEYCODE firstKeyExplicit
CARDS nKeyExpl i ci t
KEYCODE first ModMapKey
CARDS nModMapKeys
KEYCODE firstVivbdMapKey
CARDS nVivbdMapKeys
unused
1 Reply
CARDS devi cel D
CARD16 seqguence nunber
2+(1/4) [ength
unused
KEYCODE m nKeyCode
KEYCODE maxKeyCode
SETof KB_MAPPART pr esent
CARDS firstType
t nTypes
CARDS t ot al Types
KEYCODE firstKeySym

127

Protocol Encoding

2 S t ot al Syns
1 S nKey Sy s
1 KEYCODE firstKeyAction
2 A total Acti ons
1 a nKeyActi ons
1 KEYCODE firstKeyBehavi or
1 b nKeyBehavi or s
1 B t ot al KeyBehavi or s
1 KEYCODE firstKeyExplicit
1 e nKeyExpl i ci t
1 E t ot al KeyExplicit
1 KEYCODE first ModMapKey
1 m nModMapKeys
1 M t ot al ModMapKeys
1 KEYCODE firstVivbdMapKey
1 0 nVivbdMapKeys
1 \% t ot al VMbdMapKeys
1 unused
2 SETof KB_VMOD virtual Mods (has v bits set to 1)
I LI STof | TEMs map
SETof KB_MAPPART (present)
XkbKeyTypes typesRtrn
XkbKey Sy s SsymsRtrn
XkbKeyAct i ons actsRtrn.count, actsRtrn.acts
XkbKeyBehavi or s behavi orsRt rn
XkbVi rt ual Mods vnodsRtrn
XkbExpl i ci t Component s explicitRirn
XkbModi fi er Map nmodmapRtrn
XkbVi rt ual ModMVap vimodMapRt rn
| TEMs
Ti+. . Tt LI STof KB_KEYTYPE typesRtrn
8s5+4S LI STof KB_KEYSYMVAP synmsRtrn
a LI STof CARD8 act sRtrn. count
p unused, p=pad(a)
8A LI STof KB_ACTI ON actsRirn. acts
4B LI STof KB_SETBEHAVI OR behavi orsRtrn
\% LI STof SETof KEYMASK vnodsRtrn
p unused, p=pad(vVv)
2E Ll STof KB_SETEXPLICI T explicitRirn
p unused, p=pad(2E)
2M LI STof KB_KEYMODVAP nmodmapRtrn
p unused, p=pad(2M
4V LI STof KB_KEYVMCDVAP vnmodMapRErn
KB_KEYTYPE 8+8mt[4nj
1 SETof KEYMASK nods. mask
1 SETof KEYMASK nods. nods
2 SETof KB_VMOD nods. viods
1 CARDS nunmLevel s
1 m nMapEntri es
1 BOCL hasPreserve
1 unused
8m LI STof KB_KTMAPENTRY map

128

Protocol Encoding

[4M LI STof KB_MODDEF preserve
KB_KTMAPENTRY

1 BOOL active

1 SETof KEYMASK nods. mask
1 CARD8 | evel

1 SETof KEYMASK nods. nods
2 SETof KB_VMOD nods. vnods
2 unused

KB_KEYSYMVAP 8+4n

4 LI STof CARD8 kt | ndex

1 CARDS groupl nfo

1 CARD8 wi dt h

2 n nSyns

4an LI STof KEYSYM Syns
KB_SETBEHAVI CR

1 KEYCODE keycode

2 KB_BEHAVI OR behavi or

1 unused

KB_SETEXPLICI T

1 KEYCODE keycode
1 SETof KB_EXPLICI T explicit
KB_KEYMODNVAP
1 KEYCODE keycode
1 SETof KB_KEYNMASK nods
KB_KEYVMODNVAP
1 KEYCODE keycode
1 unused
2 SETof KB_VMOD viods
1 CARDS opcode
1 9 xkb- opcode
2 9+(1/4) request-1length
2 KB_DEVI CESPEC devi ceSpec
2 SETof KB_MAPPART pr esent
2 SETof KB_SETMAPFLAGS flags
#0001 Set MapResi zeTypes
#0002 Set MapReconput eAct i ons
1 KEYCODE m nKeyCode
1 KEYCODE maxKeyCode
1 CARDS firstType
1 t nTypes
1 KEYCODE firstKeySym
1 S nKey Sy ns
2 S t ot al Syns
1 KEYCODE firstKeyAction
1 a nKeyActi ons
2 A total Acti ons
1 KEYCODE firstKeyBehavi or
1 b nKeyBehavi or s

