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1 Vectors

I already know about vectors — I’ve been taught them in about five different
courses so far. I’m skipping this.
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2 Partial derivatives

If we have a function of multiple variables, say

𝑓(𝑎1, 𝑎2, 𝑎3, … ),

we might care about the change of 𝑓 with respect to only one variable. By picking
a fixed value for all but one of the variables, we can determine this.

Say that we want to find the partial derivative of 𝑓with respect to 𝑎2; then, by con-
structing 𝑔(𝑎2) = 𝑓(𝑐1, 𝑎2, 𝑐3, … ), we’ve created a function of one variable, which
we can differentiate as usual.

Notation 1

We write the partial derivative of a function 𝑓 at a point p with respect to a
basis element 𝑎 of p as 𝑓𝑎(p).

We may also use much more common notation

𝜕𝑓
𝜕𝑎 ,

using the partial derivative symbol 𝜕, a stylized cursive “d”.a

In the interest of completeness, I’ll exhaustedly note that the book also uses,
on occasion, the notation 𝐷𝑎𝑓.

aIntroduced byMarquis de Condorcet in 1770, who used it to represent a partial differential,
i.e. the 𝑑𝑦 or 𝑑𝑥 in 𝑑𝑦/𝑑𝑥, and then adapted in 1786 by Adrien-Marie Legendre for use as the
partial derivative.

We can also calculate higher partial derivatives— similarly to the higher ordinary
derivatives. The notation is a fairly clear extension:

(𝑓𝑥)𝑥 = 𝑓𝑥𝑥 =
𝜕
𝜕𝑥 (

𝜕𝑓
𝜕𝑥) =

𝜕2𝑓
𝜕𝑥2 .

Theorem 1: Clairaut’s Theorem

Suppose 𝑓 is defined on a neighborhood𝑁 about a point p. If 𝑓𝑥𝑦 and 𝑓𝑦𝑥 are
continuous in 𝑁, then 𝑓𝑥𝑦(p) = 𝑓𝑦𝑥(p).

2.1 Gradients

https://en.wikipedia.org/wiki/Marquis_de_Condorcet
https://en.wikipedia.org/wiki/Adrien-Marie_Legendre
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Notation 2

This ridiculous textbook denotes the partial derivative of a function 𝑓(𝑥, 𝑦) =
𝑧 with respect to 𝑥 as 𝑓𝑥(𝑥, 𝑦).

Definition 1

The directional derivative of a function 𝑓 at (𝑥0, 𝑦0) in the direction of a
unit vector u = ⟨𝑎, 𝑏⟩ is

𝐷u𝑓(𝑥0, 𝑦0) = lim
ℎ→0

𝑓(𝑥0 + ℎ𝑎, 𝑦0 + ℎ𝑏) − 𝑓(𝑥0, 𝑦0)
ℎ ,

if the limit exists.

If 𝑓 ∶ ℜ2 ↦ ℜ is a differentiable function, then 𝑓 has a directional derivative in
the direction of any unit vector u = ⟨𝑎, 𝑏⟩ of

𝐷u𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑎 + 𝑓𝑦(𝑥, 𝑦)𝑏.

Or, if u = ⟨cos 𝜃, sin 𝜃⟩, then

𝐷u𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦) cos 𝜃 + 𝑓𝑦(𝑥, 𝑦) sin 𝜃.

Noticing that the directional derivative of a function can bewritten as the dot prod-
uct of two vectors,

𝐷u𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑥, 𝑦)𝑎 + 𝑓𝑦(𝑥, 𝑦)𝑏
= ⟨𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)⟩ ⋅ ⟨𝑎, 𝑏⟩
= ⟨𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)⟩ ⋅ u,

we call the first vector ⟨𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)⟩ the gradient of 𝑓 and denote it as ∇𝑓.

Definition 2

The gradient of a function 𝑓 of two variables is defined as

∇𝑓(𝑥, 𝑦) = ⟨𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)⟩ =
𝜕𝑓
𝜕𝑥 i +

𝜕𝑓
𝜕𝑦 j.

