Net wor k Wor ki ng G oup G Finn
Request for Conmments: 916 | Sl
Cct ober 1984

RELI ABLE ASYNCHRONOUS TRANSFER PROTOCOL (RATP)

Status of This Meno

This RFC suggests a proposed protocol for the ARPA-Internet
community, and requests discussion and suggestions for inprovenents.
Distribution of this nenp is unlinited.

Thi s paper proposes and specifies a protocol which allows two
prograns to reliably conmuni cate over a communication link. |t
ensures that the data entering one end of the Iink if received
arrives at the other end intact and unaltered. The protocol, naned
RATP, is designed to operate over a full duplex point-to-point
connection. It contains sone features which tailor it to the RS-232
links now in comon use.

I nt roducti on

We are w tnessing today an explosive growth in the small or persona
comput er market. Such inexpensive conputers are not normally
connected to a conputer network. They are nost |ikely stand-al one
devices. But virtually all of them have an RS-232 interface. They
al so usually have a nodem This allows themto comunicate over the
tel ephone with any other similarly equi pped conputer

The tel ephone systemis a pervasive network, but one of the
characteristics of the tel ephone systemis the unpredictable quality
of the circuit. The standard tel ephone circuit is designed for voice
conmuni cation and not data comuni cation. Voice conmuni cation
tolerates a much hi gher degree of 'noise’ than does a data circuit,
SO a voice circuit is tolerant of a much higher |evel of noise than
is a data circuit. Thus it is not unconmon for a byte of data
transferred over a tel ephone circuit to have noise inserted. For the
same reason it is also not uncommon to have spurious data bytes added
to the data stream

The need for a nethod of reliably transferring data over an RS-232
poi nt-to-point |ink has becone severe. As the nunber of powerful
personal conputers grows, the need for themto conmunicate with one
another grows as well. The new markets and new services that these
computers will eventually allow their users to access will rely
heavily upon the tel ephone system Services like electronic mail,
el ectroni ¢ banki ng, ordering merchandi se fromhone with a persona
conmputer, etc. As the information revolution proceeds data itself
will becone a commodity. All require accuracy of the data sent or
received.

Fi nn [Page 1]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

1. Phil osopy of Design

Many tradeoffs were made in designing this protocol. Decisions were
made by above all ensuring reliability and then by favoring
sinplicity of inplementation. It is hoped that this protocol is

si mpl e enough to be inplenented not only by small conmputers but al so
by stand al one devices incorporating mcroconputers which accept
commands over RS-232 lines. Sophisticated but unnecessary features
such as dynani ¢ wi ndow managenent [TCP 81] were |left out for
simplicity’'s sake. Having several packets outstanding at a tinme was
elimnated for the sane reason, and data queued to send when a
connection is closed remptely is discarded. This elimnates two
states fromthe protocol inplenentation

The reader nmay ask why define this protocol at all, there are after
all already RS-232 transport protocols in use. This is true but some
| ack one or nore features vitally inportant or are too conplex. See
Appendix Il for a brief survey.

- A protocol which can only transfer data in one direction is
unable to use a single RS-232 link for a full-duplex connection
As such it cannot act as a bridge between nost conputer
networks. Also it is not capable of supporting any applications
requi ring the two-way exchange of data. |In particular it is not
a platformsuitable for the creation of nost higher |eve
applications. Unidirectional flow of data is sufficient for a
weak inplenentation of file transfer but insufficient for renote
term nal service, transaction oriented processing, etc.

- Sone of the existing RS-232 transport protocols allow the use of
only fixed size packets or do not allow the receiver to place a
limt on the sender’s packets. Were that block size is too
|arge for the receiving end concentrator, that concentrator is
likely to imediately invoke flow control. This results in nany
dropped and damaged packets. The receiver nust be able to
informthe sender at connection initiation what is the nmaxi num
packet size it is prepared to receive

- Sone protocols have a nunber of features which may or may not be
i npl enented at each site. Exanples are, several checksumi ng
algorithms, differing data transmi ssion restrictions, sometinmes
8-bit data, sonetines restricted ASCI| subsets, etc. The
resulting requirenment that all sites inplement all the various
features is rarely net.