129

Protocol Encoding

1 B t ot al KeyBehavi or s
1 KEYCODE firstKeyExplicit
1 e nKeyExpl i ci t
1 E t ot al KeyExplicit
1 KEYCODE first ModVapKey
1 m nMbodMapKeys
1 M t ot al ModMapKeys
1 KEYCODE firstVivbdMapKey
1 v nVivbdMapKeys
1 \% t ot al VMbdMapKeys
2 SETof KB_VMOD virtual Mods (has n bits set to 1)
I LI STof | TEMs val ues
SETof KB_MAPPART (present)
XkbKeyTypes types
XkbKeySynbol s Sy s
XkbKeyAct i ons actions. count, acti ons. acti ons
XkbKeyBehavi or s behavi ors
XkbVi rt ual Mods vnods
XkbExpl i ci t Component s explicit
XkbModi fi er Map nodmap
XkbVi rt ual ModMVap viodmap
| TEMs
TO+. . Tt LI STof KB_SETKEYTYPE types
8s+4S LI STof KB_KEYSYMVAP syns
a LI STof CARD8 actions. count
p unused, p=pad(a)
8A LI STof KB_ACTI ON actions. actions
4B LI STof KB_SETBEHAVI OR behavi ors
v LI STof SETof KEYMASK vnods
p unused, p=pad(V)
2E LI STof KB_SETEXPLI CI T explicit
p unused, p=pad(2E)
2M LI STof KB_KEYMODVAP nodmap
P unused, p=pad(2M
4V LI STof KB_KEYVMODVAP vnodmap
KB_SETKEYTYPE 8+4mt[4nj
1 SETof KEYMASK mask
1 SETof KEYMASK real Mods
2 SETof KB_VMOD vi rt ual Mods
1 CARDS nunmLevel s
1 m nMapEntri es
1 BOOL preserve
1 unused
4am LI STof KB_KTSETMAPENTRY entries
[4M LI STof KB_MODDEF preserveEntries (if preserve==TRUE)
KB_KTSETMAPENTRY
1 CARDS I evel
1 SETof KEYMASK real Mods
2 SETof KB_VMOD vi rt ual Mods
1 ?7? opcode
1 10 xkb- opcode

130

Protocol Encoding

2 3 request-1length

2 KB_DEVI CESPEC devi ceSpec
1 SETof KB_GROUP gr oups

1 BOOL getAllS

2 CARD16 firstSl

2 CARD16 nSl

1 1 Reply

1 CARDS devi cel D

2 CARD16 sequence nunber

4 (16n+4qg)/ 4 ength

1 SETof KB_GROUP groupsRtrn (has g bits set to 1)
1 unused

2 CARD16 firstSIRtrn

2 n nSIRtrn

2 CARD16 nTot al SI

16 unused

16n LI STof KB_SYM NTERPRET siRtrn
49 LI STof KB_MODDEF groupRtrn
1 ?? opcode

1 11 xkb- opcode

2 4+(16n+4q) request -1 ength
2 KB_DEVI CESPEC devi ceSpec
1 unused

1 BOOL reconmput eActi ons

1 BOOL truncateS

1 SETof KB_GROUP groups (has g bits set to 1)
2 CARD16 firstSl

2 n nSl

2 unused

16n Ll STof KB_SYM NTERPRET s
49 LI STof KB_MODDEF gr oupMaps
1 ?? opcode

1 12 xkb- opcode

2 2 request-1length

2 KB_DEVI CESPEC devi ceSpec
| TEMs

2 unused

1 1 Reply

1 CARDS devi cel D

2 CARD16 sequence nunber

4 0 [ength

4 SETof KB_| NDI CATOR state

20 unused

1 ?? opcode

1 13 xkb- opcode

2 3 request-1length

2 KB_DEVI CESPEC devi ceSpec
2 unused

4 SETof KB_| NDI CATOR whi ch

131

Protocol Encoding

RPRMANPR PR

15

P RADNNMNNPREPRE

WRBANRPRPRPRRPPRPRPPRPRPBAANREPE ANNNNNPRPRE

ADNNMNNNDNPREPPRE

1 Reply
CARDS devi cel D
CARD16 seqguence nunber
12n/ 4 | ength
SETof KB_| NDI CATOR which (has n bits set to 1)
SETof KB_| NDI CATOR real I ndi cators
n nl ndi cat ors
unused
LI STof KB_| NDI CATORVAP maps
?? opcode
14 xkb- opcode
3+3n request-Ilength
KB_DEVI CESPEC devi ceSpec
unused
SETof KB_| NDI CATOR which (has n bits set to 1)
LI STof KB_| NDI CATORMAP maps
CARDS opcode
15 xkb- opcode
4 request-1length
KB_DEVI CESPEC devi ceSpec
KB_LEDCLASSSPEC | edd ass
KB_I DSPEC | edl D
unused
ATOM i ndi cat or
1 Repl y
CARDS devi cel D
CARD16 sequence nunber
0 [ength
ATOM i ndi cat or
BOOL found
BOOL on
BOOL real | ndi cat or
KB_| NDI CATOR ndx
SETof KB_I MFLAGS map. f | ags
SETof KB_| MGROUPSVHI CH map. whi chGr oups
SETof KB_GROUPS map. gr oups
SETof KB_| MVMODSWHI CH map. whi chMods
SETof KEYMASK nmap. nods
SETof KEYMASK map. r eal Mods
SETof KB_VMOD map. vimods
SETof KB_BOOLCTRL map.ctrls
BOOL support ed
unused
?? opcode
16 xkb- opcode
8 request-1length
KB_DEVI CESPEC devi ceSpec
KB_LEDCLASSSPEC | edd ass
KB_I DSPEC | edl D
unused
ATOM i ndi cat or