Therefore, we can rewrite the directional derivative of a function 𝑓 as

𝐷u𝑓(𝑥, 𝑦) = ∇𝑓(𝑥, 𝑦) ⋅ u.

It’s intuitive, then, that themaximumvalue of the directional derivative is |∇𝑓(𝑥, 𝑦)|,
when u is parallel to ∇𝑓(𝑥, 𝑦).



Chapter 2. Partial derivatives 5

2.2 Maximum andminimum values
Definition 3

𝑓 ∶ 𝐴𝑘 ↦ 𝐵 has a local maximum at a if for some neighborhood 𝑁 ⊂ 𝐴
about a, for all x ∈ 𝑁, 𝑓(x) ≤ 𝑓(a).

Conversely, if 𝑓(x) ≥ 𝑓(a), then 𝑓(a) is a localminimum.

If the statement also holds true for 𝑁 = 𝐴, then a is an absolute maximum
(or absolute minimum).

If 𝑓 has a local maximum or minimum at a and the partials of 𝑓 exist at a, then
𝜕𝑓/𝜕𝑥(a) = 0 and 𝑓𝑦(𝑎, 𝑏) = 0; geometrically, the tangent plane to a maximum or
minimummust be horizontal.

Definition 4

A point a is called a critical point of 𝑓 if 𝑓𝑥(a) = 0 or 𝑓𝑥(a) doesn’t exist for
all variables of 𝑓.

Definition 5

A saddle point of a function is a critical point which is not a local extremum
of the function.

If (𝑎, 𝑏) is a critical point of 𝑓, then let

𝐷 = 𝐷(𝑎, 𝑏) = 𝑓𝑥𝑥(𝑎, 𝑏) 𝑓𝑦𝑦(𝑎, 𝑏) − (𝑓𝑥𝑦(𝑎, 𝑏))2.

If 𝐷 < 0, then (𝑎, 𝑏) is a saddle point of 𝑓.

2.3 Lagrange multipliers
Oftenwewant tofind the local extremaof a function subject to constraints, i.e.max-
imizing the volume of an object while keeping its surface area constant. The
method of Lagrange multipliers1 is a strategy for doing this.

To find extrema of 𝑓(p) constrained with 𝑔(p) = 𝑘, we look for extrema of 𝑓 that
are restricted to lie on the level curve 𝑔(p) = 𝑘; it happens that the largest 𝑐 such
that 𝑓(p) = 𝑐 intersects with 𝑔(p) = 𝑘 when the two level curves are tangent with
each other, i.e. they have identical normals. In other words, for some scalar 𝜆,
∇𝑓(p) = 𝜆∇𝑔(p).

1After Joseph-Louis Lagrange (1736–1813), “an Italian Enlightenment Era mathematician and as-
tronomer [who] made significant contributions to the fields of analysis, number theory, and both clas-
sical and celestial mechanics.”

https://en.wikipedia.org/wiki/Joseph-Louis_Lagrange
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More formally, suppose 𝑓 has an extrema at p0. Then, let the level surface gener-
ated by the constraint 𝑔(p) = 𝑘 be called 𝑆, where p0 ∈ 𝑆. Then, let 𝐶 be the set
of points given by r(𝑡) such that 𝐶 ⊂ 𝑆 and p0 ∈ 𝐶. Further, let 𝑡0 be a point such
that r(𝑡0) = p0.

Then, 𝑓 ∘ r gives the values of 𝑓 on the curve 𝐶. 𝑓 has an extrema at p, so 𝑓 ∘ r
must also, and (𝑓 ∘ r)′(𝑡0) = 0. If 𝑓 is differentiable, we can use the chain rule to
write

0 = (𝑓 ∘ r)′(𝑡0)
= ∇𝑓(p0) ⋅ r′(𝑡0).