Finally, the size of this docunent nmay be inposing. The docunent
attenpts to fully specify the behavior of the protocol. A careful

Fi nn [Page 2]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

exposition of the protocol’s behavior under all circunmstances is
necessary to answer any questions an inplenmentor night have, to nake
it possible to verify the protocol, etc. This size of this
specification should not be taken as an indication of the difficulty

of

i mplementing it.

1.1. The Host Environnent

This protocol is designed to operate on any point-to-point

communi cation |link capable of transmitting and receiving data. It
is not necessary that the Iink be asynchronous. Because neither
end of a connection has control over when the other decides to
transmit, the link should be full duplex. It is expected that in
the vast majority of circunmstances an asynchronous full-duplex
RS-232 link will be used.

In practice this protocol could reside anywhere fromthe RS-232
driver software on a microconputer in a concentrator all the way
to the user software level. |Ideally it properly resides inside
the host operating systemor concentrator. It should be an option
associated with communication |ink which is selectable by the user
program |If reliable data transni ssion were of great inportance
then the software woul d choose the option. Once the option were
chosen the initial connection handshaki ng woul d begi n.

There are many cases where this protocol will not reside in a host
operating system (initially this will always be so). In addition
there are many pi eces of stand-al one equi pnent whi ch accept
commands over an RS-232 link. A plotter is such an exanple. To
have a several hour plot ruined by noise on an unreliable data
line is an all too often occurrence. The sending and receiving
sides of the protocol should be as sinple as possible allow ng
applications software and stand al one devices to utilize the
protocol with little penalty of time or space

1.2. Relation to O her Protocols

Fi nn

The "l ayering" concept has becone the accepted way of designing
conmuni cati ons protocols. Because this protocol will operate in a
poi nt-to-point environment it conprises both the datagram and
reliable connection layers. No nulti-network capability is
inmplied. Where a link using this protocol bridges differing
networks it is expected that other protocols like TCP will have
their packets fragmented and encapsul ated inside the packets of
this protocol

[Page 3]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

2. Packet Specification

RATP transnmits data over a full-duplex comunication |ink. Data may
be transnmitted in both directions over the link. A streamof data is
communi cated by being broken up into 8-bit pieces called octets.
These octets are serially accunulated to forma packet. The packet
is the unit of data communi cated over the Iink. The protoco
virtual ly guarantees that the data transmtted at one end, if
received, arrives unaltered and intact at the other end.

Wthin an octet all eight bits contain data. Al eight bits nust be
preserved by the link interface and associ ated device driver. In
many operating systens this is ensured by placing the connection into
RAW or BI NARY data node. During nornmal operation packets are
transmitted and acknowl edged one at a tine over the link in each
direction. Each packet is conposed of a HEADER fol |l owed by a DATA
portion. The DATA portion nmay be enpty.

NOTE: There are sone ol der operating systens and devi ces which do
not permt 8-bit comunication over an RS-232 |ink. Mst of these
allow restricted 7-bit conmunication. RATP can autonmatically
detect this situation during connection initiation and utilizes a
speci al packing strategy when full 8-bit conmunication is not
possible. This is entirely transparent to any client software.
See Appendix | for a discussion of this case.

Fi nn [Page 4]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

2. 1. Header For nat

Byt e No.

e e eme e eeeeeiieeaaciieaeaaan +
I I

1 | Synch Leader | Hex 01
I I
o e e m e e e e e e e e e e oo oo - +
| S| Al F| R S| A| E| S|

2 | Y] C] I | S| N|] N|] O] O] Contro
| NI K| N T] | | R] |
Fom e m e e e e e e e e e e e +
I

3 | Data | ength (0-255)
I I
e +
I I

4 | Header Checksum |
I I
o e e m e e e e e e e e e e oo oo - +

Header Portion of a Packet
2.1.1. Synch Leader

RS- 232 provides a sel f-cl ocking conmuni cati ons nedium The

wi res over which data flows are often placed in ’'noisy’

envi ronnents where the noise can appear as added unwant ed dat a.
For this reason the beginning of a packet is denoted by a one
octet SYNCH pattern. This allows the receiver to discard noise
whi ch appears on the connection prior to the reception of a
packet. The SYNCH pattern is defined to be the one octet hex
01, the ASCI| Start O Header character <SOH>

The SYNCH pattern should ideally be unlikely to occur as the
result of noise. Differing nodens, etc. have differing
responses to noise so this is hard to achieve. The pattern
chosen is thought to be a good conproni se since nany nodens
mani f est noi se by setting the high order bits. Situations will
occur in which receiver is scanning for the beginning of a
packet and a spurious SYNCH pattern is seen. To detect
situations of this type a header checksumis provided (see

bel ow) .