132

Protocol Encoding

<ANRPRPARREPNRPRPREPREPDIMDMNRE DNNNRRER DNRRRRRRRRRR

| TEMs

BOOL set
BOOL on
BOOL set
BOOL cre

unused

SETof KB_I MFLAGS

SETof KB_| MGROUPSWHI CH

SETof KB_GROUP
SETof KB_| MVIODSVH
SETof KEYMASK
SETof KB_VMOD
SETof KB_BOOLCTRL

CARD8 op
17 xkb- o
3 reques
KB_DEVI CESPEC
unused
SETof KB_NAMEDETAI
1 Repl y
CARDS de
CARD16 S
Vi 4 | eng
SETof KB_NAMEDETAI
KEYCODE
KEYCODE
t nTypes

SETof KB_GROUP
SETof KB_VMOD

KEYCODE
k nKeys
SETof KB_| NDI CATOR
r nRadi o
a nKeyAl
I nKTLev
unused
LI STof | TEMs
SETof KB_NAMEDETAI L
XkbKeycodesNane

XkbGeonet r yNane
XkbSynbol sNane
XkbPhy Synbol sNane
XkbTypesNane
XkbConpat Nane
XkbKeyTypeNanes
XkbKTLevel Names
Xkbl ndi cat or Nanes
XkbVi rt ual ModNanes

t

XkbG oupNames
XkbKeyNanes ke
XkbKeyAl i ases
XkbRGNanes rad

State

Map
at eMap

map. f | ags
map. whi chGr oups
map. gr oups
map. whi chMbds
map. r eal Mods
map. vnods
map.ctrls

CH

code
pcode
t-length
devi ceSpec

L whi ch

vicel D
equence nunber
th

L

m nKeyCode
maxKeyCode

whi ch

groupNanes (has g bits set to 1)
virtual Mods (has v bits set to 1)
firstKey
indicators (has i bits set to 1)
G oups
i ases
els

val uelLi st
(whi ch)
keycodesNane
geonet r yName
synbol sNane
physSynbol sNane
ypesNane
conpat Nane
t ypeNanes
nLevel sPer Type,
i ndi cat or Nanes
vi rt ual ModNanes
gr oupNanes
yNanes
keyAl i ases
i 0G oupNarnes

kt Level Nanes

133

Protocol Encoding

ATOM keycodesNane
ATOM geonet r yName
ATOM symbol sNane
ATOM physSymbol sNane
ATOM t ypesName
ATOM conpat Nane
LI STof ATOM t ypeNanes
LI STof CARDS nLevel sPer Type, sum of all el ements=L
p unused, p=pad(l)
4L LI STof ATOM kt Level Names
4i LI STof ATOM i ndi cat or Nanes
4v LI STof ATOM vi rt ual ModNanes
49 LI STof ATOM gr oupNanes
4k LI STof KB_KEYNAME keyNames
8a LI STof KB_KEYALI AS keyAl i ases
4r LI STof ATOM radi oG oupNanes

D S S R S S S
g

CARDS opcode

18 xkb- opcode

7+(VI4) request-1length

KB_DEVI CESPEC devi ceSpec

SETof KB_VMOD vi rt ual Mods

SETof KB_NAMEDETAI L whi ch

CARDS firstType

t nTypes

CARDS firstKTLevel

I nKTLevel s

SETof KB_| NDI CATOR indicators (has i bits set to 1)

SETof KB_GROUP groupNanes (has g bits set to 1)

r nRadi oG oups

KEYCODE firstKey

k nKeys

a nKeyAl i ases

unused

L t ot al KTLevel Nanes

LI STof | TEMs val ues
SETof KB_NAMEDETAI L (whi ch)
XkbKeycodesNane keycodesNane
XkbGeonet r yNane geonet r yNanme
XkbSynbol sNane symbol sNane
XkbPhySymbol sName physSymbol sNane
XkbTypesName t ypesName
XkbConpat Nane conpat Name
XkbKeyTypeNanes t ypeNanes
XkbKTLevel Names nLevel sPer Type, ktLevel Nanes
Xkbl ndi cat or Nanes i ndi cat or Nanes
XkbVi rt ual ModNanes vi rt ual ModNanes
XkbG oupNanes gr oupNanes
XkbKeyNanes keyNanes
XkbKeyAl i ases keyAl i ases
XkbRGNames radi oG oupNanes

< NPRPRPRPRPRRPREPIMRPRRPRLPANNNRR

| TEMs
4 ATOM keycodesNane

134

Protocol Encoding

4 ATOM geonet r yName

4 ATOM symbol sNane

4 ATOM physSymnmbol sNane

4 ATOM t ypesName

4 ATOM conpat Nane

4t LI STof ATOM t ypeNanes

I LI STof CARDS nLevel sPer Type

p unused, p=pad(l)