Therefore, the gradient of 𝑓 is orthogonal to the tangent of every such curve 𝐶.
We also know that ∇𝑔(p0) is orthogonal to r′(𝑡0), so the gradients of 𝑓 and 𝑔 at p0
must be parallel. Therefore, if ∇𝑔(p0) ≠ 0, there exists some 𝜆 such that

∇𝑓(p0) = 𝜆∇𝑔(p0), (2.1)

where the constant 𝜆 is called a Lagrange multiplier.

Then, the method of Lagrange multipliers gives us a process to find the maximum
and minimum values of a function 𝑓(p) subject to the constraint 𝑔(p) = 𝑘, where
p ∈ ℜ𝑛. To use the method of Lagrange multipliers, we assume that the extreme
values exist and that ∇𝑔 ≠ 0 on the level surface 𝑔(p) = 𝑘.

1. Find all values of p and 𝜆 such that

∇𝑓(p) = 𝜆∇𝑔(p)
and 𝑔(p) = 𝑘.

2. Next, evaluate𝑓 at all of the points found in the first step. The largest of these
values is the maximum value of 𝑓, and the smallest of them is the minimum
value.
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3 Multiple integrals

Single integrals are good for functions of one variable. To integrate functions of
multiple variables, we use multiple integrals. Straightforward enough.

Multiple integrals allow us to calculate things like surface areas and volumes of
geometric objects.

In general, for some double integral

∫
𝑏

𝑎

We treat 𝑦 as constant while evaluating this.
⏞⎴⎴⎴⏞⎴⎴⎴⏞
∫
𝑑

𝑐
𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
We’ve eliminated 𝑥 from the equation before evaluating this.

we do the opposite of partial differentiation and treat all variables other than the
one we’re integrating for as constant, repeatedly, until we’ve integrated with re-
spect to all variables; each step in this process is called, predictably, partial inte-
gration.

3.1 Double integrals
For an axis-aligned rectangle 𝑅 on the 𝑥𝑦-plane from (𝑥0, 𝑦0) to (𝑥1, 𝑦1), the area
of a function 𝑓(𝑥, 𝑦) under 𝑅 is given by the double integral

∬
𝑌
𝑓(𝑥, 𝑦) 𝑑𝐴 = ∫

𝑥1

𝑥0
∫
𝑦1

𝑦0
𝑓(𝑥, 𝑦) 𝑑𝑦 𝑑𝑥

⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
This is the iterated form of the integral.

= ∫
𝑦1

𝑦0
∫
𝑥1

𝑥0
𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

where we use∬𝑅 to mean “integrating over the area of 𝑅” and “𝑑𝐴” tomean “with
respect to area.”

The right-hand side of the equation above is called the iterated form, or an iterated
integral.

We can also iterate over funkier regions if we’re willing to play with the limits of
integration a bit. The easiest regions to integrate over are the ones that are easily
expressible as the region bounded above and below by functions of one variable,
e.g. “the region under the line 𝑦 = 2𝑥 and above the line 𝑦 = 𝑥2” (note that this is
bounded on the left at 𝑥 = 0 and on the right at 𝑥 = 2).
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The area of that region is expressed by the integral

𝐴 = ∫
2

0
∫
2𝑥

𝑥2
𝑑𝑦 𝑑𝑥

= ∫
2

0
[𝑥]

2𝑥

𝑥2
𝑑𝑥

= ∫
2

0
(2𝑥 − 𝑥2) 𝑑𝑥

= [𝑥2 − 𝑥3
3 ]

2

0

= 4 − 8
3 =

4
3 .

Amore complicated region might be “the region under the paraboloid 𝑧 = 𝑥2+𝑦2
and above the region in the 𝑥𝑦-plane bounded by 𝑦 = √𝑥 and 𝑦 = 1 − cos𝑥.”

We can build larger regions out of pieces, by summing smaller integrals.