Fi nn [Page 5]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

2.1.2. Control Bits

The first octet following the SYNCH pattern contains a 5-hbit
field of control flags and two 1-bit sequence nunber fields.
The last bit is reserved and nust be zero.

2.1.2.1. SYN - Synchroni ze Fl ag

Synchroni ze the connection. No data may be sent in a packet
whi ch has the SYN fl ag set.

2.1.2.2. ACK - Acknow edge Fl ag

Acknowl edge nunber is significant. Data nmay acconpany a
packet which has this flag set as | ong as neither of SYN
RST, nor FIN are also set. Once a connection has been
established this is always set.

2.1.2.3. RST - Reset Flag

Reset the connection. This is a method by which one end of

a connection can reset the other when an anonmal ous condition
is detected. No data may be sent in a packet which has the

RST fl ag set.

2.1.2.4. FIN - Finishing Flag
This indicates that no nore data will be sent to the other
end of the connection. It also indicates that no nore data
will be accepted. No data may be sent in a packet which has
the FIN flag set.

2.1.2.5. SN - Sequence Nunber
The Sequence Nunber associated with this packet.

2.1.2.6. AN - Acknow edge Nunber

If the ACK control flag is set this is the next Sequence
Nunmber the sender of the packet is expecting to receive.

2.1.2.7. EOR - End of Record
This bit is provided as an aid for higher |evel protocols
which may need to fragnent their packets. The Internet

protocol for exanple often uses packets as |large as 576
octets. A packet of such size would require fragmentation

Fi nn [Page 6]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

when transported using this protocol. The ECR bit if set
provides information to the higher level that a record is
termnated in this packet. It is for information only and
is the responsibility of the higher level to set/clear it
when buil di ng packets to send. The interface to the
protocol rmnust provide a nethod of reading/setting/clearing
this bit.

2.1.2.8. SO- Single Cctet

One application thought to be of special inmportance is
singl e character transmi ssion --- a user conmunicates from
t he keyboard of a personal conputer to another conputer over
an unreliable link. Since rapid interactive response is
desirable it is expected that nany of the characters typed
will be transmitted individually. To mnimze the overhead
of this special case the SO control flag is provided.

The SO flag has no neaning if either the SYN, RST, or FIN
flags are set. Assume none of those flags are set, then if
the SOflag is set it indicates that a single octet of data
is contained in this packet. Since the anount of data is
known to be one octet the LENGIH field is superfluous and
itself contains the data octet. The data portion of the
packet is not transmitted.

The SO flag renoves the need to transnmit the data portion of
the packet in this special case. Wthout the SO flag seven
octets would be required of the packet, with it only four
are needed and so transm ssion efficiency is inproved by 40
percent. The header checksum protects the single octet of
dat a.

2.1.3. Length

The second octet follow ng the SYNCH pattern holds |ength
information. |If the SYN bit is present this contains the
maxi mum nunber of data octets the receiver is allowed to
transmit in any single packet to the sender. This quantity is
called the MDL. A sender nmay indicate his unwillingness to
accept any data octets by specifying an MOL of zero. 1In this
case presumably all the data would be noving fromthe sender to
the receiver. Obviously if data is to be transmtted both

si des of a connection cannot have an MDL of zero.

If neither the SYN, RST, nor FIN flags are set this is an 8-bhit
field called LENGTH. In this case if the SOflag bit is set

Fi nn [Page 7]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

then LENGTH contains a single octet of data. Oherwise it
contains the count of data octets in this packet. From zero
(0) to MDL octets of data nmay appear in a single packet. MDL
islimted to a maxi mrum of 255.

2.1.4. Header Checksum

The header checksum algorithmis the 8-bit equival ent of the
16-bit data checksumdetailed below. It is built and processed
in an simlar manner but is eight bits w de instead of sixteen
Wien sending the header checksumoctet is initially cleared.