4L LI STof ATOM kt Level Nanes

4i LI STof ATOM i ndi cat or Nanes

4v LI STof ATOM vi rt ual ModNanes
49 LI STof ATOM gr oupNanes

4k LI STof KB_KEYNANME keyNanes

8a LI STof KB_KEYALI AS keyAl i ases
4r LI STof ATOM radi oG oupNanes

1 CARD8 opcode

1 19 xkb- opcode

2 3 request-1ength

2 KB_DEVI CESPEC devi ceSpec

2 unused

4 ATOM name

1 1 Reply

1 CARDS devi cel D

2 CARD16 seqguence nunber

4 (f +8p+Cr+H +S*+D* +A*)/ 4 | ength
4 ATOM name

1 BOOL f ound

1 unused

2 CARD16 wi dt hMM

2 CARD16 hei ght MM

2 p nProperties

2 c nCol ors

2 h nShapes

2 S nSecti ons

2 d nDoodads

2 a nKeyAl i ases

1 CARDS baseCol or Ndx

1 CARDS | abel Col or Ndx

f KB_COUNTED_STRI NG16 | abel Font
8p LI STof KB_PROPERTY properties
Q0+. . Cc LI STof KB_COUNTED_STRI NG16 col ors
HO+. . Hh LI STof KB_SHAPE shapes
SO0+. . Ss LI STof KB_SECTI ON sections
DO+. . Dd LI STof KB_DOODAD doodads
AO+. . Aa LI STof KB_KEYALI AS keyAl i ases
KB_PROPERTY 4+n+v

2 n nanelLengt h

n STRI NGB name

2 v val ueLengt h

v STRI NG3 val ue

KB_SHAPE 8+0O¢

135

Protocol Encoding

4 ATOM name

1 o] nCutl i nes

1 CARDS pri mar yNdx

1 CARDS appr oxNdx

1 unused

Q0+. . Qo LI STof KB_OUTLI NE outlines
KB_QUTLI NE 4+4p

1 p nPoi nt s

1 CARDS8 cor ner Radi us

2 unused

4p LI STof KB_PO NT poi nts
KB_PO NT

2 | NT16 X

2 | NT16 y

KB_SECTI ON 20+R* +D* +O*

4 ATOM name

2 I NT16 top

2 | NT16 | eft

2 CARD16 wi dt h

2 CARD16 hei ght

2 | NT16 angl e

1 CARD8 priority

1 r nRows

1 d nDoodads

1 o] nOverl ays

2 unused

RO+. . Rr LI STof KB_ROW r ows
Do+. . Dd LI STof KB_DOODAD doodads
Q0+, . o LI STof KB_OVERLAY overl ays
KB_ROW 8+8k

2 I NT16 top

2 | NT16 | eft

1 k nKeys

1 BOOL vertica

2 unused

8k LI STof KB_KEY keys
KB_KEY

4 STRI NG name

2 I NT16 gap

1 CARDS shapeNdx

1 CARDS col or Ndx
KB_OVERLAY 8+R*

4 ATOM name

1 r nRows

3 unused

RO+. . Rr LI STof KB_OVERLAYROW rows

KB_OVERLAYROW 4+8k
1 CARDS r owUnder

136

Protocol Encoding

1 k nKeys
2 unused
8k LI STof KB OVERLAYKEY keys
KB_OVERLAYKEY
4 STRI N&B over
4 STRI N&3 under
KB_SHAPEDOCDAD
4 ATOM nane
1 CARD8 type
KB_SHAPEDOODAD
#1 XkbQut | i neDoodad
#2 XkbSol i dDoodad
1 CARDS priority
2 I NT16 top
2 | NT16 | eft
2 | NT16 angl e
1 CARD8 col or Ndx
1 CARDS shapeNdx
6 unused
KB_TEXTDOODAD 20+t +f
4 ATOM name
1 CARD8 type
#3 XkbText Doodad
1 CARD8 priority
2 I NT16 top
2 | NT16 | ef t
2 | NT16 angl e
2 CARD16 wi dt h
2 CARD16 hei ght
1 CARD8 col or Ndx
3 unused
t KB_COUNTED_STRI NGL16 t ext
f KB_COUNTED_STRI NGL16 f ont
KB_| NDI CATORDOCODAD
4 ATOM nane
1 CARD8 type
#4 Xkbl ndi cat or Doodad
1 CARD8 priority
2 | NT16 top
2 | NT16 | eft
2 I NT16 angl e
1 CARDS shapeNdx
1 CARD8 onCol or Ndx
1 CARDB of f Col or Ndx
5 unused
KB_LOGODOCDAD 20+n
4 ATOM name
1 CARD3 type
#5 XkbLogoDoodad

137

Protocol Encoding

SOFRPFPNNDNPRE

CARDS priority
I NT16 top
I NT16 | eft
| NT16 angl e
CARDS col or Ndx
CARDS shapeNdx
unused
KB_COUNTED_STRI NG16 | ogoNane

KB_ DOODAD:

TNEFEPEPNNNNNNRARERPEPEPNNPRRE

8p

CO+. .
HO+. .
SO+. .
DO+. .
AO+. .