3.2 Polar coordinates
Use the conversions

𝑟 = √𝑥2 + 𝑦2
𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

for the coordinates and then we have that if 𝑅 is a “polar rectangle” (arc-shaped
region bounded by angles and radii) from 𝑟 = 𝑎 to 𝑟 = 𝑏 and 𝜃 = 𝛼 to 𝜃 = 𝛽, we
have

∬
𝑅
𝑓(𝑥, 𝑦) 𝑑𝐴 = ∫

𝛽

𝛼
∫
𝑏

𝑎
𝑓(𝑟 cos 𝜃, 𝑟 sin 𝜃)𝑟 𝑑𝑟 𝑑𝜃,

whichmakes our lives easier for circly areas and volumes. Don’t forget tomultiply
by 𝑟.

For squiggly and varying radii, we can use functions ℎ1(𝜃) and ℎ2(𝜃) instead of
constants 𝑎 and 𝑏:

∬
𝐷
𝑓(𝑥, 𝑦) 𝑑𝐴 = ∫

𝛽

𝛼
∫
ℎ2(𝜃)

ℎ1(𝜃)
𝑓(𝑟 cos 𝜃, 𝑟 sin 𝜃)𝑟 𝑑𝑟 𝑑𝜃.
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3.3 Cylindrical coordinates
Just add 𝑧.

3.4 Spherical coordinates
I can never remember how these work. If we have a point 𝑃, and we drop it down
to the 𝑥𝑦-plane, the angle between the positive 𝑥-axis and the segment from the
origin to 𝑃 is 𝜃.

Next, the angle between the positive 𝑧-axis and the segment from the origin to 𝑃
is 𝜙.

Finally, the length of the segment from the origin to 𝑃 is 𝜌.

The conversions

𝑥 = 𝜌 sin𝜙 cos 𝜃
𝑦 = 𝜌 sin𝜙 sin 𝜃
𝑧 = 𝜌 cos𝜙

give us the integral-conversion for the spherical wedge bounded by 𝑎 ≤ 𝜌 ≤ 𝑏, 𝛼 ≤
𝜃 ≤ 𝛽, 𝑐 ≤ 𝜙 ≤ 𝑑 as

∭
𝐸
𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑉 = ∫

𝑑

𝑐
∫
𝛽

𝛼
∫
𝑏

𝑎
𝑓(𝜌 sin𝜙 cos 𝜃, 𝜌 sin𝜙 sin 𝜃, 𝜌 cos 𝜃)[𝜌2 sin𝜙] 𝑑𝜌 𝑑𝜃 𝑑𝜙.

Very gross!

3.5 Surface area
For 𝑓(𝑥, 𝑦) with 𝑓𝑥, 𝑓𝑦 continuous, the surface area of 𝑓 within a region 𝐷 is

𝐴 = ∬
𝐷
(√𝑓𝑥(𝑥, 𝑦)2 + 𝑓𝑦(𝑥, 𝑦)2 + 1) 𝑑𝐴.
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4 Vector calculus

A vector field is a mapping ℝ𝑘 ↦ ℝ𝑛; for each point in 𝑘-dimensional Euclidean
space, we associate an 𝑛-dimensional vector. These vectors can represent velocity,
distance, or anything else, and come up in all sorts of applied fields.

We’ll be mostly concerned with vector fields ℝ2 ↦ ℝ2 and ℝ3 ↦ ℝ3.

If we have a plane curve given by the vector equation

r(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡)⟩ 𝑎 ≤ 𝑡 ≤ 𝑏,

then the line integral of 𝑓 along r(𝑡) from 𝑎 to 𝑏 is

∫
𝑏

𝑎
𝑓(𝑥(𝑡), 𝑦(𝑡))√(𝑑𝑥𝑑𝑡 )

2
+ (𝑑𝑦𝑑𝑡 )

2
𝑑𝑡,

i.e. the length of the curvemultiplied, at each point, by the value of the vector field
𝑓 at that point.
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A Common formulas for derivatives and
integrals
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Derivatives