An 8-bit sum of the control, |ength, and header checksum octets
is formed enpl oyi ng end-around carry. That sumis then

conpl enented and stored in the header checksumoctet. Upon
receipt the 8-bit end-around carry sumis fornmed of the same

three octets. |If the sumis octal 377 the header is presuned
to be valid. 1In all other cases the header is assuned to be
i nval i d.

The reasons for providing this separate protection to the
header are discussed in the chapter dealing with error
handl i ng. The header checksum covers the control and data
length octets. It does not include the SYNCH pattern

2.2. Data Format

The data portion of a packet inmrediately follows the header if the
SO flag is not set and LENGTH > 0. It consists of LENGIH data
octets immediately followed by two data checksum octets. |If
present the data portion contains LENGTH+2 octets.

Fi nn

[Page 8]

RFC 916

Cct ober 1984

Rel i abl e Asynchronous Transfer Protoco

Dat a Byte No.

o e e m e e e e e e e e e e oo oo - +
1 | | Hi gh order \
$- - --+ > Word
2 | | Low order [/
+- - -+
| Dat a | High order \
oo -+ > Wird
| | Low order /
+- - -+
LENGTH | | Hi gh order \
e + > Wrd
| | magi nary paddi ng octet O | Low order /
o e e m e e e e e e e e e e oo oo - +
LENGTH+1 | | Hi gh order \
+-- Dat a Checksum --+ > Word
LENGTH+2 | | Low order /
Fom e m e e e e e e e e e e e +

Data Portion of a Packet

2.2.1. Data Checksum

Fi nn

The last two octets of the data portion of a packet are a data
checksum A 16-bit checksumis used by this protocol to detect
incorrectly transmtted data. This has shown itself to be a
reliable nmethod for detecting nost categories of bit drop out
and bit insertion. Wile it does not guarantee the detection
of all such errors the probability of such an error going
undetected is on the order of 2**(-16).

The checksum octets follow the data to enable the sender of a
packet to conpute the checksumwhile transmtting a packet and
the receiver to conpute the checksum while receiving the
packet. Thus neither nmust store the packet and then process
the data for checksumming in a separate pass.

Order of Transmn ssion

The order in which the 8-bit octets are assenbled into
16-bit words, which is the |ow order octet and which is the
hi gh, rmust be rigidly specified for the purpose of conputing
16-bit checksuns. W specify the big endian ordering in the
di agr am above [Cohen 81].

[Page 9]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Checksum Al gorit hm

The checksum al gorithm chosen is simlar to that used by

| P/ TCP protocols [IP 81] [TCP 81]. This algorithmhas shown
itself to be both reliable and relatively easy to conpute.
The interested reader may refer to [TCP Checksum 78] for a
nmor e t horough discussion of its properties.

The checksumalgorithmis:
SENDER

The unsigned sum of the 16-bit words of the data portion
of the packet is formed. Any overflow is added into the
| owest order bit. This sumdoes not include the header
portion of the packet. For the purpose of building a
packet for transmi ssion the two octet checksumfield is
zero. The sumformed is then bit conpl enented and
inserted into the checksum field before transm ssion

If the total nunmber of data octets is odd then the |ast
octet is padded to the right (low order) with zeros to
forma 16-bit word for checksum purposes. This pad octet
is not transmitted as part of the packet.

RECEI VER
The sumis conputed as above but including the val ues
received in the checksumfield. |If the 16-bit sumis
octal 177777 then the data is presuned to be valid. In

all other cases the data is presuned to be invalid.

This unsigned 16-bit sum adds 16-bit quantities with any
overflow bit added into the |owest order bit of the sum This
is called 'end around carry’. End around carry addition

provi des several properties: 1) It provides full comutivity of
addition (sunming in any order is equivalent), and 2) If you
apply a given rotation to each quantity before addition and
when the final total is fornmed apply the inverse rotation, then
the result will be equivalent to any other rotation chosen

The latter property gives little endian nachines |like a PDP-11
the go ahead to pick up 16-bit quantities and add themin byte
swapped order.