AARDRBRANNONR R

N N N L S

KB_SHAPEDOODAD, or KB_TEXTDOODAD, or
KB_1 NDI CATORDOCDAD, or KB_LOGODOODAD

CARDS opcode
20 xkb- opcode
7+(f +8p+Cr+H +S*+D* +A*) / 4 request-1length
KB_DEVI CESPEC devi ceSpec
h nShapes
S nSecti ons
ATOM name
CARD16 wi dt hivM
CARD16 hei ght MV
p nProperties
c nCol ors
d nDoodads
a nKeyAl i ases
CARDS baseCol or Ndx
CARDS | abel Col or Ndx
unused
KB_COUNTED_STRI NG16 | abel Font
LI STof KB_PROPERTY properties
LI STof KB_COUNTED_STRI NGL6 col ors
LI STof KB_SHAPE shapes
LI STof KB_SECTI ON sections
LI STof KB_DOODAD doodads
LI STof KB_KEYALI AS keyAl i ases

FEPE0

CARD8 opcode
21 xkb- opcode
request-1length
KB_DEVI CESPEC devi ceSpec

unused
SETof KB_PERCLI ENTFLAG change
SETof KB_PERCLI ENTFLAG val ue
SETof KB_BOOLCTRL ctrl sToChange
SETof KB_BOOLCTRL autoCtrls
SETof KB_BOOLCTRL aut oCtrl Val ues

~

1 Reply

CARDS devi cel D

CARD16 sequence nunber

0 | ength

SETof KB_PERCLI ENTFLAG support ed
SETof KB_PERCLI ENTFLAG val ue
SETof KB_BOOLCTRL autoCtrls

138

Protocol Encoding

4 SETof KB_BOOLCTRL autoCtrl Val ues
8 unused

1 CARD8 opcode

1 22 xkb- opcode

2 2+(6+mrk+t +c+s+g+p)/ 4 request-1length
2 KB_DEVI CESPEC devi ceSpec

2 CARD16 maxNanmes

1 m keymapsSpeclLen

m STRI NG keymapsSpec

1 k keycodesSpeclLen

k STRI NG keycodesSpec

1 t typesSpeclLen

t STRI NG t ypesSpec

1 c conpat MapSpeclLen

c STRI NG conpat MapSpec

1 S synbol sSpeclLen

S STRI NG synmbol sSpec

1 g geonet rySpeclLen

g STRI NG geonet rySpec

p unused, p=pad(6+mtk+t +c+s+g)

1 1 Reply

1 CARDS devi cel D

2 CARD16 seqguence nunber

4 (M +K*+T*+C*+S*+G +p) / 4 ength
2 m nKeymaps

2 k nKeycodes

2 t nTypes

2 c nConpat Maps

2 S nSynbol s

2 g nCeonetries

2 CARD16 extra

10 unused

MD+. . Mm LI STof KB_LI STI NG keymaps
KO+. . Kk LI STof KB_LI STI NG keycodes
TO+. . Tt LI STof KB_LI STI NG types
C0+. . Cc LI STof KB_LI STI NG conpat Maps
SO+. . Ss LI STof KB_LI STI NG synbol s
@0+, . & LI STof KB_LI STI NG geonetries
p unused, p=pad(MF+K* +T* +C* +S* +G*)
KB LI STI NG 4+n+p

2 CARD16 flags

2 n ength

n STRI NGB string

p unused, p=pad(n) to a 2-byte boundary
1 CARDS opcode

1 23 xkb- opcode

2 3+(6+mrk+t +c+s+g+p)/ 4 request-1length
2 KB_DEVI CESPEC devi ceSpec

2 SETof KB_GBNDETAI LMASK need

2 SETof KB_GBNDETAI LMASK want

1 BOOL | oad

139

Protocol Encoding

1 unused
1 m keymapsSpeclLen
m STRI N3 keymapsSpec
1 k keycodesSpeclLen
k STRI N3 keycodesSpec
1 t t ypesSpeclLen
t STRI NG t ypesSpec
1 c conpat MapSpeclLen
c STRI NG conpat MapSpec
1 S symbol sSpecLen
S STRI N8 symbol sSpec
1 g geonet rySpeclLen
g STRI NG geonet r ySpec
p unused, p=pad(6+mtk+t +c+s+g)
1 1 Reply
1 CARDS devi cel D
2 CARD16 sequence nunber
4 v/ 4 | ength
1 KEYCODE m nKeyCode
1 KEYCODE maxKey Code
1 BOCL | oaded
1 BOOL newKeyboard
2 SETof KB_GBNDETAI LMASK f ound
2 SETof KB_GBNDETAI LMASK reported
16 unused
\% LI STof | TEMs replies
SETof KB_GBNDETAI LMASK (reported)
XkbGBN_Types map
XkbGBN_Conpat Map conpat
XkbGBN_d i ent Synbol s map
XkbGBN_Ser ver Synmbol s map
XkbGBN_I ndi cat or Map i ndi cators
XkbGBN_KeyNames nanes
XkbGBN_O her Nanes namnes
XkbGBN_Ceonetry geonetry
| TEMs
M XkbGet Map reply map
C XkbGet Conpat Map reply conpat
I XkbGCet | ndi cat or Map reply i ndi cators
N XkbGet Nanmes reply nanes
G XkbGet Geonetry reply geonetry
1 CARDS opcode
1 24 xkb- opcode
2 4 request-1length
2 KB_DEVI CESPEC devi ceSpec
2 SETof KB_DEVFEATURE want ed
1 BOCL al | Buttons
1 CARDS firstButton
1 CARDS nBut t ons
1 unused
2 KB_LEDCLASSSPEC | edd ass