𝑑
𝑑𝑥 (𝑓 + 𝑔) = 𝑓′ + 𝑔′

𝑑
𝑑𝑥 𝑥𝑛 = 𝑛𝑥𝑛−1

𝑑
𝑑𝑥 (𝑓𝑔) = 𝑓𝑔′ + 𝑓′𝑔
𝑑
𝑑𝑥

ℎ
𝑙 =

𝑙ℎ′ − ℎ𝑙′
𝑙2

𝑑
𝑑𝑥 𝑓(𝑔(𝑥)) = 𝑓′(𝑔(𝑥))𝑔′(𝑥) (Chain rule.)
𝑑
𝑑𝑥 𝑏𝑥 = 𝑏𝑥 ln 𝑏
𝑑
𝑑𝑥 𝑓−1(𝑥) = 1

𝑓′(𝑓−1(𝑥)
𝑑
𝑑𝑥 𝑐 = 0
𝑑
𝑑𝑥 𝑐 𝑓 = 𝑐 𝑓′

𝑑
𝑑𝑥 𝑒𝑥 = 𝑒𝑥

𝑑
𝑑𝑥 𝑒𝑓(𝑥) = 𝑓′(𝑥)𝑒𝑓(𝑥) (By the chain rule.)
𝑑
𝑑𝑥 ln𝑥 = 1

𝑥
𝑑
𝑑𝑥 log𝑏 𝑥 =

1
𝑥 ln 𝑏

𝑑
𝑑𝑥 [u ⋅ v] = u′ ⋅ v + u ⋅ v′

𝑑
𝑑𝑥 [u × v] = u′ × v + u × v′
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Trigenometric

𝑑
𝑑𝑥 sin𝑥 = cos𝑥
𝑑
𝑑𝑥 cos𝑥 = − sin𝑥
𝑑
𝑑𝑥 tan𝑥 = sec2 𝑥
𝑑
𝑑𝑥 cot𝑥 = − csc2 𝑥
𝑑
𝑑𝑥 sec𝑥 = sec𝑥 tan𝑥
𝑑
𝑑𝑥 csc𝑥 = − csc𝑥 cot𝑥
𝑑
𝑑𝑥 sin−1 𝑥 = 1

√1 − 𝑥2
𝑑
𝑑𝑥 cos−1 𝑥 = −1

√1 − 𝑥2
𝑑
𝑑𝑥 tan−1 𝑥 = 1

1 + 𝑥2
𝑑
𝑑𝑥 cot−1 𝑥 = −1

1 + 𝑥2
𝑑
𝑑𝑥 sec−1 𝑥 = 1

|𝑥|√𝑥2 − 1
𝑑
𝑑𝑥 csc−1 𝑥 = −1

|𝑥|√𝑥2 − 1



Appendix A. Common formulas for derivatives and integrals 14

Integrals
See also: Techniques of Integration.

∫𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1
𝑛 + 1 + 𝐶 when 𝑛 ≠ −1

∫𝑥−1 𝑑𝑥 = ln |𝑥| + 𝐶

∫ 𝑒𝑥 𝑑𝑥 = 𝑒𝑥 + 𝐶

𝑑
𝑑𝑡 ∫

𝑏(𝑡)

𝑎(𝑡)
𝑔(𝑠) 𝑑𝑠 = 𝑏′(𝑡)𝑔(𝑏(𝑡)) − 𝑎′(𝑡)𝑔(𝑎(𝑡)) (Leibniz’ rule.)

∫𝑢𝑣′ 𝑑𝑥 = 𝑢𝑣 − ∫𝑢′𝑣 𝑑𝑥

Trigenometric

∫ sin𝑥 𝑑𝑥 = − cos𝑥 + 𝐶

∫ cos𝑥 𝑑𝑥 = sin𝑥 + 𝐶

∫ sec2 𝑥 𝑑𝑥 = tan𝑥 + 𝐶

∫ sec𝑥 tan𝑥 𝑑𝑥 = sec𝑥 + 𝐶

∫ 1
1 + 𝑥2 𝑑𝑥 = tan−1 𝑥 + 𝐶

∫ 1
√1 + 𝑥2

𝑑𝑥 = sin−1 𝑥 + 𝐶

https://www.whitman.edu/mathematics/calculus/calculus_08_Techniques_of_Integration.pdf
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