Fi nn [Page 10]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

The PDP-11 code to cal culate the checksumi s:

CLR RO ; RO will get the checksum

; R2 contains LENGTH count

LOOP: ADD (R1)+, RO ; Add the next 16-bit byte
ADC RO ; Make any carry be end around

SOB R2, LOCOP Loop over entire packet
COM RO ; Bit conplenment result

2. 3. Sequence Numbers

Fi nn

Sequence nunbers work with acknow edge nunbers to informthe
sender that his |ast data packet was received, and to informthe
recei ver of the sequence nunber of the next data packet it expects
to see. Wen the ACK flag is set in a packet the AN field
contai ns the sequence nunber of the next data packet it expects
fromthe sender. The sender |ooks at the AN field and by

i mplication knows that the packet he just sent should have had a
sequence nunber of:

<AN recei ved-1 nodul o 2>

If it did have that nunber that packet is considered to have been
acknow edged.

Simlarly, the receiver expects the next data packet it sees to
have an SN field value equal to the AN field of the Iast

acknow edge nessage it sent. If this is not the case then the
recei ver assunes that it is receiving a duplicate of a data packet
it earlier acknow edged. This inplies that the packet containing
t he acknowl edgnent did not arrive and therefor the packet that
cont ai ned the acknow edgnment should be retransnmtted. The
duplicate data packet is discarded.

The only packets which require acknow edgnent are packets
containing status flags (SYN, RST, FIN, or SO or data. A packet
whi ch contains only an acknow edgnent, i.e. <AN=n><CTL=ACK>, does
not require a response (it contains no status flags or data).

Both the AN and SN fields are a single bit wide. Since at nost
one packet is in the process of being sent/acknow edged in a
particular direction at any one time a single bit is sufficient to
provide a nethod of duplicate packet detection and renoval of a
packet fromthe retransm ssion queue. The arithnmetic to advance
these nunbers is nodulo 2. Thus when a data packet has been
acknow edged the sender’s next sequence nunber will be the current
one, plus one nodul o 2:

[Page 11]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

<SN = SN + 1 nodulo 2>

The i ndividual acknow edgnent of each packet containing data can
m sl ead one into thinking that side A of a connection cannot send
data to side B until it receives a packet fromB. That only then
can it acknowl edge B's packet and place in the acknow edgi ng
packet some data of its own. This is not the case

As long as its |last packet sent requiring a response has been
acknow edged each side of a connection is free to send a data
packet whenever it wishes. Naturally, if one side is sending a
data packet and it also nmust acknow edge recei pt of a data packet
fromthe other side, it is nobst efficient to conbine both
functions in a single packet.

2. 4. Maxi mum Packet Size

Fi nn

The maxi mum packet size is:
SYNCH + HEADER + Dat a Checksum + 255 = 261 octets

There is therefor no need to allocate nore than that anount of
storage for any received packets.

[Page 12]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

3. The Openi ng and d osing of a Connection

3.1. Opening a Connection

Fi nn

A "three-way handshake" is the procedure used to establish a
connection. It is normally initiated by one end of the connection
and responded to by the other. It will still work if both sides
simul taneously initiate the procedure. Experience has shown that
this strategy of opening a connection reduces the probability of
fal se connections to an acceptably | ow | evel

The sinplest formof the three-way handshake is illustrated in the
diagrambelow. The tine order is line by line fromtop to bottom
with certain |ines nunbered for reference. User events are placed
in brackets as in [OPENJ. An arrow (-->) represents the direction
of flow of a packet and an ellipsis (...) indicates a packet in
transit. Side A and side B are the two ends of the connection

An "XXX" indicates a packet which is lost or rejected. The
contents of the packet are shown on the center of each line. The
state of both connections is that caused by the departure or
arrival of the packet represented on the Iine. The contents of
the data portion of a packet are left out for clarity.

Side A Side B
1. CLOSED LI STEN

2. [OPEN request]
SYN- SENT - > <SN=0><CTL=SYN><MDL=n>

3. --> SYN- RECEI VED
<SN=0><AN=1><CTL=SYN, ACK><MDL=nP <- -

4. ESTABLI SHED <- -
--> <SN=1><AN=1><CTL=ACK><DATA>

5. --> ESTABLI SHED

In line 2 above the user at side A has requested that a connection
be opened. Side A then attenpts to open a connection by sending a
SYN packet to side B which is in the LISTEN state. It specifies
its initial sequence nunber, here zero. It places in the LENGIH
field of the header the | argest number of data octets it can
consume in any one packet (MDL). The MDL is nornmally positive.
The action of sending this packet places A in the SYN -SENT state.