140

Protocol Encoding

2 KB_I DSPEC | edl D

1 1 Repl y

1 CARD8 devi cel D

2 CARD16 sequence nunber

4 (2+n+p+8b+L*)/ 4 [ength

2 SETof KB_DEVFEATURE pr esent
2 SETof KB_FEATURE support ed

2 SETof KB_FEATURE unsupported
2 I nDevi ceLedFBs

1 CARD8 firstBt nWant ed

1 CARD8 nBt ns\Want ed

1 CARD8 firstBtnRtrn

1 b nBt nsRtrn

1 CARD8 total Bt ns

1 BOOL hasOwnSt at e

2 SETof KB_| DRESULT df I t KbdFB
2 SETof KB_| DRESULT df I t LedFB
2 unused

4 ATOM devType

2 n namelLen

n STRI N&3 name

p unused, p=pad(2+n)

8b LI STof KB_ACTI ON bt nActi ons
LO+. . LI LI STof KB_DEVI CELEDI NFO I

KB_DEVI CELEDI NFO

20+4n+12m

eds

2 KB_LEDCLASSSPEC | edd ass
2 KB_| DSPEC edl D
4 SETof KB_| NDI CATOR nanesPresent (has n bits set to 1)
4 SETof KB_| NDI CATOR mapsPresent (has mbits set to 1)
4 SETof KB_| NDI CATOR physl ndi cat ors
4 SETof KB_| NDI CATOR state
4n LI STof ATOM names
12m LI STof KB_| NDI CATORNVAP maps
1 ?? opcode
1 25 xkb- opcode
2 3+(8b+L*)/ 4 request-length
2 KB_DEVI CESPEC devi ceSpec
1 CARDS firstBtn
1 b nBt ns
2 SETof KB_DEVFEATURE change
2 I nDevi ceLedFBs
8b LI STof KB_ACTI ON bt nActi ons
LO+. . LI LI STof KB_DEVI CELEDI NFO | eds
Encodi ng of KB DEVI CELEDI NFO i s as for XkbGet Devicel nfo
1 ?? opcode
1 101 xkb- opcode
2 6+(n+tp)/ 4 request-1length
2 n msglLengt h
2 unused
4 CARD32 af f ect Fl ags
4 CARD32 fl ags

141

Protocol Encoding

4 CARD32 affectCrls
4 CARD32 ctrls
n STRI NG nmessage
p unused, p=pad(n)
1 1 Reply
1 unused
2 CARD16 seqguence nunber
4 0 | ength
4 CARD32 current Fl ags
4 CARD32 currentCrls
4 CARD32 support edFl ags
4 CARD32 supportedCrls
8 unused
Events
1 ?7? code
1 0 xkb code
2 CARD16 sequence nunber
4 TI MESTAMP tinme
1 CARDS8 devi cel D
1 CARDS8 ol dDevi cel D
1 KEYCODE m nKeyCode
1 KEYCODE maxKeyCode
1 KEYCODE ol dM nKeyCode
1 KEYCODE ol dMaxKeyCode
1 CARD8 request Maj or
1 CARD8 request M nor
2 SETof KB_NKNDETAI L changed
14 unused
1 ?? code
1 1 xkb code
2 CARD16 sequence nunber
4 TI MESTAMP time
1 CARDS devi cel D
1 SETof BUTMASK ptr Bt nActi ons
2 SETof KB_MAPPART changed
1 KEYCODE m nKeyCode
1 KEYCODE maxKeyCode
1 CARDS firstType
1 CARD3 nTypes
1 KEYCODE firstKeySym
1 CARD3 nKey Sy s
1 KEYCODE firstKeyAct
1 CARD3 nKeyAct s
1 KEYCODE firstKeyBehavi or
1 CARDS nKeyBehavi or
1 KEYCODE firstKeyExplicit
1 CARDS nKeyExpl i ci t
1 KEYCODE first ModVapKey
1 CARDS nModMapKeys

