
吀�e hyphen.cfg file for LuaTEX

Khaled Hosny, Élie Roux, and Manuel Pégourié-Gonnard
khaledhosny@eglug.org

elie.roux@telecom-bretagne.eu

mpg@elzevir.fr

2013/05/16 v1.6

Abstract

吀�is package is mainly a Lua module, to be used by Babel and polyglossia to
adapt their hyphenation pa琀�erns loading mechanism to LuaTEX’s dynamic pa琀�ern
loading capabilities. It makes use of a language.dat.lua file (whose format is
described below) that should be present in the distribution, in addition to the regular
language.dat file.

Babel needed to be updated – this used to be the goal of this package –
before version 3.9 (TEXLive 2013) and polyglossia handles LuaTEX since version 1.3

(TEXLive 2013).
吀�ere is a version of etex.src modified for the same reasons using similar

code, which also makes use of the luatex-hyphen.lua and language.dat.lua files
described here.

1 Documentation
Hyphenation pa琀�erns should be loaded at runtime with LuaTEX: if they appear in the
format, they will be rehashed when the format is loaded anyway, which makes the
format quite long to load (many seconds even on modern machines) and provides for
bad user experience. Hence, it is desirable to load as few pa琀�erns as possible in the
format, and load on-demand the needed pa琀�erns at runtime.

吀�is package provides a modified version of hyphen.cfg adapted to LuaTEX, as well
as a supporting Lua module. Since a lot of things, especially the catcodes, are not as
predictable at runtime than at format creation time, we don’t \input the usual pa琀�ern
files, but rather load the pa琀�erns using the Lua interface, using a special plain text
version of the pa琀�ern files if available.

吀�e existence and file name of such a version cannot be guessed, sowe need a specific
database: the file language.dat.lua. 吀�is file should be loadable by Lua and return a
table whose keys are the canonical language names as found in language.dat, and the
values are Lua tables consisting of:

1. A fixed part with one mandatory field:

1



synonyms = { <string> alternative name, ...}

吀�is field’s value must be the same as in language.dat.

2. A variable part consisting of either:

• For most languages:
patterns = <string> filenames for patterns

hyphenation = <string> filenames for exceptions

Each string contains a coma-separated list of file names (whitespace before
or a昀�er the coma is not accepted). 吀�e files given by patterns (resp.
hypenation) must be plain text files encoded in UTF-8, with only pa琀�erns
(resp. exceptions) and not even comments: their content will be used directly
without being parsed by TEX. If one of these keys is missing or is the empty
string, it is ignored and no pa琀�erns (resp. exceptions) are loaded for this
language.

• Special cases are supported by a field special. Currently, the following kind
of values are recognized:
’disabled:<reason>’ allows to disable specific languages: when the user

tries to load this language, an error will be issued, with the <reason>.
’language0’ only english should use this type of special, to indicate it is

normally dumped in the format as \language0 (see below).
Special languages may have *hyphenmin information when it makes sense
(mostly \language0).

3. Optional fields may be added. For example:

loader = <string> name of the TeX loader

lefthyphenmin = <number> value for \lefthyphenmin

righthyphenmin = <number> value for \righthyphenmin

吀�ose fields are present in language.dat.lua as generated by tlmgr, for example,
but they are not used by the present code in any way.

Languages that are mentioned in language.dat but not in language.dat.lua will
be loaded in the format. So, if the language.dat.lua file is missing or incomplete,
languages will just go back to the “old” behaviour, resulting in longer startup time, which
seems less bad than complete breakage.

For backward compatibility, Knuth’s original pa琀�erns for US English are always
loaded in the format, as \language0.1

1It is assumed to be the first entry in language.dat.

2



2 Implementation
1 〈∗lua〉

Start a Lua module, two functions for error and information reporting.
2 luatexhyphen = luatexhyphen or {}

3 local luatexhyphen = luatexhyphen

4 local function wlog(msg, ...)

5 texio.write_nl(’log’, ’luatex-hyphen: ’..msg:format(...))

6 end
7 local function err(msg, ...)

8 error(’luatex-hyphen: ’..msg:format(...), 2)

9 end

Load the language.dat.lua file with the Lua version of the language database.
10 local dbname = ”language.dat.lua”

11 local language_dat

12 local dbfile = kpse.find_file(dbname, ’lua’)

13 if not dbfile then

14 err(”file not found: ”..dbname)

15 else
16 wlog(’using data file: %s’, dbfile)

17 language_dat = dofile(dbfile)

18 end

Look up a language in the database, and return the associated information, as well
as the canonical name of the language.
19 local function lookupname(name)

20 if language_dat[name] then

21 return language_dat[name], name

22 else

23 for canon, data in pairs(language_dat) do

24 for _,syn in ipairs(data.synonyms) do

25 if syn == name then

26 return data, canon

27 end

28 end

29 end

30 end

31 end
32 luatexhyphen.lookupname = lookupname

Set hyphenation pa琀�erns and exceptions for a language given by its name (in the
database) and number (value of \language). Doesn’t return anything, but will call
error() if things go wrong.
33 local function loadlanguage(lname, id)

34 if id == 0 then

35 return

36 end

37 local msg = ”loading%s patterns and exceptions for: %s (\\language%d)”

Lookup the language in the database.

3



38 local ldata, cname = lookupname(lname)

39 if not ldata then

40 err(”no entry in %s for this language: %s”, dbname, lname)

41 end

Handle special languages.
42 if ldata.special then

43 if ldata.special:find(’^disabled:’) then

44 err(”language disabled by %s: %s (%s)”, dbname, cname,

45 ldata.special:gsub(’^disabled:’, ’’))

46 elseif ldata.special == ’language0’ then

47 err(”\\language0 should be dumped in the format”)

48 else

49 err(”bad entry in %s for language %s”)

50 end

51 end

吀�e generic case: load hyphenation pa琀�erns and exceptions from files given by the
language code.
52 wlog(msg, ’’, cname, id)

53 for _, item in ipairs{’patterns’, ’hyphenation’} do

54 local filelist = ldata[item]

55 if filelist ~= nil and filelist ~= ’’ then

56 for _, file in ipairs(filelist:explode(’,’)) do

57 local file = kpse.find_file(file) or err(”file not found: %s”, file)

58 local fh = io.open(file, ’r’)

59 local data = fh:read(’*a’) or err(”file not readable: %s”, f)

60 fh:close()

61 lang[item](lang.new(id), data)

62 end

63 else

64 if item == ’hyphenation’ then item = item..’ exceptions’ end

65 wlog(”info: no %s for this language”, item)

66 end

67 end

68 end
69 luatexhyphen.loadlanguage = loadlanguage

Add Babel’s “dialects” as synonyms.
70 local function adddialect(dialect, language)

71 if dialect ~= ’0’ then

72 dialect = dialect:gsub(’l@’, ’’)

73 language = language:gsub(’l@’, ’’)

74 data = lookupname(language)

75 if data then

76 data.synonyms[#data.synonyms+1] = dialect

77 end

78 end

79 end
80 luatexhyphen.adddialect = adddialect

81 〈/lua〉

4


	Documentation
	Implementation