In line 3 side B has just received the SYN packet fromA. This

[Page 13]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

pl aces B in the SYN-RECEI VED state. B now sends a SYN packet to A
whi ch acknowl edges the SYN it just received fromA. Note that the
AN field indicates B is now expecting to hear SN=1, thus

acknow edgi ng the SYN packet from A which used SN=0. B al so
specifies in the LENGTH field the |argest nunber of data octets it
is prepared to consune

Side A receives the SYN packet from B which acknow edges A s
original SYN packet in line 4. This places A in the ESTABLI SHED
state. Side A can now be confident that B expects to receive nore
packets from A

Ais now free to send B the first DATA packet. 1In line 5 upon
recei pt of this packet side Bis placed into the ESTABLI SHED
state. DATA cannot be sent until the sender is in the ESTABLI SHED
state. This is because the LENGIH field is used to specify the
MDL when openi ng the connection

3.2. Recovering froma Sinultaneous Active OPEN

Fi nn

It is of course possible that both ends of a connection nmay choose
to performan active OPEN sinultaneously. |In this case neither
end of the connection is in the LISTEN state, both send SYN
packets. A reliable bidirectional protocol nust recover fromthis
situation. It should recover in such a manner that the connection
is successfully initiated.

[Page 14]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Side A Side B

1. CLCSED CLOSED

2. [OPEN request]
SYN- SENT --> <SN=0><CTL=SYN><MDL=n>

3. C. [OPEN request]
<SN=0><CTL=SYN><MDL=n® <-- SYN SENT
4. --> SYN RECEI VED

<SN=0><AN=1><CTL=SYN, ACK><MDL=nP> <--

5. (packet finally arrives)
SYN- RECEI VED <-- <SN=0><CTL=SYN><MDL=nP

--> <SN=0><AN=1><CTL=SYN, ACK><MDL=n> --> ESTABLI| SHED
.. <SN=1><AN=1><CTL=ACK> <--

6. (packet finally arrives)
ESTABLI SHED <-- <SN=0><AN=1><CTL=SYN, ACK><MDL=np
--> <SN=1><ANF1><CTL=ACK>

During sinul taneous connection both sides of the connection
cycle from the CLOSED state through SYN-SENT to SYN RECEI VED,
and finally to ESTABLI SHED.

3.3. Detecting a Hal f-Open Connection
Any conputer may crash after a connection has been established.
After recovering fromthe crash it may attenpt to open a new

connection. The other end nust be able to detect this condition
and treat it as an error.

Fi nn [Page 15]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Side A Si de
1. ESTABLI SHED ESTABLI| SHED
--> <SN=0><AN=1><CTL=ACK><DATA> .
-->
(crashes)
2. XXX <SN=1><AN=1><CTL=ACK><DATA> <--
3. (attenpts to open new connection)
--> <SN=0><CTL=SYN><MDL=n -->
<SNE0><AN=1><CTL=RST, ACK> <-- (abort)
CLOSED
4. <--
(connecti on refused)
CLOSED

3.4. dosing a Connection

Fi nn

Ei ther side may choose to cl ose an established connection. This

i s acconplished by sending a packet with the FIN control bit set.
No data may appear in a FIN packet. The other end of the
connection responds by shutting down its end of the connection and
sending a FIN, ACK in response.

Side A Side B
1. ESTABLI SHED ESTABLI SHED
2. [CLCSE request from user]
FINVAIT --> <SN=0><AN=1><CTL=FI N>
3. --> LAST- ACK

<SN=1><AN=1><CTL=FI N, ACK> <--

4. TIME-WAIT <--
--> <SN=1><AN=0><CTL=ACK>

5. --> CLOSED

6. (after 2*SRTT tine passes)
CLOSED

In line 2 the user on side A of the fully opened connection has
decided to close it down by issuing a CLOSE call. No nore data

[Page 16]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Fi nn

will be accepted for sending. |If data remains unsent a nmessage
"Warni ng: Unsent data remains."” is comunicated to the user. No
nore data will be received. A packet containing a FIN but no data
is constructed and sent. Side A goes into the FINWAIT state.