142

Protocol Encoding

NN PP

PRPRPRPNNRPRRPRPRPRPREPNNRRPRRPRRPRPRELANRR

ARPPRPRPRPADMDNRREPDIMNRR

ADNWRANRER

KEYCODE firstVivbdMapKey

CARDS nVivbdMapKeys

SETof KB_VMOD vi rt ual Mods
unused

?7? code

2 xkb code

CARD16 sequence nunber

TI MESTAMP tinme

CARDS devi cel D

SETof KEYMASK nods

SETof KEYMASK baseMbds

SETof KEYMASK | at chedvbds

SETof KEYMASK | ockedMbds

KB_GROUP group

I NT16 baseG oup

I NT16 | at chedG oup

KB_GROUP | ockedGr oup

SETof KEYMASK conpat St at e

SETof KEYMASK gr abMbds

SETof KEYMASK conpat G abMods

SETof KEYMASK | ookupMbds

SETof KEYMASK
SETof BUTMASK

conpat LookupMbds
ptrBtnState

SETof KB_STATEPART changed
KEYCODE keycode
CARD3 event Type
CARDS request Maj or
CARDS request M nor
?7? code
3 xkb code
CARD16 sequence nunber
TI MESTAMP tinme
CARDS devi cel D
CARD3 nunG oups
unused
SETof KB_CONTRCL changedControl s
SETof KB_BOOLCTRL enabl edControl s
SETof KB_BOOLCTRL enabl edCont r ol Changes
KEYCODE keycode
CARD3 event Type
CARDS request Maj or
CARDS request M nor
unused
?7? code
4 xkb code
CARD16 seqguence nunber
TI MESTAMP tinme
CARDS devi cel D

unused

SETof KB_| NDI CATOR
SETof KB_| NDI CATOR

state
st at eChanged

143

Protocol Encoding

=
N

ARAPRPRPNRPRRPRPRPRPRPRPRPNRPRRPANRPRRE, PRADORANRR

PNNNRPRDMNRR

ANNRPRPRPRPLPANRRE

unused
?? code
5 xkb code
CARD16 sequence nunber
Tl MESTAMP time
CARDS devi cel D
unused
SETof KB_| NDI CATOR state
SETof KB_| NDI CATOR mapChanged
unused
?? code
6 xkb code
CARD16 sequence nunber
TI MESTAMP tinme
CARDS devi cel D
unused
SETof KB_NAMEDETAI L changed
CARDS firstType
CARD3 nTypes
CARDS firstLevel Nane
CARDS nLevel Names
unused
CARDS nRadi oG oups
CARDS nKeyAl i ases
SETof KB_GROUP changedG oupNanes
SETof KB_VMOD changedVi r t ual Mbds
KEYCODE firstKey
CARD3 nKeys
SETof KB_| NDI CATOR changedl ndi cat or s
unused
?? code
7 xkb code
CARD16 sequence nunber
TI MESTAMP time
CARDS devi cel D
SETof KB_GROUP changedG oups
CARD16 firstSl
CARD16 nSl
CARD16 nTot al SI
unused
?? code
8 xkb code
CARD16 seqguence nunber
TI MESTAMP tinme
CARDS devi cel D
KB_BELLCLASSRESULT bel | ass
CARDS8 bel I 1 D
CARD3 per cent
CARD16 pitch
CARD16 duration
ATOM name

144

Protocol Encoding

4 W NDOW wi ndow

1 BOOL eventOnly

7 unused

1 ?7? code

1 9 xkb code

2 CARD16 sequence nunber

4 TI MESTAMP tinme

1 CARDS devi cel D

1 KEYCODE keycode

1 BOOL press

1 BOOL keyEvent Fol | ows

1 SETof KEYMASK nods

1 KB_GROUP group

8 STRI NG&3 nmessage

10 unused

1 ?? code

1 10 xkb code

2 CARD16 sequence nunber

4 TI MESTAMP tinme

1 CARDS devi cel D

1 KEYCODE keycode

2 SETof KB_AXNDETAI L det ai |

2 CARD16 sl owKeysDel ay

2 CARD16 debounceDel ay

1 ?? code

16 unused

1 ?7? code

1 11 xkb code

2 CARD16 sequence nunber

4 TI MESTAMP tinme

1 CARDS devi cel D

1 unused

2 SETof KB_XI DETAI L reason

2 KB_LEDCLASSRESULT | eddl ass
2 CARDS | edl D

4 SETof KB_| NDI CATOR | edsDefi ned
4 SETof KB_| NDI CATOR | edSt at e
1 CARDS firstButton

1 CARDS nBut t ons

2 SETof KB_XI FEATURE support ed
2 SETof KB_XI FEATURE unsupported
2 unused

145

	The X Keyboard Extension: Protocol Specification
	Table of Contents
	Acknowledgments
	Chapter 1. Overview
	Conventions and Assumptions

	Chapter 2. Keyboard State
	Locking and Latching Modifiers and Groups
	Fundamental Components of XKB Keyboard State
	Computing Effective Modifier and Group
	Computing A State Field from an XKB State

	Derived Components of XKB Keyboard State
	Server Internal Modifiers and Ignore Locks Behavior

	Compatibility Components of Keyboard State

	Chapter 3. Virtual Modifiers
	Modifier Definitions
	Inactive Modifier Definitions

	Virtual Modifier Mapping

	Chapter 4. Global Keyboard Controls
	The RepeatKeys Control
	The PerKeyRepeat Control
	Detectable Autorepeat

	The SlowKeys Control
	The BounceKeys Control
	The StickyKeys Control
	The MouseKeys Control
	The MouseKeysAccel Control
	Relative Pointer Motion
	Absolute Pointer Motion

	The AccessXKeys Control
	The AccessXTimeout Control
	The AccessXFeedback Control
	The Overlay1 and Overlay2 Controls
	"Boolean" Controls and The EnabledControls Control
	Automatic Reset of Boolean Controls

	Chapter 5. Key Event Processing Overview
	Chapter 6. Key Event Processing in the Server
	Applying Global Controls
	Key Behavior
	Key Actions
	Delivering a Key or Button Event to a Client
	XKB Interactions With Core Protocol Grabs

	Chapter 7. Key Event Processing in the Client
	Notation and Terminology
	Determining the KeySym Associated with a Key Event
	Key Types
	Key Symbol Map

	Transforming the KeySym Associated with a Key Event
	Client Map Example

	Chapter 8. Symbolic Names
	Chapter 9. Keyboard Indicators
	Global Information About Indicators
	Per-Indicator Information
	Indicator Maps
	Effects of Explicit Changes on Indicators

	Chapter 10. Keyboard Bells
	Client Notification of Bells
	Disabling Server Generated Bells
	Generating Named Bells
	Generating Optional Named Bells
	Forcing a Server Generated Bell

	Chapter 11. Keyboard Geometry
	Shapes and Outlines
	Sections
	Doodads
	Keyboard Geometry Example

	Chapter 12. Interactions Between XKB and the Core Protocol
	Group Compatibility Map
	Setting a Passive Grab for an XKB State

	Changing the Keyboard Mapping Using the Core Protocol
	Explicit Keyboard Mapping Components
	Assigning Symbols To Groups
	Assigning Symbols to Groups One and Two with Explicitly Defined Key Types

	Assigning Types To Groups of Symbols for a Key
	Assigning Actions To Keys
	Updating Everything Else

	Effects of XKB on Core Protocol Events
	Effect of XKB on Core Protocol Requests
	Sending Events to Clients

	Chapter 13. The Server Database of Keyboard Components
	Component Names
	Partial Components and Combining Multiple Components
	Component Hints
	Keyboard Components
	The Keycodes Component
	The Types Component
	The Compatibility Map Component
	The Symbols Component
	The Geometry Component

	Complete Keymaps

	Chapter 14. Replacing the Keyboard "On-the-Fly"
	Chapter 15. Interactions Between XKB and the X Input Extension
	Using XKB Functions with Input Extension Keyboards
	Pointer and Device Button Actions
	Indicator Maps for Extension Devices
	Indicator Names for Extension Devices

	Chapter 16. XKB Protocol Requests
	Errors
	Keyboard Errors
	Side-Effects of Errors

	Common Types
	Requests
	Initializing the X Keyboard Extension
	Selecting Events
	Generating Named Keyboard Bells
	Querying and Changing Keyboard State
	Querying and Changing Keyboard Controls
	Querying and Changing the Keyboard Mapping
	Querying and Changing the Compatibility Map
	Querying and Changing Indicators
	Querying and Changing Symbolic Names
	Querying and Changing Keyboard Geometry
	Querying and Changing Per-Client Flags
	Using the Server’s Database of Keyboard Components
	Querying and Changing Input Extension Devices
	Debugging the X Keyboard Extension

	Events
	Tracking Keyboard Replacement
	Tracking Keyboard Mapping Changes
	Tracking Keyboard State Changes
	Tracking Keyboard Control Changes
	Tracking Keyboard Indicator State Changes
	Tracking Keyboard Indicator Map Changes
	Tracking Keyboard Name Changes
	Tracking Compatibility Map Changes
	Tracking Application Bell Requests
	Tracking Messages Generated by Key Actions
	Tracking Changes to AccessX State and Keys
	Tracking Changes To Extension Devices

	Appendix A. Default Symbol Transformations
	Interpreting the Control Modifier
	Interpreting the Lock Modifier
	Locale-Sensitive Capitalization
	Locale-Insensitive Capitalization
	Capitalization Rules for Latin-1 Keysyms
	Capitalization Rules for Latin-2 Keysyms
	Capitalization Rules for Latin-3 Keysyms
	Capitalization Rules for Latin-4 Keysyms
	Capitalization Rules for Cyrillic Keysyms
	Capitalization Rules for Greek Keysyms
	Capitalization Rules for Other Keysyms

	Appendix B. Canonical Key Types
	Canonical Key Types
	The ONE_LEVEL Key Type
	The TWO_LEVEL Key Type
	The ALPHABETIC Key Type
	The KEYPAD Key Type

	Appendix C. New KeySyms
	New KeySyms
	KeySyms Used by the ISO9995 Standard
	KeySyms Used to Control The Core Pointer
	KeySyms Used to Change Keyboard Controls
	KeySyms Used To Control The Server
	KeySyms for Non-Spacing Diacritical Keys

	Appendix D. Protocol Encoding
	Syntactic Conventions
	Common Types
	Errors
	Key Actions
	Key Behaviors
	Requests
	Events