Side B sees the FIN sent and i nmediately builds a FIN, ACK packet
in response. It then goes into the LAST-ACK state. The FIN, ACK
packet is received by side A and an answering ACK is inmediately

sent. Side A then goes to the TIME-WAIT state. In line 5 side B
receives the final acknow edgnent of its FIN, ACK packet and goes
to the CLOSED state. In line 6 after waiting to be sure its |ast
acknow edgnment was received side A goes to the CLOSED state (SRTT
is the Smoothed Round Trip Tinme and is defined in section 6.3.1).

[Page 17]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

4. Packet Reception

The act of receiving a packet is relatively straightforward. There
are a few points which deserve sone di scussion. This chapter wll
di scuss packet reception stage by stage in tinme order

Synch Detection

The first stage in the reception of a packet is the discovery of a
SYNCH pattern. Cctets are read continuously and di scarded unti
the SYNCH pattern is seen. Once SYNCH has been observed proceed
to the Header Reception stage.

Header Reception

The renai nder of the header is three octets in length. No further
processing can continue until the conplete header has been read.
Once read the header checksumtest is perfornmed. |If this test
fails it is assuned that the current SYNCH pattern was the result
of a data error. Since the correct SYNCH nmay appear inmmedi ately
after the current one, go back to the Synch Detection stage but
treat the three octets of the header followi ng the bad SYNCH as
new i nput.

If the header checksumtest succeeds then proceed to the Data
Recepti on stage.

Dat a Reception

A determination of the remaining |l ength of the packet is nade. |If
either of the SYN, RST, SO or FINflags are set then legally the
entire packet has already been read and it is considered to have
"arrived’. No data portion of a packet is present when one of
those flags is set. Qherwise the LENGIH field specifies the
remai ni ng anount of data to read. In this case if the LENGTH
field is zero then the packet contains no data portion and it is
consi dered to have arrived

We now assune that a data portion is present and LENGTH was
non-zero. Counting the data checksum LENGTH+2 octets nust now be

read. Once read the data checksumtest is perforned. |If this
test fails the entire packet is discarded, return to the Synch
Detection stage. |If the test succeeds then the packet is

consi dered to have arrived

Fi nn [Page 18]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

Once arrived the packet is released to the upper |evel protoco
software. In a nultiprocess inplenmentation packet reception would
now begin again at the Synch Detection stage.

Fi nn [Page 19]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

5. Functional Specification

A conveni ent nodel for the discussion and i nplenentation of protocols
is that of a state nmachine. A connection can be thought of as
passing through a variety of states, with possible error conditions,
fromits inception until it is closed. In such a nodel each state
represents a known point in the history of a connection. The
connection passes fromstate to state in response to events. These
events are caused by user calls to the protocol interface (a request
to open or close a connection, data to send, etc.), incom ng packets,
and tineouts.

I nf ormati on about a connection nust be naintained at both ends of
that connection. Follow ng the term nology of [TCP 81] the

i nformati on necessary to the successful operation of a connection is
called the Transm ssion Control Block or TCB. The user requests to
the protocol interface are OPEN, SEND, RECElVE, ABORT, STATUS, and
CLCSE

This chapter is broken up into three parts. First a brief
description of each protocol state will be presented. Following this
is aslightly nore detailed | ook at the allowed transitions which

occur between states. Finally a detailed discussion of the behavior
of each state is given

5.1. Protocol States
The states used to describe this protocol are:
LI STEN

This state represents waiting for a connection fromthe
other end of the Iink

SYN- SENT

This represents waiting for a matching connection request
after having sent a connection request.

SYN RECEI VED
This represents waiting for a confirmng connection request

acknow edgnment after having both received and sent a
connection request.

Fi nn [Page 20]

RFC 916 Cct ober 1984
Rel i abl e Asynchronous Transfer Protoco

ESTABLI SHED

This state represents a connection fully opened at both
ends. This is the nornmal state for data transfer

FI' N-VAI T

In this state one is waiting for a connection termination
request fromthe other end of the connection and an
acknow edgnent of a term nation request previously sent.

LAST- ACK

This end of the connection has seen and acknow edged a
term nation request fromthe other end. This end has
responded with a termnation request of its own and is now
expecting an acknow edgnent of that request.

CLOSI NG

This represents waiting for an acknow edgnent of a
connection term nation req